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Abstract

In additive manufacturing (AM), slicing is typically used to manufacture 3D models, one layer after another. Yet, in recent years
quite a few hardware platforms were introduced toward the use of multi-axes AM with general 3D curves as print-paths. This paper
presents algorithms for the generation of such general print-paths that can potentially be used to synthesize superior 3D models
using AM. In slicing, a 3D model is decomposed into a series of parallel planar sections, which in turn are (usually) decomposed
into a set of piecewise linear curves used as print-paths in the AM process. The methods we propose in this work ease this
restriction, namely the print-paths are no longer limited to parallel planes. Like slicing, the methods we propose achieve a complete
covering of a general volume with print-paths expressed as general curves. However, and unlike slicing, the created print-paths
can conform better to the 3D model, its properties, and even user input. We expect that the added flexibility and freedom in the
specification of AM print-paths, as opposed to limiting them to planar curves, will enable the synthesis of 3D models (using AM)
with superior properties (such as mechanical strength and surface finish). As a proof of concept, we also present examples of 3D
models manufactured with a low-end AM hardware and using the algorithms described in this paper.
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1. Introduction

Contemporary additive manufacturing (AM) systems largely
use slicing [1]. Slicing deconstructs a three dimensional ob-
ject (often specified by a polygonal mesh) to a series of two
dimensional parallel (to the printing surface) planar sections.5

These planar sections, in turn, are decomposed into piecewise
linear paths for the manufacturing process to use. In general,
the slicing planes are not intrinsic to the input object. The sur-
face finish, the strength, and possibly other properties of an ob-
ject printed using some existing AM techniques, are influenced10

by the slicing orientation and the print-paths used to create it
[2, 3]. One of the conclusions in [2] is that parts fabricated with
the expected tensile loads aligned with the fibers (print-paths)
would have greater effective tensile strength, and could handle
greater loads. Additionally, the experiments in [4] showed that15

parts manufactured using curved layers that fit the part geom-
etry (as opposed to the flat layers used in slicing) performed
better under mechanical stresses. An illustration of the possible
advantages of print-paths that conform to the model geometry
over slicing can be seen in Figure 1. Both Figure 1 (a) and (b)20

show the result of printing the same model (a section from the
model in Figure 2), on the same printer, using the same reso-
lution (layer-height is 0.3mm). However, in Figure 1 (a) the
model was printed using print-paths that conform to the model
geometry, while in Figure 1 (b) slicing was used. Figure 1 (c)25

and (d) show the simulated preview of the printing result for (a)
and (b) respectively. As the images show, the slicing result suf-
fers from surface finish issues due to aliasing, the so called the
staircase effect, that comes from approximating a curved shape

with planar sections. In this effort, we seek to create print-paths30

that are more dependent on design goals, and less dependent
on constraints imposed by the printing process, allowing the
creation of superior printed objects in terms of surface finish,
strength, etc.

There are quite a few reports on the use of multi-axis robotic35

hardware platforms in AM, which would allow non-planar 3D
printing without using slicing [5, 6, 7, 8]. Such a hardware
platform would be able to print along the main feature lines
of a 3D object and gain the advantages mentioned before when
compared to slicing. Yet, algorithmic support is lacking. We are40

aware of no algorithm that is capable of covering the volume of
an arbitrary 3D object using any general user defined univariate
(curve) tool paths, while also establishing a valid printing order,
fully exploiting these platforms toward multi-axis AM.

Our main contributions in this paper are:45

(1) Presenting an algorithm that can generate covering curves
for general 3D objects represented by (possibly trimmed)
trivariate volumes, that conform to the geometry of the
trivariate, toward AM.

(2) Supporting the use of an additional external direction field50

that can be used to specify AM printing-paths for any gen-
eral B-rep (boundary representation) 3D model (including
polygonal meshes).

(3) Algorithms that enable the use of general (possibly user de-
fined) 3D printing-paths, while controlling their width, re-55

solving their accessibility, and establishing valid AM print-
ing order and coverage.
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Figure 1: A comparison between slicing and print-paths that conform to the
model geometry. In (a), the model is printed using curves that conform to ge-
ometry of the model. In (b), traditional slicing is used. In (c) and (d), simulated
previews of the printing results (based on the print-paths) are shown for (a) and
(b), respectively. The model in both cases is a short section (a quarter of a cycle)
from the helical model in Figure 2, and is shown with the generated support
structure.

Note that throughout this paper we assume a generic pro-
cess, similar to the Fused Deposition Modeling (FDM) or Di-
rected Energy Deposition (DED) 3D printing process [9]. This60

means, we assume some sort of a printing head that extrudes
material with a circular cross section. While we do not address
low level printing process properties (such as, overlaps between
adjacent extrusions and the movement of extruded material),
these assumptions were useful enough to allow us to manufac-65

ture physical objects using an FDM printer (as we show later).
The rest of this paper is organized as follows, Section 2 dis-

cusses previous work that dealt with alternatives to slicing in
AM. In Section 3, we examine the main considerations to em-
ploy when transforming a description of a 3D object into a de-70

scription of print-paths (curves) needed to manufacture the ob-
ject using AM. Section 4 presents our covering algorithms and
shows how (geometric) design, rather than the printing process,
can be the main consideration in 3D print-path planning. Sec-
tion 5 outlines how the covering curves (generated based on75

geometric design) can be used to create a 3D model using AM.
Some experimental results are shown in Section 6, while in Sec-
tion 7, we discuss our results and suggest future work. Finally,

Figure 2: A helical volume created by sweeping a circle along a helix (rotating
around the z axis).

in Section 8, we conclude.

2. Previous Work80

There have already been several publications that examined
the possibility of printing in ways that differ from the tradi-
tional AM slicing approach. Curved layers are suggested by
Chakraborty et al. [10] as offsets of a parametric surface, which,
of course, limits objects to those that can be expressed as a set85

of offsets from such a surface. In [11], Huang and Singamneni
show how non-planar slices can be created and used to print
special geometries. Objects in [11] are limited to geometries
that can be expressed as offsets of polygonal faces [12], start-
ing from the top (facing up) polygonal surface of the object.90

Future work mentioned in [11] will seek to handle more com-
plex geometries by subdividing an object into parts that can be
printed using non-planar slices, and complex parts that will be
printed using traditional slicing. In [13], the upper and lower
boundaries of objects are printed as single layers using simple95

z-height maps to plan the paths, while the interior of the ob-
ject is printed conventionally. Their implementation uses non-
planar lines parallel to the x (or y) axis to fill the upper and lower
layers. This method limits the objects to those with distinct up-
per and lower boundaries that are relatively flat. In the work100

by Davis et al. [14], intermediate mappings between an initial
object (designed by the user) and a final object (the one printed)
are the basis for non-planar layers. However, accessibility, cov-
erage, and other manufacturing considerations are ignored and
the main focus is on producing intermediate layers (surfaces in105

3D). Mueller et al. [15] show how a wire-frame on the bound-
ary of an object can be printed directly, to quickly create a vi-
sual representation of the object. They generate the wire-frame
so that there would be no need to print downwards in a steeper
angle than the slant of the print head itself, and avoid acces-110

sibility issues in that way. In [16] and [6], manually planned
print-paths are used to create objects without slicing. The fo-
cus in [16] and [6] is on implementing and testing the hardware
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needed to accomplish the prints. In [8], Gao et al. introduce an
additional degree of freedom to 3D printing, and allow printing115

around a cuboid (box) object and creating slices in six different
directions corresponding to the facets of the cuboid. The result-
ing object in [8] is, in essence, made of six traditionally sliced
(and manufactured) objects fused together.

