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Abstract

This paper presents a scheme to globally compute,
bound, and analyze the Gaussian and mean curvatures of an
entire volumetric data set, using a trivariate B-spline volu-
metric representation. The proposed scheme is not only pre-
cise and insensitive to aliasing, but also provides a method
to globallysegment the images into volumetric regions that
contain convex or concave(elliptic) iso-surfaces, planar
or cylindrical (parabolic) iso-surfaces, and volumetric re-
gions with saddle-like(hyperbolic) iso-surfaces, regardless
of the value of the iso-surface level. This scheme, which de-
rives a new differential scalar field for a given scalar field,
could easily be adapted to other differential properties.

1 Introduction and Previous Work

The availability of a broad variety of volumetric images,
in recent years, raises new problems and challenges for the
scientific community. While 3D images are typically ob-
tained from 3D laser scanners, volumetric images are com-
monly obtained from devices such as CT, MRI, and SEM.
One common need in both image types is segmentation.
Segmented images are employed in vision and image pro-
cessing or understanding applications. Segmentation tech-
niques of volumetric images are considered, for example, in
[16].

One way of approaching the segmentation problem is by
computing or estimating differential geometric properties of
the analyzed objects [11]. Among the differential proper-
ties that are widely used, Gaussian curvature takes a center
stage, being a fundamental prescription of an intrinsic sur-

face property. Curvature computation is employed in many
of the segmentation algorithms known in the literature and
used in practice. Volumetric segmentation processes could
exploit the fact that the curvature values of all iso-surfaces
are intrinsic to the shape, thus invariant to rotation and trans-
lation, among other qualities.

The information provided by curvature analysis could be
used in applications where volumetric data is found, from
CT medical scans all the way to CT security scans. Such ap-
plications could be registration, metamorphosis, and recog-
nition of primitive parts.

Curvature properties of volumetric images were investi-
gated in [9]. The author of [9] presents methods for com-
puting the curvature of piecewise linear two-manifold sur-
faces and three-manifold graphs of trivariate functions. [9]
presents several examples of synthetic objects that were
color-coded to follow curvature values. Moreover, several
measurements of the errors of the approximation are pre-
sented using the root mean square between exact analytic
and approximated values over each point of interest of sev-
eral synthetic images.

Being able to view the boundaries of objects, in general,
the human eye experiences difficulties in fully comprehend-
ing the geometry of a volumetric image. Ways to provide
visual cues have been sought in rendering two-dimensional
projections of the volume. One example is [13], in which
the author employs volumetric visualization using strokes
along lines of curvature. The strokes follow the principal
directions, thus enhancing the perception of the image in
an intuitive way. The computation of the strokes employs a
line integral convolution.

In [10], the authors define a new type of transfer function
for direct volume rendering. This new type of transfer func-
tion evaluates the principal curvatures at discrete points.



The transfer function associates with each pair of principal
curvatures a color, and emphasizes the elliptic, parabolic
(both planar and cylindric) ; and hyperbolic regions of the
analyzed objects.

In [15], the authors describe a multi-dimensional transfer
function technology that employs measurements of several
differential characteristics. The differential characteristics
are evaluated using a convolution of the input image with
different filters. The authors show results that emphasize
valleys and ridges, visualizing surface smoothing, and visu-
alizing the uncertainty of iso-surfaces.

In [20, 19], the authors present a technique for estimat-
ing curvature values of iso-intensity surfaces from volumet-
ric data sets. They refer to the principal curvaturesk1 and
k2 as the largest and second(principal) curvatures, where
jk1j > jk2j :Moreover, the authors define four types of pos-
sible registration curves, considering the local minimum or
maximum of the largest or next-to-largest curvature, along
lines of curvature. The estimation of curvature properties
requires the approximation of derivatives in the input im-
ages and in [20, 19] this is performed by applying a discrete
local Gaussian filter over the volumetric image.

The authors in [23] use a global curvature analysis ap-
proach and present a technique for evaluating the curvature
and the torsion of 3D vector fields. Several differential char-
acteristics of the 3D vector fields are used for computing
iso-surfaces which finally are employed towards the analy-
sis and visualization of the input images. The importance of
[23] could also be found in developing a general framework
of formulas for computing curvature fields.

The estimation of curvature properties requires the ap-
proximation of second order derivatives, a difficult task
when discrete, piecewise constant, voxel representations are
employed. In order to estimate the second order deriva-
tive, any numerical algorithm must consider the tradeoff
between the provided accuracy and the time consumed.
For instance, there are algorithms, such as the central fi-
nite difference approximation to second order derivatives,
(for example, see [4]) that can efficiently approximate the
second order derivative and provide a certain degree of ac-
curacy. When accuracy is crucial, methods such as Richard-
son extrapolation(see[4]) are to be used.

