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Abstract

With the recent development of Iso-geometric Analysis (IGA) [? ] and advanced manufacturing technologies employing hetero-
geneous materials, such as additive manufacturing (AM) of functionally graded material, there is a growing emerging need for a
full volumetric representation of 3D objects, that prescribes the interior of the object in addition to its boundaries. In this paper, we
propose a volumetric representation (V-rep) for geometric modeling that is based on trimmed B-spline trivariates and introduce its
supporting volumetric modeling framework. The framework includes various volumetric model (V-model) construction methods
from basic non-singular volumetric primitives to high level constructors, as well as Boolean operations’ support for V-models. A
V-model is decomposed into and defined by a complex of volumetric cells (V-cells), each of which can also represent a variety
of additional varying fields over it, and hence over the entire V-model. With these capabilities, the proposed framework is able
of supporting volumetric IGA needs as well as represent and manage heterogeneous materials for AM. Further, this framework is
also a seamless extension to existing boundary representations (B-reps) common in all contemporary geometric modeling systems,
and allows a simple migration of existing B-rep data, tools and algorithms. Examples of volumetric models constructed using the

proposed framework are presented.

Keywords: Trivariate functions, Trimmed volumes, Volumetric Boolean operations, Domain Decomposition, Additive

manufacturing, 3D printing, Iso-Geometric analysis.

1. Introduction

In geometric modeling (GM), 3D objects are mainly repre-
sented by their boundaries [? ]. Typically, these boundaries
are represented as a set of tensor product (trimmed) surfaces.
These surfaces define the 2-manifold boundaries of the object
and hence delineate its volume. Until recently, full volumet-
ric representation of 3D objects has not been in high demand
in the GM and engineering communities. However, with the
development of advanced manufacturing technologies employ-
ing heterogeneous materials such as additive manufacturing [?
1 (AM, also known as 3D printing) using functionally graded
materials [? ], methods for representing materials in the entire
volume of the object are in active demand and research. The ob-
ject’s description should include its geometry as well as other
relevant internal volumetric data sets, like material’s properties,
such as stresses or conductivity fields, and also boundary condi-
tions, like pressure. Hereafter, we refer to these non-geometric
data sets and fields as attributes. These volumetric capabilities
are simply lacking in contemporary GM systems.

3D volumetric modeling is in demand also in micro-scale
bone scaffold design, where patient’s specific porous structures
are designed, in order to replace unhealthy or diseased tissue [?
], and in the design of porous material in general (i.e. topologi-
cal optimizations [? ]).

Traditional finite elements analysis (FEA) processes require
the conversion of 3D B-rep data, such as mechanical parts, to
a representation in which the physical simulation can be em-
ployed. Grids or meshes, based on piecewise linear approxi-
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mating primitives like triangles, tetrahedra, quadrilaterals and
hexahedra are frequently used representations for analysis [? ].
The drawback of such a discrete representation is the lack of
numerical stability on one hand, and accuracy on the other - the
generated models are merely piecewise linear discrete approx-
imations of the real freeform models [? ]. [? ] reports that the
process of generating a discrete approximated mesh for analysis
from a given 3D B-rep CAD model is the key, most time con-
suming, step in finite element analysis (FEA). It is estimated to
consume about 80% of the overall design and analysis process
in the automotive, aerospace and ship industry. Thus, employ-
ing a single geometric representation for both the design and
the analysis, throughout the modeling cycle, has major poten-
tial advantages.

Isogeometric analysis (IGA) postulates the use of the same
tensor product B-spline [? ] representation used for represent-
ing the geometry in the physical analysis as well, striving for a
tighter bond between GM and Analysis. The end user can work
in the same B-spline representation in the design and analysis
stages, avoiding both the need to generate a finite element inter-
mediate mesh toward the analysis and the need for a complex
feedback of the analysis results back to the B-spline based geo-
metric model. However, it is necessary to have a B-spline based
representation that is suitable for analysis. Over the last decade,
several studies have been conducted to utilize IGA for different
physical analysis problems, i.e. [? ? ? ? ], showing improved
accuracy and robustness over traditional finite element meth-
ods [? ]. So far, these studies are, for the most part, designed
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for the 2D case, (and to some extent trimmed surfaces), due
to the lack of suitable geometrical representation and tools for
handling volumetric objects.

In this work, we introduce a framework and techniques for
representing and managing freeform volumetric objects, hav-
ing a full representation of the boundary as well as the interior
volume of the model, taking into account both accuracy and
efficiency. In this work, we only deal with volumetric models
(V-model) that are open sets and regular. That is, a V-model is a
regular 3-manifold geometry and the boundary (closure) of the
V-model is a closed regular 2-manifold. A regular 3-manifold
(2-manifold) doesn’t self-intersect, and have a vanishing Jaco-
bian in no place. See Figure 1 for examples of a non-regular
(singular) trivariate. As stated, in this work, we exclude such
singular cases.

(b)

Figure 1: (a) shows a non-regular (singular) self-intersecting B-spline trivariate
whereas (b) shows a non-regular cuboid B-spline trivariate where three internal
control points are moved up and outside the cuboid, resulting in a zone of neg-
ative Jacobian (in cyan). Note the boundary of this trivariate no longer consists
of only the six boundary surfaces. See also [? ].

The main contributions of this V-rep framework are:

1. A Data structure for accurately representing a general
freeform V-model, its geometry as well as scalar, vector,
and tensor fields in its interior and/or over its boundaries.

2. Constructors of basic volumetric primitives as a complex
of non-singular B-spline trivariates, such as a cylinder, a
torus and a sphere and also more advanced constructors
such as ruled volumes and volumes of revolution.

3. Algorithms for Boolean operations over V-models, that are
based on trimmed B-spline trivariate vector functions.

4. Geometric support tools for precise management and anal-
ysis.

5. Almost seamless conversion from B-rep geometry.

The rest of this document is organized as following. Sec-
tion 2 discusses related work. In Section 3, we describe our
V-model representation (V-rep). In Section 4, we present the
volumetric Boolean operations between V-models, for creating
arbitrarily complex V-models. In Section 5, we portray unique
geometric tools that are supported in the framework and enable
precise analysis over V-models. In Section 6, we present some
results of constructions of V-models using the proposed V-rep
modeling framework,and finally, in Section 7, we conclude and
discuss future planned research.