Most of the above previous work either dictate printing direc-120

tions that are independent of the model geometry ([8, 15]), or
limit themselves to specific simple geometries ([11, 16, 6, 13,
10]). For example, to the best of our knowledge, the model in
Figure 2 cannot be manufactured using any of the above meth-
ods without resorting, at least partially, to slicing. Specifically,125

none of these methods would enable printing along the helix,
which is likely to result in a better surface finish (as in Fig-
ure 1), and probably a stronger model [2]. Additionally, none
of these method allows the user to easily (if at all) specify the
directions of the printing-paths.130

AM using slicing is general - the volume of any 3D closed
object can be covered by piecewise linear curves and manufac-
tured using slicing. In this work, we strive for a similar general
covering AM solution for any closed 3D object, while also of-
fering the freedom to use almost any set of 3D print-paths. We135

expect that by accepting general models as input, and automati-
cally filling (covering) their entire volume with curves that fit a
model’s specific structure and specific requirements (i.e. stress
tensors), better quality models can be manufactured using AM
technologies such as FDM and DED.140

One additional previous work we would like to mention is
[17], which is a part of some of the algorithms presented in this
paper. In [17], an algorithm for adaptively covering freeform
surfaces with curves is presented. The concept behind this al-
gorithm is simple: given two parallel (in the parametric space)145

isoparametric curves on a surface, we can check if they suffi-
ciently cover the surface area bounded between them. If they
do then the curve coverage is sufficient obviously. Otherwise
we add isoparametric curves between them (where needed ac-
cording to some distance measure) and invoke the algorithm150

recursively for each pairing of the new curve and one of the
original curves. This concept of adaptively covering surfaces
was also used to generate CNC tool-paths [18]. Similarly, in
this work, we show that volume covering by curves can be used
for generating AM print-paths.155

3. Considerations for AM Print-Path Planning

Given a description of a 3D closed object (such as a 3-
manifold volume, or a 2-manifold boundary representation),
there are several considerations to observe when generating the
print-paths needed to manufacture the object using AM. These160

considerations are outlined in Sections 3.1 to 3.4.

3.1. Volume Coverage By Curves
We start by defining the notion of covering:

Definition 3.1. Consider a volume V of some closed 3D object
and a desired tolerance, ε ∈ R+. A valid ε curve-covering of V165

is a set of n univariate parametric curves CCC = {C1(t) . . .Cn(t)},

CCC ⊂ V, so that for any point pv ∈ V there exists a point pc ∈

Ci(t), Ci(t) ∈ CCC, for which
∥∥∥pc − pv

∥∥∥ ≤ ε.
Definition 3.1 ensures that when the object is printed using

the curves in CCC as print-paths, the entire volume will be filled170

(with material), as all points in V are close enough to some
print-paths and will be covered by printed material. While all
points in the volume should be covered, over-coverage should
be avoided. Over-coverage occurs when points in the volume
are covered too many times, which will result in an excess of175

material being deposited (and the resulting 3D object would
likely be deformed).

In slicing, coverage is achieved in a trivial way, each slice
covers the parts of the object in a certain z value range cor-
responding to the height of the slice. Internally, each slice is180

covered by 2D curves (often as a set of lines parallel to the x or
the y axis).

3.2. Accessibility and Ordering of the Print-Paths

At any point during the 3D-printing process, parts of the
model are already printed, while others still need to be printed.185

The printing head has a known geometry, meaning it occupies
some known physical space. If there is no way to print some
unprinted portion, without the printing head penetrating an al-
ready printed part, then the printing process cannot succeed:
either an unprinted part will never be printed, or an already190

printed part will be gouged into and destroyed. Ordering (por-
tions of) the print-paths of the model so that all of them can be
printed is one of the requirements of the printing process.

In traditional slicing methods, the geometry of the printing
head is assumed to occupy the half-space above a plane paral-195

lel to the XY plane, and is always at a certain offset (in the z
axis direction) above the currently printed part. Since slices are
printed in planes parallel to the XY plane, from bottom to top,
we are always assured that no penetration of the printed parts
by (the geometry of) the printing head will occur.200

3.3. Generating a Support Structure

In general, some AM technologies require support [19]. For
any part of a manufactured 3D object that will normally col-
lapse while it is being printed, a corresponding part must be
created, in advance, to support it and prevent this collapse. The205

union of all the extra support parts created is called the support
structure. The generation of the support structure is closely re-
lated to the order in which the model parts are created, as many
parts are already supported by previously printed pieces of the
3D object.210

Using slicing, support generation is relatively simple: any
print-path that extends a certain threshold beyond previously
printed slices requires support, and the support is printed in
slices, along with the object itself.

3.4. Design Streamlines215

Apart from fulfilling the requirements of the printing process,
print-paths should also address the design goals of the user:
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Definition 3.2. Given a volume V of some closed 3D object
and a set of design goals prescribed by the user, the curves that
form a valid coverage of V while fulfilling the design goals in220

an optimal manner, are denoted design streamlines or simply
streamlines of volume V.

For example, streamline print-paths, possibly defined as a
vector field over V , could be designed so that they create a part
with better mechanical strength and/or surface finish.225

In slicing, this effort is usually limited to tracing the outline
of each slice, to enhance the surface finish, and determining the
density with which the slice is filled, to enhance mechanical
strength.

4. Generating a Streamline Coverage230

In this section, we present algorithms that can be used to in-
corporate geometric or other streamline design requirements as
the main considerations for planning AM print-paths. Defini-
tion 3.2 is rather amorphous, as it depends on a set of design
goals prescribed by the user. Clearly, given the wide range of235

possible design goals, creating one algorithm that will satisfy
them all would be next to impossible. Instead, in this section,
we present algorithms that will provide designers with the tools
to achieve their own design goals. Designers will be able to
specify general guidelines for covering curves, and the algo-240

rithms will automatically generate them, order them for print-
ing, and optionally generate a support structure. Figure 3 illus-
trates the process. In Section 4.1, we present how a coverage by
curves can be generated for (possibly trimmed) trivariate vol-
ume objects. Section 4.2 considers a second directional field,245

possibly defined as a trivariate as well, to direct the coverage
and support any B-rep based 3D closed object.

Figure 3: The model created by the designer (in either of two forms of input), is
covered by covering curves (using the method described in Section 4.1, or the
method presented in Section 4.2), which are then turned into valid AM print-
paths using the methods explained in Section 5. The final print-paths can then
be used to fabricate the original input model.