In this paper, we present a technique to globally
and simultaneously compute the Gaussian curvature for
(all iso-surfaces of) volumetric images. The presented
scheme offers advantages in its improved accuracy in de-
tecting boundaries of curvature-based segmented regions
and in its ability to perform global curvature analysis that is
insensitive to aliasing as well as ignorant of a specific iso-
level. Given a volumetric data setf (u; v; w) ; we are able
to computeK (u; v; w) ; a scalar field that represents the
Gaussian curvature of the iso-surface at(u; v; w) : The in-
troduced computational capability opens the way for a more
precise and robust global curvature-based segmentation of
volumetric data sets. All contemporary algorithms, includ-

ing the above and to the best of our knowledge, compute
the curvature properties in discrete locations only. In the
presented new approach, we are able to compute curvature
properties functions defined over each point of the volume.

This paper is organized as follows. In Section 2, we pro-
vide some necessary mathematical background. In Section
3, we describe the mechanism of evaluating the Gaussian
and mean curvatures used in our presented approach. In
Section 4, segmentation of the volume as well as curvature-
based iso-surface extractions are considered using the in-
troduced scheme. A few advantages over traditional voxel-
based schemes are also presented. In Section 5, several
examples of our algorithm applied to volumetric and 3D
scanned images are portrayed. Finally, in Section 6, we
conclude.

2 Background

Considerf (u; v; w) ; aC(2) trivariate function. In this
section, we briefly present the mathematical background
necessary to compute the Gaussian curvature of an iso-
surfacef (u; v; w) = f0. We use the main differential com-
ponents as in [20, 19].

Given a bivariate functiong (u; v) ; denote bygu and
gv the two partial derivatives ofg (u; v) in theu andv di-
rections, respectively. Similarly, for any trivariate function
h (u; v; w) ; let hu; hv; andhw be the partial derivatives of
h (u; v; w) with respect to theu; v; andw directions.

¿From the implicit function theorem, there exists a scalar
function S (u; v) that prescribes the parametric surface
S (u; v) = (u; v; S (u; v)) ; which is, locally, a parameter-
ization of an iso-surface levelf (u; v; S (u; v)) = f0; f0
constant. Then, by differentiatingwith respect tou;we have
fu (u; v; S (u; v)) + fw (u; v; S (u; v))Su = 0 and further,

one can deduce thatSu = �
fu
fw
; andSu =

�
1; 0;� fu

fw

�
:

LetE;F; andG andL;M; andN be the coefficients of
the first and second fundamental forms, respectively, and
n = Su � Sv be the unnormalized normal toS at (u; v) :
Then,

E = hSu;Sui = 1+S2u = 1+
f2u
f2w

=
f2u + f2w
f2w

=

eE
f2w
: (1)

Similarly, other differential components can be computed
as well:

F = hSu;Svi =
fufv

f2w
=

eF
f2w
; (2)

G = hSv;Svi =
f2v + f2w
f2w

=

eG
f2w
; (3)

D = EG� F 2
=
f2u + f2v + f2w

f2w
=

eD
f2w
; (4)

L = hSuu; ni
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=
2fufwfuw � f

2
ufww � f

2
wfuueD 1

2 f2w

=

eL
eD 1

2 f2w
; (5)

M = hSuv; ni

=
fufwfvw + fvfwfuw � fufvfww � f

2
z fuveD 1

2 f2w

=

fM
eD 1

2 f2w
; (6)

and

N = hSvv; ni

=
2fvfwfvw � f

2
v fww � f

2
wfvveD 1

2 f2w

=

eN
eD 1

2 f2w
; (7)

wheren is the normalized surface normal. Then, the Gaus-
sian curvature of an iso-surface off (u; v; w) equals

K =
LN �M2

D
=

eL eN � fM2

D2f6w
=

eL eN � fM2

eD2f2w
=

eK
eD2f2w

:

(8)
The values in Equations(1) to (8) arew�biased and sen-
sitive to a vanishingfw. Processing further, we have,