2. Related Work

The most common geometric representation of 3D objects is
the boundary representation (B-rep), where the object is delin-
eated by its boundary surface(s) . There are many methods to
model the boundary surface(s), and the two most common basic
building blocks for B-reps are:

e Linear primitives such as triangles, quads or general poly-
gons, and

e Trimmed spline surfaces, as a set of piecewise polynomial
or rational functions, over some parametric spaces.

These methods are commonly used in contemporary GM sys-
tems for about half a century, with little change. Until recently,
representing the inner volume of the object has been of little
interest. However, in recent years, there has been a growing
need for modeling the interior volume of geometric objects,
for example in engineering, medicine and manufacturing. AM
with graded materials is already a proven technology and IGA
requires an appropriate representation for various prescribed
and/or computed fields in the interior of an object.

The voxel based volume representation is common in med-
ical applications and is simple to manipulate. However, voxel
based approaches suffer from lack of accuracy and huge data
sizes. For example, a CT scan from a typical device can gener-
ate a volume of 512 voxels in each dimension (a 2mm accuracy
for an object of one meter wide), with each voxel represented
in typically 16 bit. Such a volume requires around 256 MBytes
of storage space. In contrast, the accuracy offered by current
subtractive manufacturing (SM) technologies (i.e. CNC) is in
the orders of microns and tens of microns, which is 2-3 or-
ders of magnitude better, and AM is expected to follow these
accuracies in the near future. There is little hope that voxel
based representation can provide such accuracies, considering
the amount of expected storage space.

There have been several relevant studies on spline based vol-
umetric representations. Basic constructors of tensor product
B-spline trivariates has been investigated in [? ]. In [? ], al-
gorithms to derive the boundaries of tensor product trivariates
with singularities (vanishing and/or varying-sign Jacobians) are
proposed. Aigner et al.[? ] proposed an algorithm for calcu-
lating a tensor product trivariate from boundary conditions and
guiding curves. Their method is proposed to handle only swept
volume structures. Liu et al. [? ] uses Boolean operation of vol-
umetric cylinders and cubes with hierarchical octrees to extract
T-spline trivariates from boundary triangulated surfaces. How-
ever, [? ] cannot handle more complex shapes, even as simple
as cones and tetrahedron.

Kumar, et al. [? ? ? ] provide a good summary on the var-
ious mathematical representations for models found in the lit-
erature. They proposed a framework for segmenting the object
into cells by using constructive solid geometry (CSG) opera-
tions, where each cell describes both the geometry and material
properties. However, their method uses a limited set of basic
shapes (and CSG operations) like spheres and cubes, which
makes their method too restrictive to handle complex general
freeform objects.



Martin et al. [? ? ] modeled the attributes as separate trivari-
ate volumes that are not coupled to the geometry, but share the
same parametric domain. Their method supports only complete
(non-trimmed) tensor product trivariates.

Biswas et al. [? ] proposes a high level abstract model for the
representation of heterogeneous objects, that are composed of
geometry and continuously varying materials. Their extension
toward heterogeneous materials is based on a distance function
from interior or boundary geometric curves or points defining
the material attributes, called features positions. Chen et al. [?
] proposes a framework for representing and optimizing volu-
metric heterogeneous models. They represent the geometry of
the model by implicit functions and the material distribution us-
ing a linear combination of B-spline basis functions. Both rep-
resentations are defined over the same spatial domain, where
only locations inside the model are considered.

None of the above studies handle trimmed volumes, and are
not general enough to support the current modeling space of
B-reps, common in all contemporary geometric modeling sys-
tems. To the best of our knowledge, there is no known general
method for handling Boolean operations over volumes. Much
like traditional 2-manifold B-rep modeling, where trimmed sur-
faces make the space of objects one can model much richer
compared to tensor product surfaces, we similarly expect that
the proposed trimmed volume representation will offer a much
richer modeling space than tensor product B-spline trivariates.
Modern geometric modeling systems offer a fairly small set
of surface constructors, such as basic surface primitives (i.e.
a cone), ruled surfaces and surfaces of revolution, as well as
Boolean operations over these B-rep elements. We believe that
B-rep models designed on a contemporary CAD system that is
based the trimmed B-spline surface representation are also pre-
cisely representable as V-models in the proposed framework.
More so, it is going to be a relatively simple task to perform
these B-rep to V-rep conversions, as we will show, in this work,
a parallel set of trivariate constructors as well as an ability to
perform the Boolean operations directly in V-rep.

3. The volumetric modeling framework

The proposed framework supports methods and algorithms
for constructing volumetric models (V-models) in a similar way
to B-rep, allowing for migration with ease of B-rep algorithms,
tools and data. Furthermore, the framework is designed to sup-
port anticipated AM and IGA needs, which means it should
support different queries on V-rep models such as slicing (inter-
section with a plane), (point) inclusion, geometrical neighbor-
hood information and contacts, local refinements and more. In
Section 3.1, we describe the proposed data structures that rep-
resent a V-model, and in Section 3.2, we introduce methods and
algorithms for constructing V-models.

3.1. The V-model representation

A V-model is a complex of several volumetric cells (V-cells),
where each V-cell is a volumetric cell represented by a trimmed
B-spline trivariate:

Definition 3.1. A B-spline trivariate is a volumetric extension to
parametric B-spline curves and surfaces, in a three dimensional
parametric space [? ]. A common representation of trivariates
is by tensor product B-splines, as:
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where F is defined over the 3D parametric domain
[Umim Umax)x[vmins Vmax)X[Wmina Wmax)) and where Pi,j,k € IRq:
q > 3 are the control points of F and B; 4 is the i’th univariate
B-spline basis functions of degree d.

Note P;;x € RY, g > 3 where the first three coordinates
always represent the geometry but optionally also additional at-
tributes, such as a color or a stress tensor field, for ¢ > 3. The
scalar components of the different attribute fields can be eas-
ily encoded into the g — 3 coeflicients of the P; ;;’s, the con-
trol points of F(u,v,w). An alternative, yet a bit more general
approach, would be to define the attribute fields as additional
trivariates alongside F'(u, v, w) while sharing the same paramet-
ric domain.