4.1. Covering of a Trivariate Using Curves
Let D be a box domain in R3. Consider a parametric trivariate

volume V(u, v,w): D→ R3 and a desired tolerance, ε ∈ R.250

Definition 4.1. A valid ε surface-covering of V is a set of m
bivariate parametric surfaces SSS = {S 1 . . . S m}, SSS ⊂ V, so that
for any point pv ∈ V(u, v,w) there exists a point ps ∈ S i, S i ∈ SSS,
for which

∥∥∥ps − pv

∥∥∥ ≤ ε.

Given Definitions 3.1 and 4.1, we seek to formulate an al-255

gorithm that will find a valid covering by curves, for a given
trivariate parametric volume V(u, v,w), while limiting the num-
ber of redundant curves. The algorithm we present is based on
concepts presented in [17]. The algorithm first adaptively cov-
ers a given trivariate volume with a set of bivariate parametric260

surfaces. Once the volume coverage by surfaces is computed, a
volume coverage by curves is obtained by using the algorithm
from [17] that covers the returned surfaces with curves. The
heart of the algorithm stems from an upper bound on the Haus-
dorff distance between two surfaces, that is based on an iso-265

distance notion:

Definition 4.2. Consider the (piecewise) polynomial or ratio-
nal parametric surfaces, S 1(u, v), and S 2(u, v), sharing a com-
mon (u, v) domain. The vector field

D(u, v) := S 1(u, v) − S 2(u, v) ,

is denoted the iso-distance between S 1 and S 2, as:

∆iso(u, v) :=
∥∥∥D(u, v)

∥∥∥ .
Because ∆iso(u, v) is non-rational (as it contains a square

root), ∆2
iso(u, v) (the iso-distance squared, represented as a

spline function) will be used instead. The iso-distance is closely
related to the Hausdorff distance:270

Definition 4.3. The Hausdorff distance, denoted dH , between
two surfaces S 1, S 2, is:

dH(S 1, S 2) = max

sup
a∈S 1

inf
b∈S 2
‖a − b‖ , sup

p∈S 2

inf
q∈S 1

∥∥∥p − q
∥∥∥ ,

and the one sided point-surface Hausdorff distance is:

dHs(a ∈ S 1, S 2) = inf
b∈S 2
‖a − b‖ .

We can now prove the following:

Lemma 4.1. The iso-distance ∆iso(u0, v0), between any corre-
sponding pair of points a = S 1(u0, v0), b = S 2(u0, v0), is an
upper bound on the one sided point-surface Hausdorff distance
of both dHs(a ∈ S 1, S 2), and dHs(b ∈ S 2, S 1).275

Proof. Combining the definition of the one sided point-surface
Hausdorff distance and the iso-distance we get:

dHs(a ∈ S 1, S 2) = inf
b′∈S 2

∥∥∥a − b′
∥∥∥ ≤‖a − b‖ =∥∥∥S 1(u0, v0) − S 2(u0, v0)

∥∥∥ = ∆iso(u0, v0) ,

with a similar result for dHs(b ∈ S 2, S 1).

In our calculations, we use ∆2
iso(u, v) instead of the Haus-

dorff distances that are far more difficult [20] to compute. Al-280

gorithm 1 creates a covering of a trivariate volume, V , with
isoparametric (trimmed) surfaces of V , in the w direction. We
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Algorithm 1 CoverVolumeWithSurfaces
Input:
(1) V(u, v,w) : D→ R3, a trivariate volume, D = [0, 1]3;

(2) m, a minimal subdivision depth to apply to V;

(3) ε, the maximum desired distance from a point in the volume to a
covering surface;

Output:
(1) SSS = {S 1(u, v) . . . S n(u, v)}, w-isoparametric (trimmed) surfaces

covering V to within ε;

1: CoverVolume(V(u, v,w),m, ε)
2: Return

{V(u, v, 0)} ∪
CoverSubVolume(V(u, v,w), (0, 1),m, ε) ∪
{V(u, v, 1)};

3: CoverSubVolume(V(u, v,w), (wlow,whigh),m, ε)
4: SSS := ∅;
5: D(u, v) := V(u, v,wlow) − V(u, v,whigh);
6: ∆2

iso(u, v) :=
∥∥∥D(u, v)

∥∥∥2
;

7: if ∆2
iso(u, v) > ε2 for some (u, v) or m > 0 then

8: wmid := wlow+whigh

2 ;
9: if m > 0 then

10: S t
mid(u, v) := V(u, v,wmid)

11: else
12: S mid(u, v) := V(u, v,wmid);
13: Dt(u, v) := {(u, v)|∆2

iso(u, v) > ε2};
14: S t

mid(u, v) := {S mid(u, v)|(u, v) ∈ Dt(u, v))}; // S t
mid is a

trimmed surface, with trimming domain Dt(u, v).
15: end if
16: SSS :=

CoverSubVolume(V(u, v,w), (wlow,wmid),m − 1, ε) ∪
{ S t

mid(u, v) } ∪
CoverSubVolume(V(u, v,w), (wmid,whigh),m − 1, ε);

17: end if
18: Return SSS;

will later discuss the problems arising from the lack of tight-
ness in the proposed measure (of ∆2

iso(u, v) compared to dH),
and how they can be mitigated.285

For now assume m = 0 (Algorithm 1, input (2)). Once
∆2

iso(u, v) is computed (line 6 in Algorithm 1), a determination
can be made if another surface should be introduced between
the two iso-surfaces of V , at w = wlow and w = whigh, to get
a valid coverage, following Definition 4.1. If ∆2

iso(u, v) < ε2,290

∀(u, v), no additional surfaces are needed in between and the
algorithm terminates. If ∆2

iso(u, v) > ε2 for some (u, v) values,
then a trimmed surface (line 14) is introduced. The tensor prod-
uct surface S mid(u, v) = V(u, v,wmid) is trimmed to only include
(u, v) values for which ∆2

iso(u, v) > ε2. If a middle surface has295

been introduced then the algorithm is invoked recursively for
the newly created pairs of adjacent surfaces, (wlow,wmid) and
(wmid,whigh), to further verify that the volume between them is
covered.

Once a valid coverage of V by surfaces is produced using300

Algorithm 1, a curve coverage is created by covering each
trimmed surface with curves. The coverage by curves is re-
alized by using the algorithm described in [17] that functions in
a similar manner to Algorithm 1 but with a surface input, start-
ing with two surface boundary curves and recursively adding305

additional intermediate isoparametric curves, as needed. An
example of the full process starting with a volume, V , covering
it with surfaces, and then cover the surfaces with curves, can
be seen in Figure 4. Note how the surfaces alternate adaptively
between full and trimmed surfaces. Figure 4 also shows a cov-310

erage of V(u, v,w) by surfaces, for different values of ε, and
for an alternate parametrization direction, all of which result in
different sets of covering iso-surfaces. The ability to choose the
parametrization (and ε), would allow designers to have a greater
control over the resulting covering curves, and ultimately print-315

paths. Finally, note m is defined to ensure a minimal depth
of recursive calls, for example in case V(u, v,w) is a periodic
trivariate (i.e. a full torus), where V(u, v,wmin) = V(u, v,wmax).