K

=
��
2fufwfuw � f

2
ufww � f

2
wfuu

�
�
2fvfwfvw � f

2
v fww � f

2
wfvv

�
�

�
fufwfvw + fvfwfuw � fufvfww � f

2
wfuv

�2�

=
� eD2f2w

�

=

�
4fufvf2wfuwfvw � 2fuf

2
vfwfuwfww

�2fuf
3
wfuwfvv � 2f2ufvfwfvwfww + df2uf

2
v f

2
ww

+f2uf
2
wfvvfww � 2fvf

3
wfuufvw + f2v f

2
wfuufww

+f4wfuufvv � f
2
uf

2
wf

2
vw � f

2
v f

2
wf

2
uw �

df2uf
2
vf

2
ww

�f4wf
2
uv � 2fufvf2wfuwfvw + 2f2ufvfwfvwfww

+2fuf
3
wfuvfvw + 2fuf

2
vfwfuwfww

+2fvf
3
wfuvfuw � 2fufvf

2
wfuvfww

�
=
� eD2f2w

�
= (2fufvfuwfvw + 2fufwfuvfvw + 2fvfwfvufuw

�2fufwfuwfvv � 2fvfwfuufvw � 2fufvfuvfww

+f2wfuufvv + f2ufvvfww + f2vfuufww

�f2uf
2
vw � f

2
vf

2
uw � f

2
wf

2
uv

�
= eD2

=

eeK
eD2
; (9)

having similar and cancelled out terms marked together.K
is now symmetric with respect tou; v; orw: K (u; v; w) is
defined for the entire parametric domain off (u; v; w) : De-

note by
�!
rf =

�
@f

@u
; @f
@v
; @f
@w

�
the gradient off; and as-

sume
�!
rf is never zero. Then, given a(u0; v0; w0) loca-

tion, the iso-surface off (u; v; w) at (u0; v0; w0) is well-
defined. Having a well-defined iso-surface at(u0; v0; w0) ;

K (u0; v0; w0) is also well-defined, aseD2
=

D
�!
rf;
�!
rf
E

never vanishes. It is important to note thatK is a rational,
providedf is.

In a similar way to the computation ofK in Equations
(8) and(9) ; a formula forH; the mean curvature, can be
derived as

H

= (2fufvfuv + 2fufwfuw + 2fvfwfvw

�

�
f2v + f2w

�
fuu �

�
f2u + f2w

�
fvv

�

�
f2u + f2v

�
fww

�
=
�
2 eD 3

2

�

=

eeH
2 eD 3

2

: (10)

Note thatH2 is a rational function as well.

3 Curvatures of Iso-Surfaces of Trivariate B-
spline Functions

Let Bi;k;� (t) be theith B-spline blending function of
degreek defined over knot sequence� [2]. Then, consider
function

f (u; v; w) =

nuX
i=0

nvX
j=0

nwX
l=0

pi;j;l

Bi;ku;�u
(u)Bj;kv;� v

(v)Bl;kw ;�w
(w) ; (11)

as a trivariate B-spline function, with� =

(nu + 1) (nv + 1) (nw + 1) scalar coefficients pi;j;l:
Hereafter, we will simply employBi(t) or Bi;k(t) to
denoteBi;k;� (t) whenever the degree and the knot vector
can be inferred from the context. Given a regular, piecewise
constant volumetric data set, one can treat it as a piecewise
constant B-spline trivariate. Moreover, a piecewise trilinear
B-spline trivariate will also interpolate that volumetric data
set by simply using the voxels’ data values as thepi;j;l
coefficients of the trivariate. For higher order trivariate
functions, the result is only an approximation whenpi;j;l
are the coefficients. Hence, in practice, two options are
available. Either solve an interpolation problem, fitting
f (u; v; w) to the original piecewise constant data, or alter-
natively, provide a bound on the error of the approximation,
when using the voxels’ data values as thepi;j;l coefficients.

Consider�i 2 �u; a single interior knot in theu direction
such that�i < �i+1; and similarly for�j 2 �v; �j < �j+1
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and �l 2 �w; �l < �l+1: Then, in each polynomial sub-
domainDi;j;l : [�i; �i+1) � [�j ; �j+1) � [�l; �l+1) of the
parametric space off; the Gaussian curvature,K, is a ratio-
nal function inpi;j;l and in(u; v; w), whereu 2 [�i; �i+1) ;
v 2 [�j ; �j+1) ; w 2 [�l; �l+1) : In this section, we will de-
scribe how to efficiently compute the Gaussian curvature
K (u; v; w), in two steps. First, in Section 3.1, we evaluate
the numerator and denominator ofK as a trivariate B´ezier
representation in each sub-domain,Di;j;l: Then, in a second
step that is briefly described in Section 3.2, we merge the ra-
tional form ofK in all the polynomial sub-domains into a
simple B-spline trivariate function representation, over the
entire domain off (u; v; w) :

3.1 Evaluation ofK andH as Bézier Forms

We seek to defineK using the coefficientspi;j;l of
f (u; v; w) for a single sub-domainDi;j;l and compute the
numerator and denominator of the Gaussian curvature fol-
lowing Equation(9) : The expression forK as a function of
the coefficientspi;j;l was obtained with the aid of the Maple
[3] symbolic manipulation program and is too long to pro-
vide as part of this work. One can find this symbolic code
in [1]. We use a symbolic interpolation process to convert
the result to a B´ezier form. In a similar way toK; H2 can
be evaluated as well.