The B-spline trivariate is our basic building block that de-
fines a volume. However, it is limited to a cuboid topology, and
can’t represent general volumetric shapes. For this, we define a
V-rep cell (A V-cell) as a trimmed B-spline trivariate volumetric
cell. In fact, a V-cell can also be contained in several trimmed
B-spline trivariates, but then, all trivariates must contain all the
volume in the V-cell. The trimming of a V-cell is prescribed by
a set of trimming (bivariate) B-spline surfaces in the domain of
the trivariate(s). Each such trimming surface is, in turn, possi-
bly trimmed by trimming B-spline curves. Hence:

Definition 3.2. A V-rep cell (V-cell) is a 3-manifold that is in
the intersection of one or more B-spline tensor product trivari-
ates. The sub-domain of the intersection is delineated by trim-
ming surfaces.

A V-cell defines a unique volumetric zone inside a V-model
and, by definition, the V-cell is fully contained in all its tensor
product trivariates. Then, the V-model is defined as following:

Definition 3.3. A V-model is a complex of one or more (mutu-
ally exclusive) V-cells. Adjacent V-cells possibly share bound-
ary (trimming) surfaces, curves or points.

In addition to its geometry and attributes, the V-model holds
topological information about its 3-/2-/1-/0-manifold elements.
Such information is important for traversing and updating the
inner structures of the V-model, for example, in domain de-
composition [? ] toward analysis, where boundary conditions
are propagated between V-cells. Each V-cell can have several
V-cell neighbors, where every pair of adjacent V-cells typically
share one or more boundary trimming surfaces (a V-surface):

Definition 3.4. A V-surface is a boundary trimming surface of
one (or two adjacent) V-cell(s) of a V-model. An internal V-
surface is shared between two adjacent V-cells, and a bound-
ary V-surface belongs to one V-cell which is also a boundary
surface of the entire V-model.



Hence, we define the boundary of a V-model as following:

Definition 3.5. The boundary of V-model Vy;, denoted OV, is
a closed B-rep 2-manifold defined as the union of the boundary
V-surfaces in Vy;. (V-surfaces that belong to one V-cell).

The topological information structure we define can be seen
as a 3-manifold extension to the known half-edge data struc-
ture for representing regular graphs [? ]. Edges and faces are
elevated a dimension here and extended to V-surfaces and V-
cells, respectively, while we also manage the topology of the
2-manifold boundary B-rep as before. In a similar way to the
half-edge semantics, where shared edges between faces are split
into two half-edges, we split each V-surface into two half-V-
surfaces:

Definition 3.6. A half-V-surface is a boundary (trimmed) sur-
face of a single V-cell. Each internal V-surface is split into two
half-V-surfaces with opposite orientation (having negated nor-
mal directions at the same point), while a boundary V-surface
is associated with only one half-V-surface. The half-V-surface
holds references to:

1. Its V-cell and the B-spline trivariate this half-V-surface is
a boundary/trimming surface of.

2. The other half-V-surface of the neighboring V-cell (if ex-
ists).

3. Trimming loops in the parametric space of the surface.

Figure 2 shows an example of two V-cells sharing a V-
surface, that is split into two half-V-surfaces. Each half-V-
surface refers to its V-cell and also points to the other half-V-
surface.

Figure 2: A shared V-surface boundary between two V-cells is split into two
half-V-surfaces. Each half-V-surface references its V-cell and also references
the adjacent half-V-surface.

The topology of boundary curves in 3-manifolds is more
complex than the topology of edges defined in the original 2-
manifold half-edge data structure. This complexity stems from
the fact that herein each boundary curve can belong to more
than two V-cells. In order to maintain the topological informa-
tion through boundary curves we define another component in
the V-model:

Definition 3.7. A V-curve is a boundary curve of a V-cell. A
V-curve can be shared between several (unbounded number of)
V-cells and it hold references to:

1. V-surfaces that share this V-curve.
2. Two end points of the V-curve, of type V-point (see Defini-
tion 3.8 below).

Adjacent V-cells can share common faces (V-surfaces), com-
mon curves (V-curves), and common points. To maintain topo-
logical information through curves’ end points, we define our
last topological component:

Definition 3.8. A V-point is an intersection point of V-curves,
and holds a list of (unbounded number of) V-curves that start
or end at this point.

We now define a gluing operation that is used to construct
the topology of a V-model from a given set of V-cells.

Definition 3.9. A gluing operation on a set of V-cells, (V’C cre-
ates a new V-model, Vy;, that contains all the V-cells in (V’C with
proper topological adjacency information on its V-surfaces, V-
curves and V-points.

The gluing construction procedure of the topology is further
discussed and explained in Section 3.1.1.

Figure 3 shows a V-model composed of three V-cells, A, B
and C. This V-rep is generated by a union operation of two V-
rep box models, O; and O,. The B V-cell is the common vol-
ume between the two input V-models. V-cells A and C hold one
trivariate each from the original V-models O; and O,, while V-
cell B holds both trivariates. Each V-cell has 6 trimming half-
V-surfaces. There are two internal V-surfaces and 14 boundary
ones. These V-surfaces are converted together to 18 half-V-
surfaces. The V-surface between A and B is split into two half-
V-surfaces and the same holds for the V-surface between B and
C. The V-rep of this model also contains 16 V-points (in red),
and 28 V-curves (in yellow). The V-curve labeled by 1 holds in-
formation about four V-surfaces (split into six half-V-surfaces)
attached to it, and two V-points at its end points. While the V-
curve labeled 2 holds information about two V-surfaces (split
into two half-V-surfaces). The V-points of V-curve 1 are at-
tached to five V-curves each, and those of V-curve 2 are attached
to three V-curves each.

Figure 3: A V-model generated by uniting two box V-models, O and O,. The
result V-model contains three V-cells, A, B and C. V-points are marked in red,
and V-curves are displayed in yellow.

With the above data structures, topological queries can be
implemented efficiently. For example, these queries include:

1. V-curve’s neighboring V-cells.

2. V-cell’s neighboring V-cells.

3. Are two V-cells sharing a boundary surface? Sharing a
boundary curve? Meet at exactly one point?



There are several advantages in using the proposed V-rep:

1. The V-model is a complex of V-cells, where each V-cell
can have a different independent geometry and set of at-
tributes. Such a decomposition can make it convenient to
define and control heterogeneity.

