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Abstract

Trimmed B-spline surfaces are common in the geometric computer aided design (CAD) community due to their capability to
represent complex shapes that can not be modeled with ease using tensor product B-spline and NURBs surfaces. However, in
many cases, handling trimmed-surfaces is far more complex than tensor-product (non-trimmed) surfaces. Many algorithms that
operate on tensor-product surfaces, such as algorithms toward rendering, analysis and manufacturing, need to be specially adapted
to consider the trimming domains. Frequently, these special adaptations result in lack of accuracy and elevated complexity. In this
paper, we present an algorithm for converting general trimmed surfaces into a set of tensor-product (typically B-spline) surfaces.
We focus on two algorithms to divide the parametric space of the trimmed surface into four-sided quadrilaterals with freeform
curved boundaries, which is the first step of the algorithm. Then, the quadrilaterals are parameterized as planar parametric patches,
only to be lifted to the Euclidean space using a surface-surface composition, resulting in tensor product surfaces that precisely tile
the input trimmed surface in Euclidean space. The algorithm is robust and precise. We show that we can handle complex, industrial
level, objects, with numerous high orders and rational surfaces and trimming curves. Finally, the algorithm provides user control
on some properties of the generated tensor-product surfaces.

Keywords: Composition, Line-sweep quadrangulation, Optimal quadrangulation, Precise integration, Precise bounding box.

1. Introduction1

Tensor product (Bézier, B-spline and NURBs) surfaces are2

widely used in geometric computer aided design (CAD) due to3

their simple structure, mathematical form, and powerful geo-4

metrical properties that make them intuitive to use. However,5

they are limited to the rectangular topology, making it difficult6

to create general 3D objects. That is, the rectangular topology7

doesn’t allow to represent with ease general boundaries, includ-8

ing holes. Due to these limitations of the tensor product surface9

representation, trimmed-surfaces were introduced [1]:10

Definition 1.1. A trimmed B-spline surface, S t, is a tensor-11

product B-spline surface, S , whose domain is bounded by a set12

of trimming B-spline closed curves, Ct. Typically, one, outer13

boundary trimming curve exists, and other internal trimming14

curves define holes in the parametric domain. The orientation15

of the trimming curves is defined such that the trimmed-surface16

lies on the same side (e.g right) of the trimming curves, as we17

move along the trimming curve.18

A common method for creating CAD models is by apply-19

ing Boolean set operations between simpler models [2, 3, 4],20

where the intersection curves between the surfaces of the mod-21

els define the trimming curves. In the ensuing discussion and22

unless otherwise stated, we will refer to a trimmed B-spline23

surface/curve while it can also be a Bézier or a NURBs sur-24

face/curve.25

Compared to tensor-product surfaces, trimmed-surfaces ease26

the process of representing results of Boolean set operations,27

and allow simpler modeling of complex shapes. However, there28

are difficulties in using trimmed-surfaces compared to tensor29

product surfaces. Due to the complex parametric boundaries30

and the non-rectangular topology, powerful geometrical proper-31

ties of the B-spline representation, such as the convex hull prop-32

erty [1], are less faithful to trimmed-surfaces than to tensor-33

product surfaces. Algorithms designed for tensor product B-34

spline surfaces, such as algorithms toward rendering, manufac-35

turing and analysis, do not directly extend to trimmed-surfaces36

and require special treatments, if at all feasible.37

A recent development in physical analysis, Iso Geomet-38

ric Analysis (IGA) [5], performs the analysis directly in spline39

spaces over the spline surfaces of the models, which practically40

means models with trimmed-surfaces. IGA requires precise41

integration over the surfaces, among others. However, inte-42

gration over trimmed B-spline basis functions is a challenging43

non-trivial task, in the general case. Approximating trimmed-44

surfaces by piecewise-linear elements, in order to simplify the45

integration process, will result in loss of accuracy and might46

affect the quality and convergence of the analysis. Methods47

to precisely integrate over the trimming domains are required,48

in order to have a complete and accurate IGA over trimmed-49

surfaces. One way to achieve this goal, is by first converting the50

trimmed-surfaces to tensor-products. In this work, we present51

the untrimming process not only as a geometry conversion pro-52

cess but also as an intermediate representation to precisely in-53

tegrate over trimmed domains and hence is a precise fit to the54

IGA approach, for trimmed surfaces.55

In this paper, we introduce an algorithm with two varia-56

tions for converting general trimmed-surfaces into a set of ten-57

sor product B-spline surfaces, a process we denote as untrim-58
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ming. The algorithm is robust and precise1, and is able to handle59