Let �i;n (t) =

�
n

i

�
(1� t)

n�i
ti be the Bernstein-

Bézier basis function of degreen. Considerf for one sub-
domainDi;j;l and let (u; v; w) be one of these differen-
tial components, defined overDi;j;l, as presented in Equa-
tions(1)� (8) : f and are both polynomials.

Let ou; ov; andow be the degrees of (u; v; w) in u; v;
andw; respectively, following Table 1, and let

� (u; v; w)

=

ouX
i=0

ovX
j=0

owX
l=0

qi;j;l�i;ou (u) �j;ov (v) �l;ow (w) ;(12)

be a Bézier polynomial function of the same degree. We
seek a B´ezier representation for the polynomial function
of  and find it by the uniqueness of the polynomial rep-
resentation and symbolic interpolation constraints atO =

(ou + 1) (ov + 1) (ow + 1) unique parameter values.

In brief, pre-evaluateK
�

i
ou
; j

ov
; l
ow

�
for all i 2

f0::oug ; j 2 f0::ovg ; and l 2 f0::owg ; so that we get
O equations inpi;j;l only. Then, and once given a specific
f; thepi;j;l coefficients are substituted in. The value ofK
at theseO locations is used to derive the B´ezier form,(12) ;
yielding theqi;j;l coefficients. The details of this process
follow.

Assume thatf(u; v; w) is a piecewise polynomial func-
tion of degreesku; kv; kw. Table1 summarizes the degrees
of the different differential terms leading toK; following

Component Degree Degree Degree Degree

in pi;j;l

in u in v in w coeffi-

cients

f(u; v;w) ku kv kw 1
fu(u; v; w) ku � 1 kv kw 1
fuu(u; v;w) ku � 2 kv kw 1
fuv(u; v;w) ku � 1 kv � 1 kw 1eD =
f2u + f2v + f2w 2ku 2kv 2kw 2eE = f2u + f2w 2ku 2kv 2kw 2eL = 2fufwfuw
�f2ufww

�f2wfuu 3ku � 2 3kv 3kw � 2 3eK = eL eN �

eM2 6ku � 2 6kv � 2 6kw � 4 6eeK = eK=f2w 4ku � 2 4kv � 2 4kw � 2 4
eeH2

6ku 6kv 6kw 6

Table 1. Degrees of differential components.

Equations(1) � (8) : With the aid of Maple [3], we rep-
resent the differential components in Table1 as polyno-
mial functions inu; v; w and pi;j;l: For example,eD; is a
polynomial of degrees2ku; 2kv; 2kw in (u; v; w) ; respec-
tively. Further, because

�!
rf is a linear polynomial inpi;j;l;eD =

D
�!
rf;
�!
rf
E

is a quadratic function inpi;j;l: While, in

general, the degrees of the terms grow larger as we progress,eeK is obtained fromeK by dividing byf2w: Thus the degrees

of eeK are smaller than those ofeK (see Equation(9)) :
Consider a prescribed trivariatef with known coeffi-

cientspi;j;l; which could be substituted into (u; v; w) :
The problem of deriving(12) could be mapped to a system
of equations withO unknowns(qi;j;l) ; andO constraints:

�

�
i

ou
;
j

ov
;
l

ow

�

=  

�
�i +

i (�i+1 � �i)

ou
;

�j +
j (�j+1 � �j)

ov
;

�l +
l (�l+1 � �l)

ow

�
; (13)

wherei = 0; : : : ; ou; j = 0; : : : ; ov; l = 0; : : : ; ow: Note
pi;j;l are now prescribed. System(13) is modelled as fol-
lows. Consider matrices

� 2M
O�O

; Q 2M
O�1; and	 2M

O�1;
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whereMi�j denotes a matrix of sizei by j: Let

r = l (ou + 1) (ov + 1) + j (ou + 1) + i:

Then, thes0th element of ther0th row,�r;s 2�; equals

�r;s = ��;ou

�
i

ou

�
��;ov

�
j

ov

�
�
;ow

�
l

ow

�
; (14)

where s = 
 (ou + 1) (ov + 1) + � (ou + 1) + �:
Similarly, let the s0th element of Q be Qs =

q�;�;
 and the r0th element of 	 be 	r =

 
�
�i +

i(�i+1��i)

ou
; �j +

j(�j+1��j )

ov
; �l +

l(�l+1��l)

ow

�
:

Then, Equation(13) is equivalent to

� Q = 	: (15)

	r is symbolically pre-evaluated once intoO polynomial
equations inpi;j;l; as in the right side of Equation(13) :
Given specificf; all the	r functions are evaluated by sub-
stituting in thepi;j;l coefficients.
� is also independent of the input and hence one can

precisely pre-compute� and��1 once. Further,� is
guaranteed to be non-singular since we evaluate� (x; y; z)
at three-dimensional independent parametric points of the

form,
�

i
ou
; j

ov
; l
ow

�
; points that are also known as node

points or Greville abscissas [7]. Furthermore, the func-
tions,�i;ou (u) ; �j;ov (v) ; and�l;ow (w) ; form a basis for
the polynomials of degreeou; ov; andow; in u; v; andw;
respectively.