2. The V-model uses B-spline trivariates as basic volumetric
building blocks, which makes it suitable, for example, for
both AM and IGA, offering accuracy and light size.

3. The V-model maintains topological information between
different parts of the model. Such information is useful,
for example, for efficient local updates, and in domain de-
composition analysis [? ], where boundary conditions and
constraints between V-cells, over V-surfaces and in inner
structures are imposed.

4. The presented V-rep offers a seamless and precise migra-
tion path from B-rep (modeling tools, algorithms and data
alike). This topic will be further discussed in Section 5.4.

5. The presented V-rep supports precise analysis, including:
integration of trimmed surfaces using untrimming, con-
tact and penetration depth analysis and precise point/curve
projections. These topics will be further discussed in Sec-
tion 5.

3.1.1. Managing the topology

As part of constructing the topological information of a V-
model, neighboring V-cells are glued together by comparing V-
surfaces, V-curves and V-points for similarity. Only the geom-
etry (and no attribute values) is taken into account when these
similarities are examined and we now briefly explain how these
entities are compared:

e Two V-points are considered the same if they designate the
same 3-space location in Euclidean space.

e Two V-curve are considered the same if their B-spline

curves are the same. Following [? ], two B-spline curves
are the same if their control points are the same after
reparametrization(s) (via compositions), if any, were elim-
inated and they were elevated to the same function space
via degree raising and knot insertion.
In this work, we only bring the curves to a common func-
tion space before any comparison of control points takes
place. However, and because curves can be parameterized
in reverse, the curves are also compared for similarity after
one of the curves is reversed.

e Two half-V-surfaces are considered the same if their B-
spline surfaces (and their trimming curves, compared as
the above V-curves) are the same. Two B-spline surfaces
are the same if their control points are the same after the
elimination of any reparametrization (via a composition),
if was one, and they were elevated to the same function
space via degree raising and knot insertion.

In this work, we only bring the surfaces to a common func-
tion space before any comparison of control points takes
place. However, and because surface S (#,v) can be pa-
rameterized by reversing either u or v or both and u and v
can be flipped to yield the exact same traced surfaces, the

surfaces are also compared following all these reversal/flip
operations of one of the surfaces.

3.1.2. Managing the attributes

Attributes and attribute fields can be attached to trivariates
and control points of trivariates as discussed in the beginning
of Section 3.1. Further, attributes and attribute fields can also
be attached to V-cells, V-surfaces, V-curves and V-points, pos-
sibly as boundary conditions. Attribute fields can be prescribed
to boundaries of the V-model, i.e. as boundary conditions in
IGA. Attributes can also be prescribed to boundaries of V-cells,
for example, in domain decomposition analysis, as well as the
interior of V-cells, setting interior desired properties at certain
locations. Each V-cell can encapsulate a set of attributes with
certain continuity requirements with its neighbors. Finally, in-
dependent constraints can also be prescribed in the interior of
the V-model, and possibly manipulated in a similar way to [? ].

Consider a Boolean operation between two V-models. All
the intersecting zones between the two V-models are recreated
as new V-cells that inherits the geometry and the attributes from
both models. Consider, for example, the union of a cone O and
acylinder O, (see Figure 4 (a)). The resulting V-model contains
three categories of V-cells:

1. V-cells in O; that are not in O, (A in purple, in Fig-
ure 4 (b)). These V-cells inherit attribute information from
O only.

2. V-cells in O, that are not in O; (C in green, Figure 4 (b)).
These V-cells inherit attribute information from O, only.

3. V-cells in the intersecting zone of O; and O, (B in cyan,
Figure 4 (b)). These V-cells inherit attribute information
from both O; and O,.

Figure 4: A union between a cone V-model and a cylinder V-model is shown in
(a). The result contains several V-cells shown partially exploded in (b).

A V-cell can inherit the same attributes from different trivari-
ates, during the Booleans, and hence, some blending scheme
of these attributes must be defined. The V-model in Figure 5
shows one such simple blending scheme. This V-model is gen-
erated as the union of four V-models, each V-model has a dif-
ferent color attribute. The intersection volumes between these
two V-models are represented as a separate, new, V-cell each
(They are also translated up in the figure, in the Z axis, for clar-
ity of the display). Each V-cell inherits two color attributes,
from the two original models. The blending scheme used here
simply sums up the the colors (clipped to maximally allowed
intensity). This summation function introduces a C~! disconti-
nuity in the attributes along the V-surfaces shared between these
V-cells.



Figure 5: A Union between four V-models. The blending scheme used here
simply sums the color attribute in the intersection volumes.

Many different blending schemes can be used. As an addi-
tional example, a different blending function, seeking a better
continuity of the attribute fields, might consider the distance
from the boundary V-surfaces of the V-cell, as in [? ]. Let
Vy = V},U V3, be some V-model that is the result of a Boolean
union operation between V-models VI{,I and Vz%r For simplicity,
we assume each of V!, and V2, contains one V-cell only. Let p
be a point in V), and let d(p, O) denote the minimal distance
from p to O, d is a C° continuous function. Let A;(p) and A»(p)
be some C? attribute fields of models V}, and V3, respectively,
at p, and finally, let d%(p) = d(p,d8V;, N V3,) denote the dis-
tance from the boundary of V},, dV,,, that is inside V3, from
point p.

Then, the attribute value of model V,;, A(p), at p can be cal-
culated as the blend of A;(p) and A,(p) as follows (see Fig-
ure 6):
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A(p) (Equation (2)) ensures C° continuity of attribute values
everywhere in V), as it involves only C° continuous functions,
except at singular locations. Point 7, in Figure 6, where both
a'ibz1 (r) and diblz(r) vanish simultaneously, is one such singular
location. Further, having C* continuous A;(p) and A,(p) and
defining higher order versions of Equation (2), by employing

k
(df’lz(p)) as blending function, k > 1, better continuity in the
attribute fields can be gained at regular locations.

3.2. Basic construction methods of V-model

The presented V-rep framework supports several construc-
tion methods of V-models. The different methods are described
in Sections 3.2.1, 3.2.2 and 3.2.3.