(a) (b)

(c) (d)

(e) (f)

Figure 4: A trivariate, V , of a quarter of a torus (with a major radius 1, and a
minor radius of 0.2) (a). Adaptively covered by w-isoparametric surfaces and
ε = 0.4 (b), adaptively covered by w-isoparametric surfaces and ε = 0.1 (c),
adaptively covered by w-isoparametric surfaces and ε = 0.05 (d), and adap-
tively covered by curves ε = 0.1 (e). In (f), the parametrization direction was
changed to v-isoparametric surfaces, to produce a different set of covering sur-
faces (ε = 0.1).

We note that Algorithm 1 can also be adapted to trimmed
trivariates [21], by trimming the surfaces according to the trim-320

ming information of the trivariate, in addition to the trimming
done in the algorithm. However, only points at a distance
of more than ε from the trimmed boundary are guaranteed
to be covered by the same entities that covered them in the
untrimmed version. Points closer than ε to the trimmed bound-325

ary may become uncovered when their covering entities fall
outside the trimmed boundary.

If ∆2
iso(u0, v0) ≤ ε2, then any point on the line between

V(u0, v0,wlow) and V(u0, v0,whigh) is covered, as its distance to
one of these surface points is less than ε (in fact less than ε

2 ).330

However, ∆2
iso ≤ ε

2 for any (u, v) does not imply all points in the
volume V(u, v,wr), wr ∈ (wlow,whigh) are covered. If some point
pw on the w-isoparametric curve V(u0, v0,wr) is sufficiently far
from the line between V(u0, v0,wlow) and V(u0, v0,whigh), it’s
possible that pw remains uncovered. Figure 5 shows a situa-335
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tion in which S 1 = V(u, v,wlow) and S 2 = V(u, v,whigh) can
be to within ε, but the volume in between them also contains
points (along a w-isoparametric curve between them) that are
too far from both. To resolve this issue, that in regular trivari-
ates can only happen on the boundaries, one can enhance the340

measure of ∆2
iso. One possible measure, that can ensure com-

plete coverage, can be created by bounding the arc-length of
the w-isoparametric curves. For example, given an isoparamet-
ric curve from one covering surface to another, if the arc length
of the curve is less than 2ε then a full ε-coverage is assured for345

all points on the curve. Establishing such bounds for all isopara-
metric curves can be used to ensure complete volume coverage.
See Appendix A for an explanation and a proof of these claims.
This more accurate measure will also eliminate the need for the
parameter m, in Algorithm 1.350

It should be noted that as long as a situation like the one in
Figure 5 does not occur, continuing the recursion with the full
surfaces (as done in Algorithm 1) is equivalent to using only the
common trimmed portion of the surfaces in the recursion. This
is because, given the two input surfaces in some recursion step,355

as long as the used distance measure decreases monotonically
when closer (in the w parametric sense) surfaces are used, any
region trimmed by a comparison between the two input (tensor
product) surfaces will be similarly trimmed by a comparison
between any two (trimmed) surfaces between them that were360

created by the recursion. For example, ∆2
iso used in Algorithm 1

is not always a monotonic measure, but the suggested measure
based on the arc-length of the w-isoparametric curves (i.e. Ap-
pendix A) is.

Finally, consider non-regular trivariate volumes (i.e. volumes365

with a vanishing or negative Jacobean) that contain self inter-
sections. While simple to detect and not very useful in the con-
text of fabrication, Algorithm 1 can handle such volumes as the
distance bounds are still valid. However, the generated cover-
ing surfaces themselves may also be non-regular, in such cases,370

and also introduce redundant coverage.

4.2. Object Coverage with an Additional Direction Field
Algorithm 1 and the algorithm in [17] can be used to-

gether to cover a trivariate volume using (a subset of) its own
isoparametric curves. This, however, limits the coverage to the375

parametrization of the given volume, and the object description
to a trivariate. In cases where a more general set of covering
curves and 3D object descriptions are needed, an additional di-
rectional vector field (that associates a direction to each point
in the volume) can be specified along with the 3D object, to de-380

fine the desired directions of the covering curves in the object.
A good directional field would optimize attributes like desired
mechanical strength or surface finish. The field can be man-
ually designed or automatically generated using some form of
optimization or analysis. An alternative algorithm can be de-385

vised that, given a 3D object and a 3D directional vector field
(that encompasses the entire object), will create a set of cov-
ering curves for the object that will conform to the prescribed
directions.

We’ve explored several approaches that implement the cov-390

ering of an object using an additional directional field. The one

Figure 5: Given two close (< ε) surfaces (depicted as vertical solid lines), and
one of the iso-curves between them (dashed line) in trivariate V(u, v,w), some
points along the iso-curve may remain uncovered using Algorithm 1.

we found most useful is composed of two stages:

1. First, a curve coverage for a volume containing the 3D ob-
ject along the directional vector field is generated. If the
direction field is given as a trivariate, then the approach395

in Section 4.1 can be used. However, since the structure
of the direction field can be chosen to make coverage eas-
ier, other options may be available. For example if all the
desired covering curves were parallel to each other, then
creating one 3D curve and uniformly filling the containing400

volume with 3-space general offsets of that curve (accord-
ing to its normal and bi-normal) could also be used.

2. Given the curve covering for the containing volume, the
curves are clipped to the 3D object we need to cover. The
clipping can be done by finding the intersections of the405

generated covering curves and the object boundary.

The implication of the above approach is that any B-rep
model (regardless of the representation) and any set of curves
that at least cover it, can be used as a basis for generating AM
print-paths. Figure 6 shows how this method allows arbitrary410

3D models specified as B-reps (polygonal meshes), to be cov-
ered using arbitrary curves. In Figure 6, the curves covering the
body of the crocodile (a polygonal mesh) are slightly arched,
while the curves covering the legs were shaped to resemble the
main axis of the leg. The creation of the print paths in Figure 6415

begins by dividing the crocodile (B-rep polygonal closed) mesh
into five separate meshes (body and four legs). Each of these
meshes is assigned a direction field, and the covering curves of
each directional field are clipped to be inside the correspond-
ing mesh, prescribing the resulting print-paths. The example420

in Figure 7 goes one step further, applying a single arbi-
trary field, shown in Figure 7 (a), to the entire model. The
crocodile model examples in Figures 6 and 7 show that even
curves that are possibly unrelated to the geometry of the ob-
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ject can be used as covering curves. In the next section, we’ll425

see how these curves can be used as print-paths for AM.

(a)

(b)

(c)

Figure 6: (a) shows a 3D model of a crocodile (a triangle mesh downloaded
from https://free3d.com/). (b) shows the same model covered by general 3-
space curves. Note the curves covering the body are slightly bent, while the
curves covering the legs resemble the general shape of the leg. (c) shows the
leg coverage in better detail, while the different colors accentuate the differences
between the leg and body covering curves.

(a) (b)

(c)

Figure 7: A field created by duplicating offsets of a single arc is shown in (a).
This field is then applied to the mesh in Figure 6 (a). Images (b), and (c) show
half of the resulting print-paths, exposing the interior.