The diagonal elements of matrix� are larger than any
other element in the same column or row due to the fact
that�j;k

�
j

k

�
� �j;k (x) for anyx 2 [0; 1] [2]. Hence, this

chosen interpolation scheme provides more stability when
the linear system of equations is solved, as

Q = ��1	: (16)

Yet, direct inversion of� is not trivial.
Let yj be a sequence of numerical values,j 2

f0; 1; : : :; rg : Then, the Vandermonde matrix is a matrix
of the form

V an (y0; y1; : : : ; yr) =

0
BBBBB@

y00 y10 : : : yr0

y01 y11 : : : yr1
...

...
...

...
y0r y1r : : : yrr

1
CCCCCA
:

There is a strong relationship between� and Vander-
monde matrices. It is known that Vandermonde matrices
have large condition numbers and this fact implies that the
computation of their inverse is numerically unstable. More-
over, multiplying matrices with increasing condition num-
bers would typically yield results with increased numerical

errors. A good presentation of the numerical problems that
appear when using matrices with large condition numbers
can be found in [12]. If not enough, herein the size of ma-
trices� and��1 is very large, in the thousands. For ex-
ample, in the case ofk = 3;�;��1

2M2197�2197:

The matrix� defined in(14) can be decomposed into
three lower dimensional matrices using the Kronecker prod-

uct. Let (�u)i;j = �i;ou

�
j

ou

�
; (�v)i;j = �i;ov

�
j

ov

�
; and

(�w)i;j = �i;ow

�
j

ow

�
: Then, we have

� = �u 
 �v 
 �w; (17)

where
 denotes the Kronecker product of matrices [8, 17].
Moreover,��1

= (�
w
)
�1

 (�

v
)
�1

 (�

u
)
�1
: The in-

version of the matrices�u; �v; and�w requires much less
computational resources than the inversion of� and more
importantly, can be made far more precise. The Kronecker
based dimensional reduction can also be interpreted as in-
terpolations in successive dimensions, that is of curves, fol-
lowed by surfaces, and then volumes [2].

3.1.1 System Dimensions Reducing

Recall that in Section 3.1 we solve the system defined in
Equation(15) using(16) ; which assumes the computation
of ��1: There are several drawbacks in trying to solve di-
rectly such a large system. The first drawback is found in
the time complexity required for the multiplications per-
formed in(16) : In this section, we present a computation
scheme that is more efficient as well as less memory re-
quirements demanding than the ones used in(15) :

Let P 2 Mm;n; and letP (i; :) be thei�th row ofP :
Similarly, letP (:; i) be thei�th column ofP :

Define the single column matrix
�!
P =

0
BBB@
P (:; 1)

P (:; 2)
...

P (:; n)

1
CCCA 2

Mmn;1:We use left arrow to define matrices in the opposite
sense, that is ifP 2Mmn;1 then

 �
P 2Mm;n and so on.

In the following, we employ an additional property of
the Kronecker product. AssumeP 2 Mm;n;U 2 Mo;p;
A 2Mo;n; andB 2Mp;m: Then,

(A
B)
�!
P =

�!
U ()BPAT

= U ; (18)

see [8] for details.(18) allows us to compute the vector	
as the solution of the system(15) as follows. We can model

Q =
�!�!q and	 =

�!�!
 : Then,(15) is equivalent to�

�!�!q =
�!�!
 

and by(17) we have

�
u

 �

v

 �

w�!�!q =
�!�!
 

, �u 
 (�v 
 �w)
�!�!q =

�!�!
 : (19)
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Moreover, using(18) ; (19) is equivalent to

(�
v

 �

w
)�!q (�

u
)
T

=
�!
 

, �
v

 �

w�!q =
�!
 

�
(�

u
)
T
�
�1

: (20)

Denote thei�th column of �!q and
�!
 

�
(�

u
)
T
�
�1

by

�!q (:; i) and

�
�!
 

�
(�

u
)
T
�
�1
�
(:; i), respectively. Then, we

can once again split the matrix system of Equations(20) us-
ing (18) : Thus,(20) is equivalent to,

�v (�!q (:; i)) (�w)
T

=

 �����������������
�!
 