3.2.1. Trivariate B-splines

Any tensor product B-spline trivariate can be converted to
a V-model having, typically, one V-cell, six boundary half-V-
surfaces, twelve V-curves, and eight V-points, all in a cuboid
topology. The trivariate can be explicitly prescribed, by provid-
ing its three, (u, v, w) orders, its control mesh and its three knot
sequences. Alternatively, a trivariate can be prescribed using
high level constructors, as described in Section 3.2.2 and 3.2.3.

Figure 6: Attribute blending of two V-models Vil and VI%/I' The red color of VI{/I
and the blue color of V,%,I are blended using the blending scheme proposed in
Equation (2).

3.2.2. High level V-rep constructors

Bivariate constructors such as extrusion, ruled surface, sur-
face of revolution and sweep surface can be adopted to the
trivariate case [? ]. The presented framework supports the fol-
lowing constructors:

1. Extruded volume: Given a surface S (u, v) and a vector V,
an extruded trivariate T (u, v, w) is defined as:
Tw,v,w)=Su,v)+Vw,wel0,1].

2. Ruled volume: Given two surfaces S ;(u,v) and S,(u,v), a
ruled trivariate T (u, v, w) is defined as:

T, v,w) =S 1(u,v)(1 —=w)+ Sr(u,v)w,w € [0, 1].

3. Volume of revolution: Given a surface S (u, v), a trivariate
of revolution 7 (i, v, w) is constructed by rotating S around
some axis.

4. Boolean Sum: Given six surfaces organized in a cuboid
topology, a trivariate T is generated such that each such
surface is a boundary of 7. For more details see [? ].

5. Volumetric sweep: A trivariate T is generated that inter-
polates or approximates a given ordered list of surfaces,
Si(u,v), at different w; parameters, w; € [0, 1].

Figure 7 shows examples of trivariates generated using all the
above constructors.

3.2.3. Non singular primitives

Primitive models such as spheres, cylinders, tori and cones
can’t be represented as a tensor product B-spline trivariate with-
out introducing singularities, where the normal (and the Jaco-
bian of the mapping) vanishes. Figure 8 shows examples of a
B-spline trivariate cylinder and a trivariate sphere that are sin-
gular along their central axis.

For analysis, singularities in the parametric domain are not
desired. We offer a set of different constructors of primitive
V-models that are composed of non-singular V-cells. Each V-
cell is non-singular in its domain. Note that at glued V-surface
locations the primitives are only C° continuous. The cylinder,
cone and the torus models are composed each of five V-cells,
as displayed in Figure 9 (a)-(c), while the sphere model (Figure
9 (d)) is composed of seven V-cells: an internal cube V-cell
and six rounded V-cells around the cube, and each one of these
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Figure 7: Constructors of trivariates: (a) A volume of extrusion (b) A ruled volume (c) Volume of revolution (d) Volumetric Boolean sum (e) A sweep volume. All

these constructors yield a single B-spline trivariate.

V-cells is constructed as a ruled volume between a cube face
and a sixth portion of a tensor product B-spline sphere surface,
as described in [? ]. Each V-cell’s trivariate of these V-rep
primitives is constructed using high level trivariate constructors,
as discussed in Section 3.2.2. Then, these V-cells are glued
together to form one V-model primitive.

Figure 8: (a) A singular B-spline trivariate cylinder. (b) A singular B-spline
trivariate sphere.

4. Boolean operations over V-models

The V-model describes both the boundary and interior struc-
tures of an object, as a complex of (mutually exclusive) V-cells.
Boolean operations, such as union, intersection and subtraction,
between V-models, should take into account the interior struc-
ture as well as the boundary surfaces. The Boolean operation is
performed between the V-cells in the V-models, and the result is
a set of new V-cells that are glued together into a new V-model.

Each V-cell is a closed 3-manifold that is enclosed in a 2-
manifold boundary (V-surfaces). A Boolean operation algo-
rithm on V-models can exploit algorithms of B-rep Boolean op-
erations between the boundary V-surfaces of the V-cells, only to
reconstruct the interior information as a second stage. Boolean
operations between B-rep models is a well studied problem [?
? ? ], and can generally be conducted as follows. Given two
B-rep models M; and M,, with their boundaries represented as
sets of trimmed surfaces:

1. Compute all the intersection curves between the (trimmed)
surfaces of M; and M,. The intersection curves of the two
surfaces are given in their parametric space.

If there is no intersection between the surfaces of M,
and M,, then either they are disjoint or one contains the
other. To delineate between these cases, an inclusion test
is performed, for example, by tracing a ray from a point on
one model in an arbitrary direction, and counting the num-
ber of intersections between the ray and the other model.
The models are disjoint if the number of intersection is
even, and contained otherwise.

2. For each (trimmed) surface S f, i = 1,2 in model M;, split
the trimming curves of Sf.‘ by intersecting them with the
new intersection curves computed in Step 1, if any.

If no intersection curves in (trimmed) surface S f,
move S f“ to Step 5

3. For each intersecting (trimmed) surface from Step 2, use
the new intersection curves computed in Step 1 and the
splitted old trimming curves computed in Step 2, to create
new trimming loops, based on the specific Boolean opera-
tion.

4. Classify each trimming loop (new and old) as in/outside
according to the orientation and the specific Boolean op-
eration. Loops that are not in the domain are purged.

5. Classify the rest of the non-intersecting (trimmed) surfaces
from Step 2 as completely in/outside by boundary adja-
cency propagation from the intersecting (trimmed) sur-
faces.

6. Unite all the classified-as-inside (trimmed) surfaces and
glue them topologically to define the final result. Note
the classified-as-inside operation depends on the specific
Boolean operation.

Before we present the Boolean operations over V-models, we
need some common language. Let Sy.(Vy) denote the entire
set of V-cells of V-model V,,. Then, for each V-cell we have:

Definition 4.1. The boundary of a given V-cell V¢, 0V, is a
closed B-rep manifold defined as the union of the (trimming)
half-V-surfaces of V¢. Similarly, let S7/(V¢) denote the set of
all trivariates of V-cell V.

Then, to build a V-cell, we have the following constructor:

Definition 4.2. The V-cell constructor, Cy.(S,7), creates a
new V-cell having S as its set of trimming half-V-surfaces, and
T as its set of trivariates.