5. Manufacturing 3D Objects Using Univariate Paths

In this Section, we show how all the coverage algorithms pre-
sented so far can be used to create print-paths to be utilized in
AM. Covering curves (in the sense of Definition 3.1) cover ev-430

ery point in the volume, and so if they are used as AM print-
paths, every location in the volume will be 3D-printed. How-
ever, adapting the approaches described in Sections 4.1 and 4.2,
to AM, also introduces several challenges we will have to ad-
dress and are discussed below. Section 5.1 discusses the proper435

ordering of the covering curves (that are also potentially subdi-
vided) when realizing them as AM print-paths in order to ensure
printing accessibility, Section 5.2 explores the amount of mate-
rial deposition related to each covering curve, and Section 5.3
discusses the generation of the support structure. Finally, Sec-440

tion 5.4 demonstrates how different covering curves can affect
the overall printing solution.

5.1. Resolving Accessibility - Curve Ordering

We need to ensure the print-paths can be followed by the
printing head without gouging already printed parts, during the445

entire printing process. We assume printing with a constant
orientation (up direction) printing tool:

Definition 5.1. A curve Ci is below curve C j and denoted Ci <
C j, if the geometry of the printing head overlaps with curve C j

when printing curve Ci. Symmetrically, curve Ci is above C j450

(Ci > C j) if C j is below Ci.

Note that Definition 5.1 assumes the build direction is al-
ready known, and is assumed to be the direction of the z axis.
Following Definition 5.1, at any point in time during the 3D-
printing process, only curves that are not yet printed and have455

no unprinted curves below them may be printed.

Definition 5.2. Consider a set of n general 3-space curves CCC =

{C1(t) . . .Cn(t)}. Construct a directed graph Ga(V,E) in the
following manner: each curve Ci ∈ CCC is assigned a vertex vi ∈

V. A directed edge ei j ∈ E, from vi to v j, exists if Ci < C j.460

We denote by Ga the accessibility graph for CCC. Any cycle in
the graph Ga is called an inaccessibility cycle, as it reflects an
impossible-to-print set of curves.

Ga defines the correct printing order for a set of curves. If
a path exists from vi to v j in Ga, it means curve Ci must be465

3D-printed before curve C j. Any order that complies with the
topological order of Ga [22] would be a valid printing order,
since no printed curve would interfere with curves printed af-
ter it. An inaccessibility cycle means no printing order can be
found, and the 3D-printing process can only possibly be real-470

ized by subdividing (some of) the curves in CCC into a new set of
curves CCCnew, that has an acyclic Ga, as in Figure 8. Clearly, it is
better to limit the number of curves we subdivide, because, for
example, a continuous printing path is likely to yield a stronger
part than one made up of separate printed elements [2].475

To build Ga for CCC, we must also be provided with the geome-
try of the printing head. We have chosen to model the geometry
of the printing head as a downward (axis parallel to the z axis)
pointing cone (see Figure 9), as this cone can serve as a bound-
ing cone for the shapes of many printing heads. The angle of480

the cone, θ, and the z-offset of the tip above the currently printed
part, zo f f s, are set according to the geometry of the actual ex-
truder in use. Just like layer-height in slicing, zo f f s represents
the limit of the printer resolution, and anything smaller is con-
sidered negligible. Setting zo f f s to a value that is less than the485

minimal printing width (or the minimal clearance between two
curves), also ensures that no printed curve will exist in the zo f f s

clearance between the extruder and the currently printed curve.
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(a) (b)

Figure 8: The two space curves in (a) cannot be ordered, as the red curve is
both above and below the green curve, creating an inaccessibility cycle. The
green curve is subdivided to enable an ordering (blue, red, then green) (b).

Figure 9: The object used to model the geometry of the printing head (blue),
and its bounding cone (green).

To compute if curve Ci < C j, we would need to check whether
the volume that encloses the sweep of the cone along curve Ci,490

intersects C j (see Figure 10). An intersection means Ci < C j.
Doing so for all pairs of curves in CCC constructs Ga. In prac-
tice, this procedure requires every pair of curves to be evalu-
ated and would make the construction of Ga slow, even for a
few hundred covering curves, which is not an impractical num-495

ber. Instead, we calculate a conservative approximation of Ga,
Ḡa. The conservative approximation can use spatial division
acceleration structures, for example a BVH (bounding volume
hierarchy), or a z-buffer, and can be done relatively efficiently
once a curve is subdivided into sufficiently (for the acceleration500

structure) spatially compact sub-curves. Currently, we are us-
ing a BVH query to find (a conservative approximation of) all
sub-curves that are above other sub-curves. Given the informa-
tion of which sub-curves are above other sub-curves we build
Ḡa.505

Once Ga (or Ḡa) is known, we aim to order the curves. If Ga

is acyclic (a DAG), any order that concurs with the topological
order imposed by Ga can be employed and no subdivisions are
needed. For example, we can initially find all accessible curves
(that have nothing below them) and add them to a list of avail-510

C1

zo f f s

C2

Figure 10: The volume of a sweep of the cone bounding the printing head along
the lower curve, C1, defines which portions of the upper curve, C2, are above
it, denoted C2 > C1.

able print-paths. We can then keep printing curves from that
list while adding new ones as they become accessible. Since
the initial set has an acyclic Ga, this process will successfully
terminate. Alternatively, if inaccessibility cycles exist, we can
pursue either a top down, or bottom up approach to find where515

to subdivide the curves (in the cycle). In the top down approach,
we start with the full coverage curves and subdivide them (in a
way that would minimize the total number of subdivisions) and
rebuild Ga until no cycles remain. The bottom up approach
starts with the curves subdivided into small sub-curves called520

fragments:

Definition 5.3. Assume zo f f s > 0 (i.e. Figure 9). Any curve
whose length is less than zo f f s will be called a fragment.

Lemma 5.1. In a set of fragments, the lowest fragment (the one
that contains the point with the lowest z value) can always be525

printed.

Proof. Let F = { f1(t) . . . fm(t)} be a set of fragments. Assume
f1 is the lowest fragment, and its lowest point has a z value of z0.
Since the length of the fragment is less than zo f f s, the highest
point in f1 is lower than z0 + zo f f s. Given Definition 5.1, to be530

below f1 another fragment would have to contain a point lower
than z0. Since f1 contains the lowest point with a z value of
z0, no such fragment exists. As no fragment exists below f1
(following Definition 5.1), it can be printed.

Intuitively, Lemma 5.1 states that since the printing head is535

zo f f s above the print point, it can always print the lowest frag-
ment without penetrating other fragments. The implication of
Lemma 5.1 is that any set of fragments can be printed by se-
quentially printing the lowest fragment each time and remov-
ing it from the set. Hence, the initial set of fragments has an540

acyclic Ga (since it can be printed). In the bottom up approach,
we keep merging pairs of fragments (or the sub-curves resulting
from previous merges) while maintaining an acyclic Ga until we
end up with a minimal number of curves.