�
(�u)

T
�
�1
�
(:; i)

�!q (:; i) = (�v)
�1

 �����������������
�!
 

�
(�u)

T
�
�1
�
(:; i)

�
(�

w
)
T
�
�1

: (21)

In the case of Gaussian curvature computation andk =

3; the decomposition(21) allows us to solve(17) as a set
of 132 systems of equations, each one requiringO

�
13

2
�

products. In total we needO
�
13

4
�

products, in contrast
to O

�
13

6
�

products that are required in(16) : We do not
count the time required for inversion, that is done in the
precomputation stages. Note that the complexity of solving
one system means a multiplication of one of the matrices
(�u)

�1
; (�v)

�1
; or (�w)�1 2 M13�13 with a vector of

length13:
Since the inverse matrices with which we now work have

lower dimensions than the matrices used in(16) ; the accu-
racy of computations is bound to be improved. In the case
of Gaussian curvature computation fork = 3 and double
precision,K is computed with an accuracy of ten decimal
digits in the mantissa using the solution presented in this
section. Under the same conditions, one could only achieve
an accuracy of two decimal digits for��1; when(16) was
applied directly.

3.2 Merging into a Single B-spline Form

Our aim now is to merge the� Bézier trivariates from
Section 3, each defined for a different domainDi;j;l; into
one large B-spline trivariate function that is defined over the
entire domain off (u; v; w) : Consider the univariate case
where several B´ezier curve segments are merged into one
B-spline curve withC(0) continuity. The motivation for the
C(0) examples stems from considering the curvature conti-
nuity of cubic splines. The extension to the trivariate case is
a simple generalization that takes place in each of its three
axes, independently. B´ezier curves can be merged into a
single B-spline curve by multiplyingeach interiorknot k
times, wherek is the degree of the curve, and copying the
coefficients of the B´ezier curve into the B-spline one’s, suc-
cessively.

4 Segmentation of Volumetric Data Sets Us-
ingK andH

This section presents several segmentation mechanisms
of volumetric data sets using the scalar Gaussian curvature
function we have just computed. The segmentation using
the mean curvature is similar to the Gaussian one. Fur-
thermore, several issues of augmenting and speeding up the
evaluation process are also discussed.

Consider the Gaussian curvature of an iso-surface rep-
resented by a trivariate B-spline function. Given a scalar
B-spline trivariate functionf (u; v; w) (Equation(11)) ; we
are able tosymbolicallycompute Equation(9) ; and repre-
sent the trivariate functionK (u; v; w) as a scalar B-spline
trivariate function which globally represents the Gaussian
curvature of any iso-surface off (u; v; w), for all possible
locations, and hence, iso-levels. In other words,K (u; v; w)
is a rational form, providedf is. If f can be represented
as a B-spline volumetric function, so canK: As an exam-
ple, if f is a triquadratic or a tricubic polynomial, the nu-
merator ofK is a trivariate function of degrees six or ten,
respectively, whereas its denominator has degrees eight or
twelve, respectively, in each direction(see Table 1) : With
this approach, we are able to globally and simultaneously
analyze all the regions in the entire volume, for which
the iso-surfaces assume certain Gaussian curvature values.
K (u; v; w) could be prescribed as either a B´ezier or a B-
spline trivariate function, two forms that can yield bounds
on the values thatK can assume at a certain arbitrary sub-
domainDi;j;l by simply examining the coefficients of the
function at that sub-domain. Further, with the subdivision
capability of these representations, one can easily construct
a divide-and-conquer algorithm to robustly converge to lo-
cations with specific values ofK: These properties allow
one to segment volumes in regions of interest (characterized
by certain Gaussian curvature values) directly and without
the need for an exhaustive sampling search. Moreover, this
search, being symbolic and global, is immune to aliasing, is
precise to within machine precision, and is independent of
iso-values.

One of the most difficult problems in volumetric image
processing is handling the size of the data. As stated ear-
lier, if f is a triquadratic or a tricubic, the numerator ofK
is a trivariate function of degree six or ten inu; v; andw;
respectively, whereas its denominator has degree eight or
twelve. As a consequence, the two trivariates that represent
the numerator and the denominator ofK (u; v; w) increase

the needed data-size by a factor of
�
7+9
3

�3
for a tri-quadratic

or
�
11+13

4

�3
for a tri-cubic, in each axis. For contemporary

volumetric data sets, such an increase, of more than two or-
ders of magnitudes, could be devastating. A remedy could
be found in breaking the input volume into pieces, and ex-
aminingK (u; v; w) incrementally, in each polynomial sub-
domain instead of the entire domain off (u; v; w). In other
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words, we evaluateK for each polynomial sub-domain,
Di;j;l; as described in Section 3.1, segment, and immedi-
ately purge thisK forDi;j;l:No merging stage, as described
in Section 3.2, is actually conducted for this segmentation
application. At every point of time of the algorithm, only
oneK (u; v; w) for one domainDi;j;l is allocated.