complex industrial models composed of thousands of trimmed-60

surfaces. The algorithm first divides the trimmed parametric61

domain into quadrilaterals with freeform boundary curves while62

precisely preserving the trimming curves. Then, the quadri-63

laterals are parameterized into planar patches. Finally, these64

(tensor-product planar) patches are lifted to the Euclidean space65

via a symbolic surface-surface composition [6, 7, 8]. The end66

result is a precise tiling of the original trimmed surface, by ten-67

sor product surfaces, albeit of higher degrees. The main contri-68

bution of this work includes two variations of a quadrangulation69

algorithm of freeform (trimmed) domain. The first variation of70

the algorithm builds the quadrangulation using a fast line-sweep71

based algorithm, and the second variation builds the quadran-72

gulation based on the minimization of a given weight function,73

which enables some control over different desired properties74

of the generated output. The untrimming algorithm can han-75

dle rational and arbitrary order trimming curves and trimmed-76

surfaces.77

We like to emphasize that the presented conversion is pre-78

cise for each individual trimmed surface. If cracks (black holes)79

exist (i.e. due to imprecise Boolean Set operations) between80

different trimmed surfaces, these cracks will be precisely re-81

constructed, as this work focus on the precise reconstruction of82

individual trimmed surfaces as tensor products.83

The rest of this document is organized as follows. Sec-84

tion 2 discusses related work and in Section 3, we describe our85

untrimming algorithm, with its two variations. In Section 4,86

we present some results of untrimming of several trimmed sur-87

faces’ domains and CAD models, and compare the different88

proposed methods. Finally, in Section 5, we conclude and dis-89

cuss future planned research.90

2. Related Work91

Several studies have proposed algorithms for generating quad92

meshes, such as [9, 10, 11, 12]. However, these algorithms have93

been developed for triangular surface meshes, and are not easily94

adapted to trimmed B-spline surfaces with high-order B-spline95

trimming curves. A method for converting trimmed NURBs96

surfaces to Catmull–Clark subdivision surfaces is described in97

[13]. The method in [13] is limited to bi-cubic NURBs.98

Other studies focused on rendering of trimmed-surfaces.99

Schollmeyer et al. [14] proposed a fast and direct method for100

rendering trimmed-surfaces that is aimed to avoid the inaccura-101

cies introduced if the trimming curves are not precise. Martin et102

al. [15] proposed a ray tracing algorithm for trimmed-NURBs103

and provided an algorithm for ray-NURBs intersection that is104

based on hierarchical pruning and numerical refinements. Both105

methods, [14] and [15], exploit algorithms for a point inclusion106

test in the trimmed parametric domain. However, these methods107

allow a pixel error approximation in the trimming curve point108

inclusion test, and thus appropriate for rendering only. Further,109

it is unclear how can these methods be extended to precisely110

handle trimmed surfaces, for general, non-rendering, tasks.111

1In this work, precise denotes a precision that approaches the accuracy of
the hardware (machine precision).

Approximating trimmed-surfaces by a set of primitives have112

been studied, for example, in [16, 17, 18], where the challenge113

is to minimize the number of approximating triangles with re-114

spect to a user defined error tolerance. A common problem115

when tessellating trimmed surfaces, is the generation of cracks116

and gaps along common trimming boundaries between neigh-117

boring trimmed-surfaces (also known as ”black holes”). Sev-118

eral studies have addressed the cracks problem [19, 20] and119

suggested methods for fixing the tessellation errors and stitch-120

ing the cracks. The cracks’ problem could have potentially been121

avoided if the trimming of the trimmed surface has been precise122

and the surface is precisely converted to a set of tensor product123

surfaces. Unfortunately, the computation of the surface-surface124

intersection curves, as part of Boolean set operations, are rarely125

within machine precision.126

The conversion of trimmed-surfaces into tensor-product sur-127

faces have been studied in [6, 21, 22, 23, 24]. [22] uses curva-128

ture oriented segmentation in order to obtain bi-cubic Bézier129

patches, but [22] can’t handle rational trimmed surfaces, and130

approximate them by a bi-cubic or bi-quintic polynomial sur-131

faces. Further, the mapping process of the resulted quadrilat-132

erals from the parametric domain to the Euclidean space is not133

precise and utilizes interpolation methods. [24] partitions the134

parametric space into quadrilaterals using feature points of the135

trimming curves, but it is designed to be precise only for bi-136

cubic polynomial B-spline surfaces, in an effort to reduce the137

degrees of the outcome. The trimming domain is partitioned in138

turn points, locations on the trimming curve Ct(t) = (u(t), v(t))139

that satisfies |u′(t)| = |v′(t)|, and results in over-partitioning of140

the domain. Further, a closed piecewise C1 discontinuous trim-141

ming curve may have no location for which |u′(t)| = |v′(t)|,142

cases that are not discussed in [24] while they are handled in143

this work. Hamann et al. [21] employs a scan-line based al-144

gorithm for partitioning the parametric space to a rectangular145

domains. However, their method involves triangulation and146

Voronoi-diagram computation over the trimmed-parametric do-147

main, which makes it less robust and complex to implement.148

Also, [21] assumes that the ruling between any two monotone149

regular, (non vanishing derivative), curves always produces a150

regular (consistent Jacobian) surface, which we show to not151

necessarily be the case (and also show a remedy). Hui et al.152

[23] also employs a Voronoi-diagram approach for partition-153

ing the trimmed domain into simpler cells, and improves the154

method proposed in [21] by using feature point matching ap-155

proach rather than a scan-line approach in order to reconstruct156

four-sided surfaces. However, [23] doesn’t provide methods157

for mapping the resulted tensor-product surfaces from the para-158

metric space to the Euclidean space. Finally, while [22, 23, 24]159

recognize the importance of only regular patches in the output,160

they do not discuss how to achieve this goal.161

In [6] several applications of functional composition of B-162

spline curves and surfaces have been introduced. Following [6],163

we use a symbolic surface-surface composition as the final step164

to lift the generated quadrilaterals from the parametric space to165

the Euclidean space. [6] discusses an algorithm for converting a166

trimmed-surface to tensor-product surfaces. However, the algo-167

rithm in [6] does not offer a general quadrangulation and hence168

is limited to simple topologies and can’t handle industrial level169

trimmed surfaces.170
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None of the above methods is capable of precisely handling171