In other words, Cy.(S,7") groups a given trimmed surfaces
(S) and trivariates (7°) into one V-cell. Figure 10 shows an
example of constructing one of the two V-cells that are shared
between the teapot’s handle and body. The V-cell is also shown
in Figure 14. The constructor of this V-cell, Cy,.(S, 7"), receives
the two trivariates of the teapot’s handle and the teapot’s body
that share it (as set 7), and its boundary V-surfaces that are
trimmed surfaces resulting from the Boolean operation between
the two trivariates’ boundary surfaces (as set S).

Being a well studied problem, we aim here to exploit the
abilities to compute B-rep Boolean operations for freeforms
as much as possible. As briefly explained at the beginning of
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Figure 9: Non-singular primitive V-models, shown is an exploded view and exposing their inner structure, with the control meshes of the trivariates. (a) A cylinder
composed of five trivariates constructed by extrusions. (b) A cone composed of five trivariates constructed as ruled volumes. (c) A torus composed of five trivariates
constructed as volumes of revolution. (d) A sphere composed of seven trivariates constructed by ruled volumes. Each trivariate in these primitives is made of one
V-cell, and all V-cells in a primitive are glued together along shared V-surface boundaries to form a single V-model primitive.
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Figure 10: The construction of a V-cell of the bottom shared volume between
the teapot’s handle and body trivariates (marked and zoomed in, in green). See
also Figure 14.

this section, B-rep Boolean operations over freeforms typically
takes as input two sets of (trimmed) surfaces (and additional in-
formation, including topological), as the boundary of the two
input objects and returns a set of (trimmed) surfaces as the re-
sult (and additional information, including topological).

Both the B-rep Booleans and the expected V-rep Booleans
are in IR? and hence the result of a B-rep Booleans can be
used to delineate the boundaries of the result V-rep model.
Given two V-models, V[{l and Vf,,, and their respective bound-
aries, V), and dV3,, their B-rep Boolean operation will be de-
noted by BrepBoolOP(8V,,, 3V}, BoolOP), where BoolOp can
be either INT (intersection) or SUBTR (Subtraction). Simi-
larly BrepBoolOP(OV, 6Vé, BoolOP) will denote the B-rep
Boolean operation over the boundaries of two V-cells.

Finally, in the ensuing discussion we assume V), and V3,
share a common boundary (V,, N V3, # 0), for otherwise,
either V,{,, and V,%,, are disjoint or one is enclosed by the other,
cases that can easily handled via the application of inclusion
tests. We also make the same assumption when dealing with V-
cells and we are now ready to discuss Boolean operations over
V-reps:

e Intersection: Since ij i = 1,2 is a complex of V-cells,
the result of a Boolean intersection operation between Vb
and V[%/I is the union of V-cells that results from Boolean
intersection operations over all possible pairs of V-cells in
V, and V3.

The intersection of two V-cells, Vé and Vé, amounts to the
computation of the boundary of the V-cell of the intersec-
tion, using the BrepBoolOP B-rep ability. However, we
also carry on the relevant trivariates in this V-cell, which
are the union of the trivariate sets in Vé and Vé. This,
so we could manage the attributes in the new intersection
V-cell (i. e. Section 3.1.2). See also Algorithm 1

Algorithm 1 V-Intersect: Intersection of two V-models

Input: V-models V), V3;
Output: V!, V-model of the intersection between V}{,, and Vi[;
Algorithm:

1: Veeus :=0; /* Set of updated/new V-cells */
2: for all V.. € Sy.(V,,) do

3 forall V. € Sy.(V2) do

4 B, := BrepBoolOP(dV:., dV.., INT);

5: TV = ST(V(Vé) U S'Tq/(Vé);

6: Veeis : = Veeus Y{Cv(Bij, TV}

7. end for

8: end for
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: Vi := Glue all V-cells in Veus;

e Subtraction: The subtraction of V2, from V|, can also be
done one V-cell at a time, subtract all V-cells Vé € V]%4
from every V-cell Vé € Vil, Vi. However, it is also possible
to subtract VZ%/I once from Vé € ij, an alternative that is
simpler and probably more robust. See also Algorithm 2

e Union: The union of V3, and V,, can exploit Algorithms 1
and 2. The union of V3, and V;, consists of all the V-cells
in V12, V2, and V2!, or all the V-cells in the intersection
of VI%,I and V,b, the subtraction of VI%,I from V1}4’ and the
subtraction of VZ{,I from V}%J' In a similar way to the refine-
ment process in [? ], the union operation divides the set
of V-cells of V), and V3, into a set of mutually exclusive
V-cells. See also Algorithms 3.

5. Precise analysis of V-rep

Since IGA [? ] introduced the use of spline-based analysis,
efficient geometric modeling methods and tools were sought in



Algorithm 2 V-Subtract: Subtraction of two V-models
Input: V-models V), V3
Output: V]{jz, V-model of the subtracting Vi[ from Vl{l;
Algorithm:
1: Veens := 0;
D By = V5
: for all V.. € Sy.(V,,) do
B, :=BrepBoolOP(9V., B,, SUBTR);
Veeits := Veeus U {Cve(Bi, St (Vo))
end for
: V152 := Glue all V-cells in Veous;

Algorithm 3 V-Union: Union of two V-models
Input: V-models V},, V3
Output: VZ{,;‘Z: V-model of the union of V1{4 and Vj%,!;
Algorithm:

1: V32 := V-Intersect(V,,, V3,);

2: V)52 := V-Subtract(V},, V3);

3: Vsl := V-Subtract(V3,, V) );

4 Vs := Sy (Vi) USy (Vi) U Sy (Vahy;

5: V}{,}‘z := Glue all V-cells in V¢,

order to perform the analysis more robustly and precisely. V-
models are a complex of V-cells where each V-cell has a set
of trimmed surfaces as its boundary (V-surfaces). Trimmed
surfaces are a powerful tool for representing general freeform
surfaces, and are typically defined as tensor product surfaces
with a set of trimming curves. Because trimmed surfaces can
posses complex arrangements of trimming curves, it is difficult
to compute even their (reasonably tight) bounding box, not to
say perform operations such as integration and contact analy-
sis over them. Having surfaces as an integral part of the V-rep
framework, tools to accurately handle (trimmed) surfaces and
trivariates are a must. In Section 5.1, we present a method for
accurate integration over trimmed surfaces using an operator
we denote untrimming, a method that can also be extended to
trimmed trivariates. In Section 5.2, a precise and robust method
for computing the orthogonal projection of points and curves on
surfaces (boundaries of V-models) is introduced. In Section 5.3,
we present a tool for deriving the precise contact and penetra-
tion depth, toward precise analysis of contact related problems.
Finally, in Section 5.4, we briefly discuss the possible migration
of B-rep data to V-rep.