We start now with a simple segmentation example, con-
sidering the solution forK (u; v; w) = K0: This problem
could be solved simply by applying the traditional march-
ing cubes [18] algorithm toK: For example, ifK0 = 0; one
is simultaneously extracting all the parabolic manifolds in
the volume, regardless of their iso-values.

As part of the volumetric segmentation process, one can
employ a geometric constraint solver for multivariate ratio-
nal B-spline functions [6]. Specifically, the solver can seek
the simultaneous solution of�

f (u; v; w) = f0; f0 constant,
K (u; v; w) = K0; K0 constant.

Equality as well as inequality constraints can be given to the
solver. Hence, one can also solve for�

f (u; v; w) = f0 f0 constant,
jK (u; v; w)j � K0; K0 positive constant.

Assume we are interested in processing and segment-
ing several iso-levels,f0; f1; : : : ; fn: For each polyno-
mial sub-domainDi;j;l; we compute the gradient of
f (u; v; w) as a trivariate B´ezier,

�!
rfi;j;l (u; v; w) =�

@f

@u
; @f
@v
; @f
@w

�
: We further process sub-domainDi;j;l only

if
���
����!rfi;j;l (u; v; w)

���
��� presents magnitudes greater than a

certain threshold inDi;j;l: This test is conducted by examin-
ing the magnitude of the control points of

�!
rf and allows us

to process only sub-domains that contain information above
a certain noise level. Again, note that the gradient does not
depend on a certain iso-level value. For sub-domains that
are found to contain a sufficiently large gradient, we simul-
taneously solve forjKj � � andf = fi; i = 0; 1; : : : ; n

using the above mentioned multivariate solver [6]. While
solving forK = 0 is potentially simpler, as only the numer-
ator ofK needs to be processed, this approach was found
to be unstable and too noise sensitive when noisy data was
provided. In order to solve forjKj � �; we have to in-

tersect the solutions ofeeK � � eD2
� 0 with the ones ofeeK + � eD2

� 0 (recall Equation(9)) ; where� > 0 is some
low positive constant. This scheme is demonstrated in Al-
gorithm 1 for this example that seeks the parabolic regions
in an iso-surface.

5 Examples of Segmenting UsingK andH

In all examples presented in this section, we compute the
Gaussian and the mean curvatures over each sub-domain

Algorithm 1
Input:

f (u; v; w) : a trivariate volumetric data set;
f0 : desired iso-level;
� : level of Gaussian curvature below which, we

assume it is a parabolic domain;
n0 : gradient’s noise level;

Output:
iso-surfacef0; with a prescribed curvature property;

Algorithm:
SegmentVolume(f; f0; �; n0) ;
Begin

if (min(f) � f0 and max(f) � f0)

if (f is not a single polynomial)
fa; fb ( subdividedf in an interior knot

alongu; v; or w;
SegmentVolume(fa; f0; �; n0) ;
SegmentVolume(fb; f0; �; n0) ;

else
�!
rf ( gradient off ;

if
�
9 u; v; w such that

���
����!rf

���
��� > n0

�
K ( Gaussian scalar field off ;

solve for

�
f = f0;

jKj � �;
;

purgeK;

f i
purge

�!
rf ;

f i
f i

End

Di;j;l; evaluate or compute solutions for curvature con-
straints with the multivariate solver, and then immediately
purge the trivariate representingK andH overDi;j;l; as is
shown in of Algorithm 1. As presented in Section 3.2, it
is possible to compute the whole trivariate B-spline func-
tionK for all the domain off: The memory requirements
for K for a 40

3 tricubic volumetric function is around
40

3
� 8�

�
11

3
+ 13

3
�

bytes � 1:7 gigabytes, where403

is the number ofDi;j;l sub-domains,8 bytes are assumed
for eachdouble precision number, and ineach sub-domain
there are113+13

3 coefficients in the rational B´ezier repre-
sentation ofK: Hence, the explicit representation ofK and
H for the entire domain is expected to be rarely computed,
using contemporary hardware.

We present a few examples of segmenting volumetric
data sets using the proposed curvature computation scheme.
The examples presented were constructed with the aid of the
IRIT Solid Modeling system [5]. All the images were com-
puted on a machine with four2:4 GHz Pentium4 proces-
sors with4 gigabytes of memory. In each image, red, green,
and blue represent regions with convex or concave(elliptic)
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iso-surfaces, planar or cylindrical(parabolic) iso-surfaces,
and volumetric regions with saddle-like(hyperbolic) iso-
surfaces, respectively, having positive, zero, and negative
Gaussian curvature values.