general models with high order rational trimming curves and172

trimmed-surfaces. Also, previous methods, with the exception173

of [6], don’t involve general symbolic computation to provide174

precise and robust partition of the parametric domain, and a175

precise composition of patches in the parametric domain with176

the surface, into the Euclidean space. Finally, these previous177

methods provide no user control on the quality and different178

properties of interest over the result; knowing that there could179

be several mappings of the trimmed domain into quadrilateral180

sub-domain, it might be desired to provide some user control181

on the algorithm’s output. Interested in precise and efficient182

integration, in this work, we focus on ensuring positive Jaco-183

bian in the interior of the resulted quadrilaterals, and care less184

about ”nice” quadrilaterals. Though ”nice” quadrilaterals can185

be achieved by using the second variation of the proposed quad-186

rangulation algorithm.187

3. The Untrimming algorithms188

Having a trimmed surface, S t, defined over a parametric189

domain, D, of tensor product surface, S , with a set of trim-190

ming curves, Ct, the general steps of the untrimming algorithm191

are described in Algorithm 1. Step 1 in Algorithm 1 consists

Algorithm 1 : The untrimming algorithm
Input:
S t, a trimmed (B-spline) surface defined over the parametric

domain, D, of a tensor product surface, S , and a set of
(B-spline) trimming curves, Ct, in D;

Output:
S, a set of tensor product (B-spline) surfaces precisely spanning

S t, in the Euclidean space;
Algorithm:

1: S
split
t := divide S t into smaller simple trimmed Bézier

surfaces, each having no holes;
2: S := ∅;
3: for all S i

t ∈ S
split
t do

4: Q
p
i := Freeform planar quadrilaterals tiling domain Di of

S i
t, consisting of one trimming curve;

5: Qm
i := Merge adjacent quadrilateral patches in Qp

i
whenever possible;

6: Si := Qm
i lifted into the Euclidean space, via

surface-surface compositions: S i
t(Q j),∀Q j ∈ Q

m
i ;

7: S := S ∪ Si;
8: end for
9: return S;

192

of splitting the input trimmed surface, S t, into simple trimmed193

Bézier surfaces, Ssplit
t , having only a single (outer) trimming194

curve. Splitting the input trimmed surface, S t, into simple trimmed195

Bézier surfaces is achieved in two steps: First, the trimmed B-196

spline surface is divided at all its internal knots to yield a set of197

trimmed Bézier surfaces. Due to surface-surface composition198

limitations [6, 7, 8], applied in step 6, Q j in S i
t(Q j) cannot cross199

knot lines of S i
t (or otherwise Q j must be split along the knot200

lines of S i
t and re-quadrangulated). We ensure no such cross-201

ings occur by forcing S i
t to be a Bézier surface. Then, for each202

hole, h ∈ Ct, we select a representative domain point, p, that203

lies inside h, and further divide S t along the u (or v) direction at204

the u (v) value of p. See Figure 1 for an example.205

(a) (b)

Figure 1: A teeth wheel (from Figure 14) which is a single Bézier surface with
a complex trimming curve (a). The surface is divided at all interior holes of the
trimming curves, yielding (b).

In step 4, each trimming curve of each surface Ssplit
t is con-206

verted into a set of quadrilaterals in the parametric domain. We207

propose two variations for converting the domain of a trimmed208

Bézier surface, S i
t, with a single trimming loop, into a set of209

freeform shaped quadrilaterals, Qp
i . These two quadrangulation210

variations differ only in step 4 and these quadrangulation algo-211

rithms are described in Section 3.1. In step 5, adjacent planar212

topologically-rectangular surfaces are merged as much as pos-213

sible. More details on this merge process are described in Sec-214

tion 3.2. All these generated quadrilaterals are in their respec-215

tive Di’s, the domain of S i
t, and in step 6, these planar patches216

are lifted into the Euclidean space, via surface-surface composi-217

tion operations; the composition algorithm is briefly discussed218

in Section 3.3.219

3.1. Domain division into Quadrilaterals220

Consider a trimmed Bézier surface, S t(u, v), and let Ct(t) be221

the sole trimming loop curve in its trimming domain, D. Ct(t) is222

assumed to be simple, i.e. no self-intersections, and is also reg-223

ular, or ‖C′t (t)‖ > 0. We propose two algorithms for precisely224

mapping the domain spanned by Ct(t) to a set of mutually ex-225

clusive quadrilaterals in D, that can have freeform boundaries.226

Ct(t) is typically a B-spline curve and we assume the intro-227

duction of no new interior (Steiner) points, in the quadrangu-228

lation process. The domain of each quadrilateral is then param-229

eterized as a tensor product planar B-spline surface, using the230

four curves bounding the quadrilateral with the aid of Boolean231

Sum [1]. Finally, we also portray conditions under which the232

Boolean Sum succeeds, i.e. the resulting patches are regular.233

We now discuss both algorithms, in Sections 3.1.1 and 3.1.2,234

respectively.235

3.1.1. Line-sweep quadrangulation algorithm236

Once the sole trimming loop curve, Ct(t), has been extracted237

from the trimmed surface, the simple closed loop curve needs238

to be converted to a set of mutually exclusive freeform quadri-239

laterals. In this section, we use a line-sweep approach, which is240

used in various algorithms for partitioning planar shapes, such241

as polygon triangulation [25]. Intuitively, the line-sweep algo-242

rithm works by sweeping the curve with a vertical (sweeping)243

line moving from left to right, and finding all the points on the244

curve at which the sweeping line encounters one of the follow-245

ing events: a start of a new patch on the inside of the curve, the246

end of an existing patch, a patch being split into two, or two247
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patches merging into one. Examples for the start, merge, end248