Regardless of which approach we use, finding the optimal545

subdivision can be shown to be an NP-complete problem by
showing that the monotone planar 3-SAT problem can be re-
duced to the optimal subdivision problem here (the monotone

8



planar 3-SAT problem is presented in [23]). Given this diffi-
culty in finding the optimal solution, we resort to heuristic so-550

lutions. Algorithm 2 gives a short outline of the process:

Algorithm 2 OrderCurves
Input:
(1) CCC = {C1, . . . ,Cn} a set of curves to be ordered for 3D printing;

(2) Θ, zo f f s, describe the printing head geometry;

Output:
(1) CCCordered, the ordered (for 3D printing) list of (subdivided) curves

from CCC;

Algorithm:
1: CCCordered := ∅;
2: F := Fragments(CCC, zo f f s); // f j

i marks fragment j in Ci;
3: while F , ∅ do
4: B :=

{
f j
i | Below(Θ, zo f f s, f j

i ) ∩ F = ∅
}
;

5: Bbest := GetBest(B) =
{
f k
i , . . . , f k+l

i

}
∈ B;

6: F := F \ Bbest;
7: CCCordered := CCCordered ∪ Bbest;
8: end while
9: Return CCCordered;

In Line 4 of Algorithm 2 the function Below(Θ, zo f f s, f j
i ) re-

turns the set of fragments that are below fragment f j
i (if any),

according to Definition 5.1. Lemma 5.1 proves that at least one
fragment (the lowest one) will be included in B. As explained555

earlier we resort to a heuristic solution in identifying the best
sequence of fragments to print each step (Line 5). We choose
the fragment sequence that would introduce the least amount
of subdivisions in the current step, but may ultimately (because
of the greedy nature of the choice) result in more subdivisions.560

The entire procedure is bound to terminate as at least one frag-
ment is removed from F every cycle (Line 6). The end result
of this greedy process is a list of sub-curves CCCordered (with an
acyclic Ga) that can be 3D printed (using AM).

Figure 11 shows the result of the process, when applied to565

the helical object (from Figure 2), covered by nine curves.

5.2. Setting the Material Deposition Radius Along the Print-
Path Curves

Another AM print-paths concern relates to the amount of de-
posited material along the path. As mentioned in Section 3.1,570

extruded material should both cover the entire volume of the
printed object, while also avoiding over-coverage that results
from too much material being extruded. In AM, covering the
same location with more than one covering curve can be prob-
lematic: when a point is covered more than once, material will575

also be deposited there multiple times, resulting in excess ma-
terial being placed.

The print-paths created by the method described in Sections
4.1 and 4.2, are typically not parallel to each other, and the
distance between adjacent curves would likely vary along their580

length. Assuming a circular cross section for the extruded ma-
terial, the result will be excessive material deposition unless the

(a)
(b)

(c) (d)

Figure 11: A helical object (from Figure 2) covered and printed by nine curves
(shown as tubes), making sure no gouging occurs as the helix is being printed.
First 9 sub-curves are printed in (a). First 18 sub-curves are printed (b). First 27
sub-curves are printed (c). All 36 sub-curves are finally printed (d), completing
the model. Note the middle tube has a larger radius.

extrusion radius is modified along the length of the curves. To
reduce the amount of excess material extruded, and ultimately
control the extrusion feed-rate for the print-paths, the volume585

each curve is assigned to cover must be set in a way that ensures
locations are not covered multiple times, and consequently too
much material is applied. Hence, we assign each curve, at any
point, an effective coverage radius:

Definition 5.4. The material deposition radius (MDR) function590

of a print-path or covering curve is the local amount of material
that should be extruded along its length. If the deposited mate-
rial along the print-path traces a virtual varying radius tube, as
in Figure 11, the MDR sets the local radius of the tube, along
the path.595

The subdivision into fragments, similar to the one used to
approximate Ga in Section 5.1, can also be used to determine
the MDR along a covering curve. For each fragment, the closest
fragments are found, and the radius is set according to those
neighboring fragments. This can be done in an iterative process600

that would expand the radius of each fragment’s virtual tube
until it touches the virtual tube of another fragment. This sort
of process would ensure that no tube can be further expanded
when it terminates.

5.3. Generating the Support Structure605

There are many alternatives to generate support. Here, we
briefly review the simple approach we took to manufacture the
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parts presented in Section 6. To generate the support structure,
we use ray casting (vertical rays, in a grid, using the bound-
ary surfaces of the object) to identify the necessary volume610

of the support structure. We then fill the support volume (in
a prescribed density) using a grid. To detect which support
print-paths should be printed, we use the following procedure:
given the next print-path of the object to be printed, the part
of the support volume that is below that print-path, should be615

printed/filled before the object print-path. Recall that the vol-
ume below an object print-path, would be the volume enclosed
in the sweep of a downward facing cone along the print-path
curve. Overall this ordering ensures all of the print-paths of
the object are supported, and the printing order of the object620

and the support print-paths does not cause collisions. Figure 12
shows a schematic example of this procedure. Note how both
the support structure and object covering-curves are added in
stages.

(a)

(b)

(c) (d)

Figure 12: A schematic illustration of the helical object (from Figure 2) cov-
ered and printed by 1216 curves (shown as differently colored tubes), presented
along with the generated support structure (shown as black lines). First 304 sub-
curves and associated support structure are printed in (a). First 608 sub-curves
and associated support structure are printed (b). First 912 sub-curves and asso-
ciated support structure are printed in (c). All 1216 sub-curves and associated
support structure are finally printed (d), completing the model. Compare to
Figure 16 (b) where an actual print using the same type of support structure is
shown.

5.4. Using Alternative Covering Curves625

The solutions outlined in Sections 5.1, 5.2, and 5.3 are ap-
plicable to any set of covering curves. As discussed in Section

4.2, we are not necessarily limited to the original parametriza-
tion when choosing covering curves. For example: given a he-
lical object (as in Figure 2) we can use a similar helical vol-630

ume (but with a square cross-section), that has a more desired
parametrization, as a direction field to achieve more uniformly
distributed covering curves. Figure 13 shows an example of
this.

In Figure 13 (a) the trivariate from Figure 2 is shown covered635

by a subset of its own isoparametric curves using the approach
discussed in Section 4.1. One can easily notice the varying
MDR (Definition 5.4), and the unacceptably thin print-paths.
This is the result of the fact that the trivariate in question is ac-
tually singular, at the four boundary points of its circular cross-640

section, with a vanishing Jacobean there. However, we can still
use the approach outlined in Section 4.2, and use an external
direction field to eliminate this difficulty, and print the model
using uniformly distributed covering curves. To do so, we use a
direction field similar to the model in Figure 2, except instead of645

the singular circular cross-section, the direction field now has a
square cross-section without any singularities. Covering curves
for the model with the square cross-section can easily be gen-
erated by uniformly sampling its isoparametric curves in a grid
pattern. The covering curves for the square cross-section model650

can be seen in Figure 13 (b). The generated covering curves that
fall outside the boundary of the model in Figure 2 are clipped,
as explained in Section 4.2, removing any sub-curves (or full
curves) that are outside the boundary. We are left with uni-
formly distributed covering curves that cover the model from655

Figure 2, that can be used as the basis for AM print-paths, and
are shown in Figure 13 (c). Using this approach, virtually any
desired coverage configuration can be achieved, for example we
could have easily replaced the grid configuration of the cover-
age in Figure 13 (b) with a honeycomb arrangement to achieve660

a tighter coverage.