Figure 1(a) is a synthetic volumetric image of a cylin-
der and six spheres where the Gaussian curvature of a
certain pre-selected constant iso-level was computed using
this new scheme. The input image is a trivariate B-spline
functionf (u; v; w) and the presented algorithm computed
K (u; v; w) as a new scalar trivariate B-spline. We have ex-
tracted a pre-selected constant iso-level off (u; v; w) and
evaluated the values of the Gaussian curvatureK (u; v; w)
at the nodes of the iso-surface. Thenodes were colored with
red, green, and blue everywhere the Gaussian curvature is
positive, zero, and negative, respectively. Gradual change
from red to green and blue is employed as well, following
the gradual change ofK: The trivariate volumetric image
has the size of40�40�40 coefficients. It takes45 minutes
and30 minutes to compute the numerator and denominator
of K, respectively.

Figure 1(b) represents a view of a volumetric model of
an engine block where the Gaussian curvature of a certain
pre-selected constant iso-level was computed using this new
scheme. This trivariate volumetric image of an engine has
the size of256 � 256 � 110 coefficients. It takes eleven
and a half, and seven and a half hours to compute the nu-
merator and denominator ofK, respectively. Around600
megabytes of memory were required to compute and ana-
lyze the volume using the Gaussian curvature.

Figures 2(a) and(b) portray two volumetric images of
an iron protein molecule where the Gaussian and square
of the mean curvatures of a certain pre-selected constant
iso-level were computed using this new scheme. In Figure
2 (b) the colors are computed using the sign of the mean
curvature. The trivariate volumetric image has the size of
68� 68� 68 coefficients. The computation of the numera-
tor ofK requires one and a half hours while its denominator
computation takes16 minutes. The computation of the nu-
merator ofH necessitates41 minutes. The computation of
the numerator ofH2 requires4 hours and45 minutes while
its denominator computation takes48 minutes.

Our segmentation technique detects regions in which
the enclosed iso-surfaces are elliptic, parabolic, or hyper-
bolic. Further, the parabolic manifold subdivides the vol-
ume into elliptic and hyperbolic region. The geometry of
the molecules often provides specialists with valuable infor-
mation about the behaviour of substances. Figures 3 shows
the zero level set ofK (u; v; w) = 0; of the iron protein
model shown in Figure 2. This ability to robustly derive
the zero set ofK, or any other differential form, is a di-
rect consequence of our global rational representation of
K(u; v; w) for the given functionf(u; v; w), either as one
B-spline form or as piecewise- B´ezier form.

6 Conclusions

In this work, we have presented a scheme to globally
derive curvature properties of volumetric data sets. The
scheme is global, immune to aliasing and capable of detect-
ing the curvature properties regardless of iso-level values.
We map a given scalar fieldf (u; v; w) to another differen-
tial scalar field such asK (u; v; w) :

In the presented work, uniform knot sequences were em-
ployed throughout. Non uniform knot sequences could be
employed, for example, if the volumetric data set is sampled
unevenly. Nothing prevents the analysis and segmentation
procedures presented here from using non uniform knot se-
quences, an option that can be easily added.

The presented algorithm computes a scalar field
K (u; v; w) ; given scalar fieldf (u; v; w) : Hence, any vol-
umetric rendering scheme, such as splating and/or ray cast-
ing [14], could be used to render the volumetric field of
K (u; v; w) : We expect to experiment with such rendering
approaches in the near future.

Although the problem has a continuous nature, like many
other volumetric processing problems, the proposed solu-
tion is clearly parallelizable. We believe that employing
concurrent or parallel variants of the algorithms, and/or im-
plementing the curvature evaluation schemes on dedicated
hardware, could greatly speed up this process.
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(a)

(b)

Figure 1. In (a), a synthetic volumetric image
of a cylinder and six spheres is represented,
and in (b), a model of an engine block is
shown. Red, green, and blue represent vol-
umetric regions with elliptic, parabolic, and
hyperbolic iso-surfaces, respectively, having
positive, zero, and negative Gaussian curva-
ture values.

(a)

(b)

Figure 2. In (a) and (b) two volumetric images
of an iron protein molecule are presented.
Red, green, and blue represent volumetric
regions having positive, zero, and negative
Gaussian and mean square curvature values
respectively.

Figure 3. (left column) An iso-surface at level
zero of K of the iron protein in Figure 2
(a) : This iso surface globally prescribes the
parabolic regions of all iso-surface, simulta-
neously.
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