and split events are shown in Figure 2. Additionally, a practi-249

cal implementation of the line-sweep algorithm should handle250

line-sweep events such as vertical lines, cusps, and C1 disconti-251

nuities which cause extrema with respect to the sweeping line.252

The events discovered by the sweep are then matched to form253

pairs of curve segments of the original curve, which will be re-254

ferred to as slices:255

Definition 3.1. A slice is a pair of curve segments C1
t (p) =256

(x1(p), y1(p)), p ∈ [ps, pe], C2
t (r) = (x2(r), y2(r)), r ∈ [rs, re]257

that have the following properties:258

1. C1
t is a curve segment of Ct(t).259

2. C2
t is a curve segment of Reverse(Ct(t)), where260

Reverse(C(t)) is the reversed parametrization of C(t).261

3. x1(ps) = x2(rs).262

4. x1(pe) = x2(re).263

In other words, a slice consists of a pair of curves, one264

above the other, sharing the same x-span. These pairs of curve265

segments form the boundaries of ruled surfaces which are the266

output of the algorithm. The algorithm is formally defined in267

Algorithm 2.268

(a)

(b)

(c)

(d)

(e)
(f)

t

ta

tb

Ct(t)

Figure 2: Start (a,b), End (c,d), Merge (e) and Split (f) events on a closed curve
Ct(t). Also, the (e) merge event is shown (at parameter t), with the other slice
start/end points the line-sweep generated from the t event (denoted by ta for
above and tb for below).

In steps 3, 10, 12, 18, 19, Algorithm 2 needs to find the zero269

set of a scalar curve. Our implementation of the line-sweep270

algorithm uses an efficient method of solving the zero-set of a271

univariate as described in [26]. In steps 7, 13, 14, 16, 20, 21272

of Algorithm 2, we create ordered pairs of parameter values273

which define the limits of the top or bottom curve segments274

of the slices. Note that in start (and end) events, the top and275

bottom curve segments start (and end, resp.) locations are the276

same. In step 28, the output ruled surfaces are formed. Each277

slice consists of four curves, two of which are (vertical) lines,278

from Ct(ps) to Ct(rs), and from Ct(pe) to Ct(re). A Boolean sum279

constructor [1] adds the ruling between these two segments of280

Ct to the ruling between the two vertical lines, only to subtract281

a bilinear between the four corner locations. Herein however,282

the Boolean sum of these four curves degenerates into a ruled283

surface as the ruling between the vertical lines is equal to the284

Bilinear and cancels it.285

Algorithm 2 : line-sweep based algorithm
Input:
Ct(t) = (x(t), y(t)), t ∈ [0, 1], a closed planar curve

assumed to be oriented clockwise;
Output:
Q, a set of planar freeform quadrilaterals covering the

interior of Ct(t);
Algorithm:

1: Ss:=∅; // Initialize sets of slice starts,
2: Se:=∅; // and slice ends.
3: E:={t ∈ [0, 1] | x′(t) = 0};
4: for all t ∈ E do
5: switch (Classi f yEvent(Ct, t) // Algorithm 3)
6: case Start:
7: Ss:=Ss ∪ {(t, t)};
8: case Merge:
9: // Location on Ct directly above Ct(t):

10: ta:=argminr∈[0,1](y(r) | x(r) = x(t) && y(r) > y(t));
11: // Location on Ct directly below Ct(t):
12: tb:=argmaxp∈[0,1] (y(p) | x(p) = x(t) &&

y(p) < y(t));
13: Ss:=Ss ∪ {(ta, tb)};
14: Se:=Se ∪ {(ta, t), (t, tb)};
15: case End:
16: Se:=Se ∪ (t, t);
17: case Split:
18: ta:=argminr∈[0,1](y(r) | x(r) = x(t) && y(r) > y(t));
19: tb:=argmaxp∈[0,1] (y(p) | x(p) = x(t) &&

y(p) < y(t));
20: Ss:=Ss ∪ {(ta, t), (t, tb)};
21: Se:=Se ∪ {(ta, tb)};
22: end switch
23: end for
24: Q:=∅; // Initialize set of output quadrilaterals.
25: for all (ta

s , t
b
s ) ∈ Ss do

26: // Find pair (ta
e , t

b
e ) such that ta

e follows ta
s , in the paramet-

ric domain.
27: (ta

e , t
b
e ):=argmin(ta,tb)∈Se

(ta|ta > ta
s );

28: R:=RuledS ur f ace
(
Ct(t), t ∈ [ta

s , t
a
e ],

ReverseCurve(Ct(t)), t ∈ [tb
s , t

b
e ]
)
;

29: Q:=Q ∪ {R};
30: end for
31: return Q;

Algorithm 2 can be implemented with a computational com-286

plexity of O(n log (n)) (n being the number of line-sweep events),287

as the line-sweep events can be computed all at once (by find-288

ing the solutions to x′(t) = 0) and then sorted in x. Later, in289

step 27, the limits of each slice can also be computed by sorting290

the set Ss. Then, O(n) operations on a sorted list of O(n) points291

can be done in O(n log(n)) time. Algorithm 3 presents the logic292

behind the events’ classification.293

We now discuss the properties of the patches that the line-294

sweep algorithm produces, and present a way of guaranteeing295

that the Jacobian of the patches does not change its sign in296

the interior of the patch. For the sake of the discussion, let297
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Algorithm 3 : ClassifyEvent
Input:
Ct(t) = (x(t), y(t)), t ∈ [0, 1]), a closed planar curve assumed to

be oriented clockwise;
t ∈ [0, 1], x′(t) = 0;
Output:
A decision whether the point Ct(t) is a start, end, merge, or split
event;
Algorithm:

1: if y′(t) > 0 then
2: if x′(t − ε) < 0 && x′(t + ε) > 0 then
3: return Start;
4: else if x′(t − ε) > 0 && x′(t − ε) < 0 then
5: return Merge
6: end if
7: else if y′(t) < 0 then
8: if x′(t − ε) > 0 && x′(t − ε) < 0 then
9: return End;

10: else if x′(t − ε) < 0 && x′(t − ε) > 0 then
11: return Split;
12: end if
13: else
14: return Error // Both x′(t) and y′(t) are zero
15: end if

us assume that the pair of curves, C1
t (t) and C2

t (t), in the slice298

produced by the line-sweep algorithm undergo an affine trans-299

formation of their parametric domains so that the domains of300

both curves are [0, 1]. According to the definition of the algo-301

rithm, the pairs of curve segments which define the resulting302

patches (ruled surfaces) cannot contain extreme points with re-303

spect to the sweeping line (except possibly at the endpoints of304

the curves, where the Jacobian can indeed vanish), because Al-305

gorithm 2 subdivides Ct(t) at such points.306

We start by noticing that there exist a regular reparametriza-307

tion τ(t) of the ruling R(t, v) = vC1
t (t) + (1 − v)C2

t (τ(t)) between308

a pair of curves, C1
t (t) ⊂ Ct(t) and C2

t (t) ⊂ Ct(t), of a slice,309

for which the Jacobian does not change its sign in the interior.310

A vertical parametrization (i.e. x1(t) = x2(τ(t))) ensures that311

R(t, v) is indeed regular in its interior, simply because ∂R
∂v is a312

non zero vertical vector (Ct(t) is self-intersection free), and ∂R
∂t313

is a convex blend of two vectors, for which both x′1 > 0 and314

x′2 > 0, as these two curves are regular (as Ct(t) is regular) and315

x-monotone in their interior.316

The problem of reparameterizing a pair of curves in such a317

way that the ruled surface between them is regular, or the Jaco-318

bian does not change its sign, has been addressed, for example,319

in [27]. However, such algorithms tend to be computationally320

expensive and they raise the degree of the outcome due to the321

explicit composition operation, C2
t (τ(t)) (unless τ(t) is piece-322

wise linear, in which case continuity is affected).323

Because we are already expecting to raise degrees due to
the surface-surface composition operations (recall step 6 in Al-
gorithm 1), and seeking a simpler and more efficient solution,
we simply form a ruled surface from the pair of curves of each
slice (as the slices are returned from the line-sweep algorithm)
and check whether or not their Jacobian changes signs. The

determinant of the Jacobian of ruling, R(t, v),

|J(t, v)| =
∣∣∣∣∣∂R
∂t
×
∂R
∂v

∣∣∣∣∣ ,
is symbolically computed as a scalar bi-variate spline function.
Then, by examining the coefficients of |J|, or if more precision
is sought, by computing the extreme values of |J| via the simul-
taneous zeros of

∂|J|
∂t

=
∂|J|
∂v

= 0,

we can answer whether or not the Jacobian changes sign.324

If the Jacobian does change sign, we subdivide C1
t (t) and325

C2
t (t) in a middle x value of the slice by intersecting the curves326

with a vertical line, and continue recursively on each of the re-327

sulting slices. Since the slices are subdivided vertically (i.e. at328

the same x value), as the slices get narrower, the v direction329

of the ruled surfaces approaches the vertical parametrization.330

Given a finite ε > 0, we prove that this recursive subdivision331

process terminates after a finite number of subdivision steps,332

and results in patches in which the Jacobian does not change333

sign in their interior, within an ε neighborhood from the start334

and end of the slice.335

Lemma 3.1. Consider the pair of regular non-intersecting336

curves, C1
t (p) = (x1(p), y1(p)) and C2

t (r) = (x2(r), y2(r)), p, r ∈337

[0, 1], in a slice that results from the line-sweep algorithm. Let338

R(t, v) be a ruled surface between these curves of the form339

R(t, v) = vC1
t (t) + (1 − v)C2

t (t), v, t ∈ [0, 1].340

Given ε > 0, in the sub-domain t ∈ [ε, 1−ε], there is a minimum341

width w of vertical subdivisions of C1
t and C2

t beyond which342

the determinant of the Jacobian of Ri(t, v) is guaranteed not to343

change signs.344

Proof. Let Ri(ti, v) is an intermediate ruled surface produced345

by the vertical subdivision process. The Jacobian of the ruled346

surface Ri(t, v) is ∂Ri

∂ti
× ∂Ri

∂v = (vC1
ti
′(ti)+ (1−v)C2

ti
′(ti))× (C1

ti (ti)−347

C2
ti (ti)).