(a) (b) (c)
Figure 13: Partial view of the printing curves (tubes representing radius) for the
volume in Figure 2. Using the original parametrization (a) resulting in varying
radius values for the tubes. The printing curves, all of the same radius, of a
direction field (the same volume with a square instead of circle cross-section)
(b). Image (c) shows the printing curves of the direction field from (b) clipped
to fit the original volume of the helix.

6. Experimental Results

We have implemented in C/C++ the algorithms outlined in
this work. We then used these implementations to produce G-
code instructions to print 3D objects, using a low-end FDM665

printer (seen in Figure 14). Unless otherwise noted, in these
experiments the nominal print-path covering radius is 0.5 mil-
limeters (as was zo f f s for the cone), which is coarse but creates
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more visible print-paths, and the default cone angle (θ, Figure 9)
is 0.4π. We would like to stress these models are here as a proof670

of concept, showing fabrication of 3D models using the meth-
ods we outlined is indeed possible. The actual surface finish
quality of the presented models is obviously limited, because
of the low-end printer, and the coarse resolution we’re using (to
make print-paths more visible). For all presented models in this675

section, the total running times for the algorithms, including
the generation of the G-code files needed to print the models,
is about 2 − 10 minutes on a 3.4 GHz windows 7 machine (sin-
gle thread). Printing the object in Figure 15 took 4 − 6 hours
while the the one in Figure 16 took about 48 hours. Printing the680

model in Figure 16 requires frequent (and relatively long) z axis
motions that are particularly slow on our printer that uses lead-
screws in z. As mentioned in [15], prints that require frequent z
axis motions can be sped up using a delta style 3D printer.

Figure 14: The FDM printer used in our experiments.

The model in Figure 15 was created using the methods out-685

lined in Section 4.2. Specifically using a B-rep (a B-spline sur-
faces converted to a triangular mesh) of a bridge, and a rect-
angular cross-section trivariate that specified the external di-
rection field for the print-paths. θ was set to 0.25π so that no
subdivisions would be added. Figure 16 shows a manufactured690

object for the model in Figure 2. The model in Figure 16 (a),
was also created using the method in Section 4.2, using a tri-
angular mesh of the model’s boundary (created by tessellating
the boundary of a trivariate volume) and a square cross-section
direction field as shown in Figure 13. Figure 16 also shows the695

effects accessibility considerations have. Figure 16 (c) shows
how a subdivision of the covering curves affects the manufac-
turing process. The effect is minor, as the overall geometry of
the print-paths remain unaffected.

The model in Figure 17, the spout of a Utah teapot, is mod-700

eled as a volumetric trivariate with some small varying wall
thickness. The model was created using the methods outlined
in Section 4.1. The nominal print-path covering radius is 0.3
millimeters, but the actual MDR is determined adaptively and
changes along the print-paths.705

Figure 18 shows a manufactured object in the shape of a vase.
The cross section area of the vase differs substantially along its
length. As a result, the number and MDR of the print-paths are
changed adaptively in an effort to maintain a constant coverage
of the volume.710

Figure 19 presents the manufactured result for the model
shown in Figure 6. The directional field used to cover the model

(a) (b)
Figure 15: A manufactured model of a twisted bridge, created using the method
outlined in Section 4.2 (a) . The print-paths used for the twisted bridge modeled
as tubes (and a zoomed view of the cross section) (b).

assigns a single representative guiding curve to each part of
the model (body, and each of the four legs). For each part,
a containing volume is generated by sweeping a sqaure cross715

section surface (as shown in Figure 13 (b)) along the represen-
tative curve. Then, a set of covering curves is computed by
uniformely extracting isoparametric curves from this volume.
So while the covering curves for this model match the general
shape of the model, they do not match the boundary of the ob-720

ject, resulting in a worse surface finish compared to the other
examples.

7. Discussion and Future Work

In this section, we discuss some of the technical issues we
encountered in fabricating the models as well as related topics725

that require further research.
Throughout this work, we’ve largely neglected the consider-

ation of choosing a build direction. The use of general print-
paths, which partially mitigate the importance of the build di-
rection, is the main focus of this work. However, the build di-730

rection still plays a major role in determining the quality of the
resulting object, as it still affects the support volume and the
number of subdivisions in the print-paths as discussed earlier.
The determination of the best build orientation, given its many
implications, has been studied for traditional AM (i.e. [24]).735

Similar studies should be performed to asses the best build di-
rection for the AM method we propose.

In slicing, each layer is largely supported by the previous
layer, and for sufficiently vertical slopes, no support is required
[19]. AM using the methods we describe in this paper means740

adjacent ’layers’ (or rather curves printed one after the other in
this case) are no longer as similar to one another and as a conse-
quence a printed part does not offer as much support to the next
printed part. This makes support a much more critical issue,
and apparently, it seems to be forcing us to use more support745

than would be required using slicing. Refer to Figure 1 (c), (d)
for a comparison of the support structure for our methods, and
traditional slicing for a simple model. Overall, we have used a
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(a) (b)

(c)

Figure 16: Manufactured object for the helical model presented in Figure 2,
created using the method presented in Section 4.2 (a). In (b) the same model is
shown before the removal of the support material. Image (c), shows a zoomed
view of the transition (subdivision) area created because of accessibility con-
siderations. See also Figure 20

Figure 17: Manufactured object for the spout of a Utah teapot modeled as a
volumetric trivariate (from two views), created using the method presented in
Section 4.1.

rather naive approach to generate the support, and more work
needs to be done to optimize the support structure.750

The solution we found for setting the MDR of print-paths
in Section 5.2 may not be the optimal way to do so. For ex-
ample, setting the radius so that there is some overlap between
the virtual tubes of different print-paths may give better results,
in certain cases, compensating for the inherent voids between755

paths with a circular cross-section. Further research needs to
be done to examine how to best use the coverage radius of a
covering curve to create a uniform and accurate coverage of the
printed 3D object. Further, in reality, the extruded material is
not circular, and supporting extrusion models with a non circu-760

lar cross-section also requires further study. More work needs
to be done to enable accurate control of the MDR, by either
adaptively setting the extrusion rate, in existing printers, or by
adding a dedicated valve mechanism to achieve a more accurate
extrusion cross-section, in newer printers.765

In Section 5.1, we discussed how covering curves some-

(a)

(b)

(c)

Figure 18: (a) shows the model of a vase. (b) shows a rendering of the print
paths (object print-paths as colored tubes, support print-path as black lines)
used to manufacture the object. A manufactured object for the vase model
(the support structure was not removed), created using the method presented in
Section 4.1 is shown in (c). Note how additional shorter print-paths are added
in wider regions of the vase.

times have to be subdivided to create a printable set of curves.
However, this subdivision only considers accessibility and may
cause problems with other design goals. Figure 20 shows two
possible sets of print-paths, modeled as tubes, for a model of770

a single cycle from the model presented in Figure 2. In Fig-
ure 20 (a) only accessibility considerations were used to subdi-
vide the curves. The resulting subdivision creates a mechanical
weakness in the model: it can be divided into two pieces held
together only by the connection between the endpoints of the775

print-paths that make up the two pieces. This weakness can be
alleviated by bonding or welding the endpoints together. This
weakness can also be mitigated by changing the design of the
covering curves. By forcing an additional subdivision, we were
able to create an entirely different subdivision, seen in Figure780

20 (b), that largely eliminated the weakness. Finding a way
to automate this procedure toward, possibly, optimal mechani-
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(a)

(b)

Figure 19: Manufactured object for a model of a crocodile (the support structure
was not removed), created using the method presented in Section 4.2. In (a),
the whole object is shown. (b) gives a more detailed view of the back right leg.
See also Figure 6.

cal strength, and prevent endpoints from clustering would be a
worthwhile research goal.