5.1. Untrimming of trimmed surfaces

Consider a trimmed surface S,(«,v) and let Dg, be its trim-
ming domain. While the direct integration over Dy, is a chal-
lenging task, S ,(u, v) can be precisely mapped to a set of tensor
product patches, via the following process:

1. Tile Ds, by mutually exclusive quads, 0.,i=1,..,k
that can have freeform boundaries (including the trimming
curves that delineate Dys,), as B-spline curves.

2. Parameterize the interior of each quad Q' using the four
curves bounding the quad, for example using Boolean
Sum, as Q'(r, 1).

3. For each Qi(r,f) = (ui(r,7),V(r,1)), construct a tensor
product surface S gi = S,(Q/(r, 1)) = S, (u'(r, 1), V'(r, 1)), us-
ing surface-surface composition [? ].

The set {Spi},i = 1, ..., k precisely tiles and covers the origi-
nal trimmed surface S,(u, v) but consists of only tensor product
patches. Hence, a tight bounding box for S, can be derived by
computing the bounding box of the set {S i}. More importantly,
the integration over the original trimmed surface S,(u, v) can be
reduced to integration over the set of tensor product patches
{Sgi},i = 1,...,k, in this process we denote untrimming. See
Figure 11 for one example.

Note that S, better be a Bézier surface as Q'(r, t) cannot cross
knot lines (or otherwise Q'(r, f) must be divided along the knot
line and likely to no longer be a topological quad and hence
require further refinement into several smaller quads...). How-
ever, one can always subdivide trimmed surface S,(u,v) into
Bézier patches before this untrimming process is applied.

Figure 11: The conversion of a trimmed surface into a set of tensor product
patches via untrimming. (a) A trimmed surface in the shape of a hand. (b) The
domain of the trimmed surface is tiled with quads with freeform boundaries.
(c) The composed tensor product tiles cover the original trimmed surfaces.

5.2. Points and curves projection

Let C(¢) be a parametric curve, and S («, v) be a C! regular B-
spline surface. Orthogonally projecting C(¢) into S (u, v) results
in a curve(s) lying on S. If C(¢) is orthogonally projected to
S (u,v), then the normal of S at (u, v) pierces C(¢). Hence, we
can algebraically prescribe the (univariate) solution of finding
the orthogonal projection of C(¢) on S (i, v) as:

(€S, v), B8y g

ou 3)
€S, v), BUVy g

ov

having two equations and three unknowns (u, v, ). The solution
of these polynomial constraints are univariates in the (u,v,t)
parametric space. One can clearly evaluate S at the (&, v) solu-
tion locations and project the solution to the Euclidean space.
See Figure 12 for one example. The constraints in Equation (3)
are simultaneously solved with the aid of solver [? ], typically
in a fraction of a second. Finally, one should note that the or-
thogonal projecting of a point P on surface S (u,v) is a special



simpler case, where C(¢) is substituted by P in Equation (3),
and Equation (3) is reduced to two constraints in two unknowns

(u,v).

Figure 12: The orthogonal projection of a circular curve C (in red) on surface
S, results in four disjoint curve segments as four solution loops (shown on the
surface in blue).

5.3. Contact and maximal penetration depth analysis

In general, handling contacts in analysis is a major challenge.
Herein, we seek to robustly handle contacts in IGAe [? ]. The
Analysis of contacts begins with the detection of the intersec-
tion between the two boundaries of the objects which are typ-
ically bounding surfaces. The intersection could be curve(s)
or single points, in singular, first contact, cases. For two C 1
continuous regular surfaces S | («, v) and S »(r, 1), finding the ex-
treme penetration of one surface into another (or the minimum
distance between two disjoint surfaces) implies seeking the ex-
treme values of ||S | (u, v)—S »(r, 1)||, which is divided into several
cases:

1. Extrema can be found on the boundaries, in which case
curve-curve and curve-surface extrema should be sought.

2. Extrema can occur at C' discontinuities that are isopara-
metric curves for tensor product surfaces, and hence re-
duces to curve-curve and curve-surface extrema as well.

3. The most complex case is of interior extrema, that reduces
to solving four equations with four unknowns. By differ-
entiating

IS 1(ut, V)=S2(r, DI = (S 1(1t, ) =S 2(r, 1), S 1 (u, V) =S 2(r, 1))

with respect to the four degrees of freedom (u, v, r, 1), we

get:
(S 11 v) - S, W> _ o,
(S 1) = Sa(r, 1, W> _o,
@
(81009 = 500, P20 <
r
(S 1) = Sa(r. ), %> - 0.

The constraints in Equation (4) are, again, simultane-
ously solved to yield the extrema locations with the aid
of solver [? ], typically in a fraction of a second.
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5.4. Migration from B-rep

The common paradigm of constructive solid geometry (aka
CSQG) is frequently used in B-rep modeling. A CSG tree of
some B-rep freeform model can be mapped almost directly to a
CSG tree of a V-rep model. We have shown that all primitives
and all basic surface constructors can similarly create volumet-
ric trivariates. Moreover, we have shown that Boolean opera-
tions over B-rep can also be extended to handle V-reps.

Given a B-rep model in some geometric modeling system,
its history is known, and hence so its CSG tree. The equiva-
lent construction of a V-rep model means mapping all leaves
and all internal CSG operations from B-rep to V-rep. Since we
showed that, for the most part, such mappings exist, we believe
that the migration of B-rep data to the proposed V-rep should
be fairly simple and almost transparent to the end user that will
be performing the same operations as before. As one additional
example, Figure 13 presents the conversion of a swept surface
to V-rep, only to show one additional possible use of V-reps in
constructing porous geometry, using surface-trivariate compo-
sitions.