∂Ri

∂v = Ct
1
i (ti) − Ct

2
i (ti) is an isoparametric line of R and348

∂Ri

∂ti
= vC1

ti
′(ti) + (1 − v)C2

ti
′(ti) is a convex linear combination of349

the tangents of the curves C1
ti and C2

ti .350

Neither vectors in the cross product can be zero: vC1
ti
′(ti) +351

(1 − v)C2
ti
′(ti) , 0 because both C1

ti
′(ti) and C2

ti
′(ti) must be352

strictly positive in the x direction, and Ct
1
i (ti) − Ct

2
i (ti) , 0 be-353

cause the curves do not intersect in [ε, 1 − ε]; Hence, if the two354

vectors in the cross product of the Jacobian are not in the same355

direction, we complete our proof.356

According to the properties of the line-sweep algorithm, the357

curves C1
ti and C2

ti are both monotone with respect to the x axis,358

and can’t be vertical in the sub-domain [ε, 1−ε] (i.e. xi
1
′
> 0 and359

xi
2
′
> 0). Furthermore, the slope of the two vectors C1

ti
′(ti) and360

C2
ti
′(ti) has some finite upper bound slope U, for t ∈ [ε, 1 − ε].361

On the other hand, there is a finite lower bound to the verti-362

cal distance between non-intersecting curves C1
ti (ti) and C2

ti (ti):363

∆Ymin = mint({|yi
1(ti) − yi

2(ti)|}), which gives a lower bound of364

∆Ymin
w to the slope of a constant t isoline in Ri. Therefore, if we365

choose a value of w so that ∆Ymin
w > U, we guarantee that the de-366

terminant of the Jacobian of Ri(t, v) cannot have zero crossings367

in [ε, 1 − ε].368
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An example of a patch from the elephant shape used in our369

tests (see Figure 10) which needed to be subdivided due to im-370

proper Jacobian can be seen in Figure 3(a), and the patches that371

result from the subdivision can be seen in Figures 3(b) and 3(c).372

Singularities can, however, occur at the corners of the resulting373

quadrilaterals, where the Jacobian can vanish (but not change374

signs). These singularities occur due to locations of Ct tangent375

to the vertical sweep line and hence boundaries of the quadri-376

laterals.377

(a) (b) (c)

Figure 3: (a) The tail patch of the elephant shape (from Figure 10) produced as
a single slice by the line-sweep algorithm, as both the top and bottom boundary
curves are monotonous with respect to the x direction. Note that the isopara-
metric curves of the ruled surface between the two curves of the slice intersect
with the boundary curve, indicating that the Jacobian of the patch changes sign.
(b) The tail patch of the elephant shape after subdivision. As can be seen from
the image, the original patch was subdivided into three smaller patches (i.e. the
patch was subdivided into two patches, and one of the new patches was again
subdivided in two). Their isoparametric curves do not intersect the boundary
curve or each other, indicating that the Jacobian does not change signs. (c)
shows the final result after merge.