(a) (b)
Figure 20: A division to print-paths that only considers accessibility (a). A
division to print-paths that also considers the model’s mechanical strength (b).
In both cases, print-paths are rendered in perspective, modeled as tubes, and
colored to highlight the subdivision.

Over-coverage can also occur in Algorithm 1 when ∆2
iso is785

overly conservative in relation to the true Hausdorff distance.
One such case is illustrated in Figure 21. While rare in practice,
reducing this skewing effect is highly desirable. By employing
the first fundamental forms [25] of the adjacent surfaces and
their relation in the local neighborhood in the trivariate, one790

can compensate for the variation in these distances between ad-
jacent covering curves.

The ability to print non-planar curves is also applicable in
the context of AM using functionally graded materials. One
can alter material properties along print-paths, much like the795

MDR.
In this work, we have considered a constant orientation for

both the printing head and the model. Printing using the same
general print-paths presented, but using a multi-axis AM ma-
chine (such as in [5]) that can alter the orientations, would prob-800

ably give superior result. Such a machine would be able to
consider multi-axis accessibility options (rather than the single
direction we considered), and reduce the need for subdivision

Figure 21: Given these two surfaces (depicted as lines) S 1 and S 2, the iso-
distance ∆iso between them (dashed arrow) from Algorithm 1, may be arbitrar-
ily larger than the one sided point Hausdorff distance (dotted arrow).

of curves.

8. Conclusions805

Given the wide range of desired covering curve properties
(and the balance between them) no single method for generat-
ing covering curves would answer all possible needs. While we
did present a method for generating covering curves for trivari-
ate volumes, since there is a natural set of covering curves in810

that case, any set of covering curves can be used as the basis for
print-paths.

We have shown how the slicing approach in AM can be aug-
mented by algorithms to generate print-paths that follow any
desired 3D directions. We expect that the added flexibility and815

freedom that the presented methods allow in the specification of
general covering curves, will enable the synthesis of 3D mod-
els (using AM) with superior properties (such as mechanical
strength and surface finish).
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Appendix A. Arc-Length Limit of isoparametric Curves in
Trivariates

Lemma Appendix A.1. Let p1 = C(0) and p2 = C(1) be the
endpoints of a 3-space parametric curve C(t), t ∈ [0, 1], and let900

L be the arc-length of C. If L ≤ 2ε and pc ∈ C then

min
(∥∥∥p1 − pc

∥∥∥ ,∥∥∥p2 − pc

∥∥∥) ≤ ε .
Proof. L is the arc-length of a curve from p1 to p2 that passes
through pc, so we know that:∥∥∥p1 − pc

∥∥∥ +
∥∥∥p2 − pc

∥∥∥ ≤ L ≤ 2ε .

Then, min
(∥∥∥p1 − pc

∥∥∥ ,∥∥∥p2 − pc

∥∥∥) ≤ ε.
Consider a Bézier, or a B-spline, trivariate:905

V(u, v,w) =

nu∑
i=0

nv∑
j=0

nw∑
k=0

Pi jkBi(u)B j(v)Bk(w), u, v,w ∈ [0, 1] .

Given i, j, consider one complete control polygon of a w-
isoparametric curve from the control mesh of V , Pi, j = {Pi jk |

k ∈ 0 . . . nw}. Then, let Lk
i, j be the length of the kth segment in

control polygon Pi, j, Lk
i, j = ‖Pi, j,k+1 − Pi jk‖.

Lemma Appendix A.2. Let S 1(u, v, 0) and S 2(u, v, 1) be the910

two w boundary surfaces in a trivariate V(u, v,w). The arc-
length of any w-isoparametric curve C(w) in V from S 1 to S 2 is

bounded by
nw−1∑
k=0

max
i, j

(Lk
i, j).

Proof. The arc-length of a Bézier or a B-spline curve can not
exceed the arc-length of its control polygon. For constant val-915

ues of u = u0 and v = v0, V(u0, v0,w) is a parametric (univari-
ate) curve:

C(w) = V(u0, v0,w) =
nw∑

k=0
σkBk(w),

where σk =
nu∑
i=0

nv∑
j=0

Pi, j,kBi(u0)B j(v0).

Then, the length of the kth segment of the control polygon of920

C(w), Lk:

Lk =‖σk+1 − σk‖

=

∥∥∥∥∥∥∥∥
nu∑
i=0

nv∑
j=0

Pi, j,k+1Bi(u0)B j(v0) −
nu∑
i=0

nv∑
j=0

Pi, j,kBi(u0)B j(v0)

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥
nu∑
i=0

nv∑
j=0

(Pi, j,k+1 − Pi, j,k)Bi(u0)B j(v0)

∥∥∥∥∥∥∥∥
≤

nu∑
i=0

nv∑
j=0

∥∥∥Pi, j,k+1 − Pi, j,k

∥∥∥ Bi(u0)B j(v0)

≤

nu∑
i=0

nv∑
j=0

max
i, j

∥∥∥(Pi, j,k+1 − Pi, j,k)
∥∥∥ Bi(u0)B j(v0)

= max
i, j

∥∥∥(Pi, j,k+1 − Pi, j,k)
∥∥∥

= max
i, j

(Lk
i, j) .

The bound on Lk also establishes a bound on the arc-length
of any isoparametric curve C(w) from S 1 to S 2:
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ArcLength(C(w)) ≤
nw−1∑
k=0

Lk ≤

nw−1∑
k=0

max
i, j

(Lk
i, j).

Lemma Appendix A.2 establishes that we can efficiently find925

an upper bound on the maximum length of any w-isoparametric
curve between S 1(u, v) = V(u, v, 0) and S 2(u, v) = V(u, v, 1)
using the control mesh of V . Assume we calculate that bound
and find that all w-isoparametric curves are at most of length
L ≤ 2ε. Then, any interior point p ∈ V(u, v,w) (w ∈ [0, 1]), is930

on some w-isoparametric curve, p ∈ C(w) = V(u0, v0,w), and,
following Lemma Appendix A.1 is at most ε distance away
from either S 1 or S 2. By ensuring that any p ∈ V is at most ε
distance away from either S 1 or S 2, we ensure that the volume
V is covered by surfaces S 1 and S 2.935
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