(b)

Figure 13: A B-spline swept surface in the shape of a duck in (a), is auto-
matically converted to a V-rep using volumetric Boolean Sum by dividing the
surface into four strips along the sweep and adding two cap surfaces at the be-
ginning and end of the sweep, defining the six surfaces needed for the volumet-
ric Boolean Sum. In (c), surface-trivariate composition is employed to tile the
constructed trivariate duck with porous elements, as another possible applica-
tion of V-reps, of construction of porous geometry. Note one tile is highlighted
in red, in (c).

6. Examples and Results

The presented volumetric modeling framework is imple-
mented and integrated into the IRIT solid modeler [? ]. We
use the IRIT solid modeler to perform the B-rep Boolean op-
erations on the boundary surfaces and to generate trivariate by
the constructors described in Section 3.2. The polynomial con-
straints described in Sections 5.2 and 5.3 are solved using the
IRIT’s multivariate polynomial solver [? 2 ? ].

To demonstrate the capabilities of the proposed V-rep mod-
eling, several fairly complex V-models have been created (see
Figures 14-17). Each example displays one V-model, in which
each V-cell is colored differently. In order to better display the
inner V-cells of the V-model, the V-models are also displayed
in “exploded view”, where the V-cells are translated in different
directions.

In some of the examples, the trivariates in the V-cells were
created using the primitive constructors that were presented in
Section 3.2.3 while in other cases, B-spline trivariate construc-
tors such as extruded volumes, ruled volumes, swept volumes,
volumes of revolution and Boolean sum were used (See Sec-
tion 3.2.2). Then, Boolean operations between these basic V-
models were applied.



Table 1 presents some statistics on the V-models constructed
using the above introduced abilities. The number of V-cells and
the sizes of the trivariates that were used to construct the V-
model are provided. Being the most demanding task, the run-
ning times of the Boolean operation algorithm are displayed as
well, divided into the gluing time of the different V-cells and
the total Boolean operation time (including the gluing). These
models were constructed on Macbook-Pro i7 2.7Ghz machine,
running Window 7 64 bit.

7. Conclusions and Future work

In this paper, we have introduced a possible framework for
modeling volumetric objects . The framework presents a vol-
umetric representation (V-rep) that efficiently and accurately
supports the representation of the interior as well as the bound-
ary of any general 3D object. Further, this V-rep is capable of
precisely representing geometry as well as other attribute fields
over the model. We have introduced a variety of construction
methods for V-models, including non-singular volumetric prim-
itive objects. An algorithm for Boolean operations between V-
models is also presented that in all supports the same modeling
space of that of freeform B-reps. Finally, we have introduced
several examples of tools and algorithms for accurate process-
ing and analysis of V-reps, as part of this volumetric framework.

The proposed framework is designed to enable smooth mi-
gration and transitions from B-rep to V-rep. We believe that
any B-rep model constructed in a modern CAD system can be
converted to a V-rep model. That said, the limitations over V-
rep Booleans are similar to those in B-rep ones. Herein, we
assumed valid (regular) input V-models and further, their inter-
sections are not tangential (yielding non 3-manifold topology).
Both restrictions can be removed if so desired, at extra efforts
of supporting non 3-manifold topologies.

Proper methods that adhere to certain continuity require-
ments of the geometry and the different attribute fields across V-
cells are needed and are under investigation. Blending method
of attributes that guarantees more than C° continuity are to be
considered. The presented gluing operation of V-cells can be
improved to achieve a continuity higher than C°, probably by
having constraints imposed over near boundary control points.
A tight link for analysis (and other applications) to update as
well as query these non-geometrical attribute fields must be de-
veloped and offered as part of this framework.

The presented volumetric primitives in Section 3.2.3 are only
CY continuous. The continuity across V-cells in the V-model
primitives should be further investigated, devising a configura-
tion that guarantees a C* or a G¥, k > 0 continuity along the
common V-surfaces’ boundaries between these V-cells.

The result of Boolean operations between V-models might
contain very small V-cells (i.e. see Figure 16 (b)), which are
undesired in analysis, among others. Improving the V-rep algo-
rithms to avoid or handle such small V-cells is an open problem.

In order to fully support a seamless migration from B-rep
to V-rep, some additional development of advanced tools and
operators for this volumetric modeling framework is required,
operators such as volumetric fillets and blends.
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In order to adapt different algorithms suitable for tensor prod-
uct B-spline surfaces to trivariates in V-models, algorithms for
untrimming of V-cells must be implemented. This reduces to
the need to tile the untrimmed, valid, domain of the V-cell by
a set of mutually exclusive cuboids, over which trivariates will
be mapped using composition, much like the way we presented
for trimmed surfaces in Section 5.1. However, we expect the
untrimming to be only a computational tool whereas the real
V-model will continue to consist as described in the proposed
data structure (a complex of V-cells).

T-splines [? ] (and similar alternative representations) were
introduced as more compact alternative to tensor product B-
splines and conceptually can similarly be extended to V-rep
as trimmed trivariate T-splines. This possible extension should
also be investigated.

The GM challenges we are facing today are completely dif-
ferent than a decade ago. The recent IGA developments and
AM advancements are not the only foreseen changes. Special-
ized multi-material volumetric geometry, such as mixed com-
pounds (i.e. rubber-graphite), and composite materials are ad-
ditional GM challenges where geometric modeling software
is behind industrial needs. Representations and algorithms to
remedy this situation must be sought.
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Table 1: Statistics on the process of creating the V-models presented in Figures 14-17.

Figure 14: Utah teapot V-model. The V-model is created using three union operations and one subtraction. The Handle is a volumetric Boolean Sum version of
the B-rep surface. The Body (and Spout) are ruled volumes between the original Body (Spout) surface and a small offset surface. The complete teapot V-model is
shown in (a), consisting of 7 V-cells shown in (b) in an exploded view. A zoom in into the area near the handle is shown in (c), and near the spout in (d). Recall also

Figure 10.
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Figure 15: A simple solid V-model. The V-model is created using one union
operations, and two subtractions. All the used primitives are non-singular. (a)
The V-model consists of 7 V-cells (b) The V-model in an exploded view.
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