We would like to point out that the presented line-sweep378

algorithm is similar to the one proposed in [21], but our pre-379

processing step of subdividing the trimmed surfaces until they380

no longer have internal trimmed loops makes it significantly381

simpler to implement. Additionally, we guarantee that all re-382

sulting quadrilaterals are regular, and have a Jacobian that doesn’t383

change signs, without the need for full polynomial reparametriza-384

tion as in [27] (which also raises the degree of the curves).385

3.1.2. Minimal weight function quadrangulation algorithm386

Existing methods for converting trimmed surfaces into tensor-387

product surfaces suffer from having no flexibility nor user con-388

trol over properties of interest, such as regularity, conformity,389

and uniformity, over the resulted output surfaces. Having such390

ability might be desired to control the resulted quadrilaterals.391

We introduce a quadrangulation algorithm that results in quadri-392

laterals that best minimizes a user provided weight function.393

The minimal weight algorithm, unlike virtually all previous re-394

lated algorithms, including the presented line-sweep algorithm,395

uses only intrinsic properties of the trimming curves, and is396

therefore independent of rotation. A minimal weight algorithm397

for the triangulation of a general polygon has been introduced398

in [28]. We extend the method proposed in [28] and develop399

a minimal weight quadrangulation algorithm for general poly-400

gons. One should note that a polygon with odd number of edges401

cannot be covered using quadrilaterals only. The algorithm will402

generate quadrilaterals whenever possible and triangles other-403

wise2, striving to minimize the number of triangles in the result.404

We reduce the curve quadrangulation algorithm to a polygon405

quadrangulation one, and map the result of the polygon quad-406

rangulation algorithm back to the curve’s domain. The polygon407

quadrangulation algorithm scheme is now discussed:408

Consider a weight function W(Q, P) that assigns a scalar409

weight to a quadrilateral Q in a polygon P having n vertices410

Vi, i = 1..n. The algorithm finds W(P), a weight of a quad-411

rangulation of P that minimizes the sum of all W, for all the412

Q’s that tile P. Suppose we have computed the minimal quad-413

rangulation for all sub polygons of P having less than n ver-414

tices. Then, to compute the minimal weighted quadrangulation415

for P, we do the following: We know that edge (V1,Vn) will416

be connected to one or two other vertices forming a triangle417

or a quadrilateral. Suppose edge (V1,Vn) is connected to ver-418

tices Vi and V j where i ≤ j. Then, P is divided into four parts:419

the quadrilateral Q = (V1,Vi,V j,Vn), and three sub polygons,420

P1 = (V1, ....,Vi), P2 = (Vi, ...V j), P3 = (V j, ..Vn) (P2 degener-421

ates in case Vi = V j). See Figure 4. Pi, i = 1..3 have less than422

n vertices each. By assumption, we have computed their min-423

imal weighted quadrangulation, W(Pi), i = 1..3 each. Then,424

the weight for this arrangement isW(P1) +W(P2) +W(P3) +425

W(Q, P). To compute the globally minimal weight for P, we426

simply check all possibilities of Vi, V j, where i = 2..n − 1, j =427

i, n− 1, (again, note i can be equal to j, in which case a triangle428

V1,Vi,Vn is formed). The entire process is described in Algo-429

rithm 4. Having a trimmed surface, S t, with only one trimming

Figure 4: Step of minimal weighted polygon quadrangulation on polygon P. P
is divided into four parts: the quadrilateral Q, formed by connecting vertices V1
and Vn to vertices Vi and V j, and three sub polygons P1, P2, P3. Assuming the
minimal weights for P1, P2, P3 are computed. The weight of this arrangement
is the sum of W(Q, P) and the minimal weights of P1, P2, P3. The minimal
weight of P is determined by traversing all the possibilities of Vi,V j.

430 curve, Ct, a representative polygon, P, of Ct is defined as fol-431

lows (See also Figures 5 and 6):432

Definition 3.2. A representative polygon, P, of a closed reg-433

ular piecewise C3 continuous parametric curve, Ct, is a poly-434

gon with vertices that are sampled from Ct, in a parametric435

order, as follows:436

1. Sampling all extreme and inflection points of the curva-437

ture κ of Ct, by finding the zeros of the univariate equation438

< (κN)
′

, κN >= k
′

k for all C3 curve segments, where N439

is the unit normal of Ct. Note < (κN)
′

, κN >= ( 1
2 (κN)2)

′

440

is rational if Ct is.441

2Triangles will be converted to singular (at the boundary only) tensor prod-
uct patches.
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Algorithm 4 : PolyQuadrangulate: minimal weight polygon
quadrangulation
Input:
P, a representative polygon, having vertices Vi, i = 1, ..n;
W, quadrilateral weight function;
Output:
(Q,w), set of quadrilaterals Q tiling P with minimal weight, w;
W(Q) = w;
Algorithm:

1: if n ≤ 4 then
2: w := W(P, P);
3: Q := {P};
4: return (Q,w);
5: end if
6: w := ∞;
7: for all i ∈ (2..n − 1) do
8: for all j ∈ (i..n − 1) do
9: P1 := {V1, ..,Vi}

10: P2 := {Vi, ..,V j}

11: P3 := {V j, ..,Vn}

12: Qi, j := {V1,Vi,V j,Vn}

13: // Recursive invocations:
14: (Q1,w1) := PolyQuadrangulate(P1,W);
15: (Q2,w2) := PolyQuadrangulate(P2,W);
16: (Q3,w3) := PolyQuadrangulate(P3,W);
17: wi, j := w1 + w2 + w3 + W(Qi, j, P);
18: if wi, j < w then
19: w := wi, j;
20: Q := Q1

⋃
Q2

⋃
Q3

⋃
{Qi, j};

21: end if
22: end for
23: end for
24: return (Q,w);

2. Sampling all actual C1 discontinuities of Ct, by examin-442

ing the multiplicities of Ct’s knots and the control poly-443

gon before and after that parameter value.444

Definition 3.3. Let [us, ue] be the domain of Ct, and let P’s445

vertices beVp = {Vi}, i = 1..n where Vi = Ct(ui), ui ∈ [us, ue], i =446

1..n. Then, each edge ei = (Vi,Vi+1) of P is a representative of447

the curve segment Ci
t = Ct(u), u ∈ [ui, ui+1]. Ci

t is denoted the448

associated curve of edge ei.449

Definition 3.4. Consider quadrilateral Q having vertices VQ
j ∈

Vp, j = 0..3, and let edge e j = (VQ
j ,V

Q
( j+1) mod 4) ∈ Q. The

associated surface of Q, S a(Q) is a tensor product surface de-
fined by the Boolean sum operation between the following four
curves C j

t , j = 0..3:

C j
t =


the associated curve of e j, if e j is an edge in P,

linear edge e j, otherwise .
(1)

Given some weight function W(Q, P) that accepts a quadri-

lateral (or a triangle) Q from a representative polygon P, and
returns a scalar weight value, we define a weight function W
of quadrangulation, Q, of P as following:

W(Q, P) =
∑
Qi∈Q

W(Qi, P). (2)

Each quadrangulation, Q, of P which consists of a set of quadri-450

laterals Qi ∈ Q tiling the interior of P, defines uniquely one set451

of associated surfaces {S a(Qi)} that tiles S t. We find the min-452

imal quadrangulation of the curve Ct by finding the quadran-453

gulation that minimizesW on the representative polygon P of454

Ct.455

W can be designed such that the desired properties of the
resulted quadrilateral surfaces are reflected in minimizing W.
We propose the following weight function: Let e j, j = 0..3 be
the edges of Q, and A(Q) and M(Q) be the area and the perime-
ter of Q, respectively. Further, let Jmin(S a(Q)) and Jmax(S a(Q))
be the minimal value and the maximal value of the determinant
of the Jacobian of S a(Q), respectively. Then:

W(Q, P) =

∞, Q intersects edge ei of P, ei < Q,

∞, Q is self-intersecting,
∞, Jmin(S a(Q))Jmax(S a(Q)) < 0,
Jmax(S a(Q))
Jmin(S a(Q))

(
αA(Q) + βM(Q) + γ

maxi{arc length(ei)}
min j{arc length(e j)}

)
,

i, j = 0..3, α, β, γ ∈ IR+, otherwise.
(3)

Finding Jmin(S a(Q)) and Jmax(S a(Q)) can be done, as before,456

by symbolically computing the determinant of the Jacobian of457

S a(Q), |J(u, v)| =
∣∣∣ ∂S a
∂u ×

∂S a
∂v

∣∣∣ as a spline function. The proposed458

weight function in Equation (3) highly penalize quadrilaterals459

with invalid associated surfaces (having self intersections, etc.).460

For valid surfaces, it promotes surfaces with uniform Jacobian461

and less degenerate quadrilaterals. However, other weight func-462

tions that are less sensitive to invalid associated surfaces can be463

clearly provided as well, such as conformity considerations.464

The complete weight function based quadrangulation algo-465

rithm is described in Algorithm 5. The algorithm applies the466

quadrangulation algorithm for polygons,467

PolyQuadrangulate(P,W), that is described in Algorithm 4.468

There could be a case where no quadrangulation of P is free of469

invalid quadrilaterals. In this case, we generate a tighter repre-470

sentative polygon by adding more samples from Ct to P along471

the boundaries of the invalid quadrilaterals that lies on Ct, and472

apply the algorithm until all quadrilaterals are valid, see Fig-473

ure 5 for an example.474

Note that if the minimized weight function allows invalid475

quadrilaterals, then step 9 in Algorithm 5 is unnecessary, and476

Algorithm 5 stops after one iteration. However, depending on477

the weight function W, there could be a case where step 9 in478

Algorithm 5 might lead to unbounded number of iterations. In479

this case, we stop after a fixed number of iterations, and return480

the best minimal quadrangulation found. Patches with failing481

flipping Jacobian signs can then be handed-in to the line-sweep482

algorithm (Section 3.1.1) to ensure regularity. In the examples483

presented in the work, no such failing cases were observed. The484
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Algorithm 5 : Weight function based algorithm
Input:
Ct, a closed simple planar curve;
W(Q, P), weight function for quadrilateral (or triangle) Q;
Output:
Q, a set of freeform planar quadrilaterals, covering the interior

of Ct;
Algorithm:

1: P := A representative polygon of Ct;
2: repeat
3: InvalidJacobian := FALSE;
4: Q := ∅;
5: (QP,R) := PolyQuadrangulate(P,W); // Algorithm 4
6: for all Qi ∈ QP do
7: S a(Qi) = Parameterize Qi into planar patch using

Boolean Sum;
8: Q := Q

⋃
{S a(Qi)};

9: if Jmin(S a(Qi))Jmax(S a(Qi)) < 0 then
10: InvalidJacobian := TRUE;
11: {Qs

i } := Additional finer samples of the outer
boundaries of Qi;

12: P := P
⋃
{Qs

i };
13: end if
14: end for
15: until InvalidJacobian = FALSE
16: return Q;

(a) (b)

Figure 5: Iterations, in Algorithm 5, of updating the representative polygon, P,
of a curve. (a) First iteration, the original curve in black and the representative
polygon in red. (b) Second and final iteration, the original curve in black, the
first representative polygon in red and a tighter, refined, updated representative
polygon in green.

number of iteration needed for all presented examples was less485

than twenty, and since our set limit to switch to the line-sweep486

alg. was a hundred, we never switched.487

The recursive algorithm, as described in Algorithm 4, has an488

exponential complexity with respect to n. However, we can find489

the minimal quadrangulation with a polynomial complexity of490

O(n4) by utilizing a dynamic programming approach as in [28].491

This is achieved by iterating on all the sub-polygons of P from492

the smallest to the largest, and keeping additional memory to493

store the minimal weight for each such sub polygon.494

Lemma 3.2. The number of quadrilaterals that tiles a pla-495

nar polygon P having n vertices is (n − 2)/2.496

Lemma 3.2 is easily deduced from Euler’s formula for pla-497

nar closed graphs [29]. From Lemma 3.2, it follows that if P498

is tiled entirely by quadrilaterals, the number of vertices must499

be even. Thus, if the number of the vertices is odd, at least one500

triangle will be in the result. In order to avoid triangles as much501

as possible, we make sure the number of samples of the trim-502

ming curve, Ct, is even, and we assign a very large weight for503

singular rectangular patches (such as triangles).504

(a) (b)

(c) (d)
Figure 6: Steps of quadrangulation of a curve in the shape of a fish using the
minimal weight algorithm: (a) The input curve. (b) The representative polygon.
(c) Result of the minimal weight algorithm before the merge (13 quadrilaterals).
(d) Final result after applying the merge (5 quadrilaterals).

3.2. Merging adjacent domain patches505

The sampling scheme in the process of building the repre-506

senting polygon doesn’t guarantee optimal number of quadrilat-507

erals. Further, some samples are introduced due to the refining508

step, in an attempt to avoid invalid quadrilaterals (see step 11 in509

Algorithm 5), and there might be unnecessary inner edges con-510

necting unneeded samples. These edges can be removed and511

each two patches sharing a common edge that spans their entire512

domain, can be merged into a single patch. See, for example,513

Figures 6 and 7. This merging post-process is applied for both514

variations of the quadrangulation algorithms.515

(a) (b) (c)

Figure 7: Merging quadrilaterals of a surface from the wrench model from
Figure 11: (a) The original trimmed surface. (b) The minimal weight quadran-
gulation result before the merge (4 quadrilaterals). (c) After the merge, only
one quad results.

We apply a simple greedy merge algorithm, that keeps merg-516

ing neighboring patches, while possible. Even with such a sim-517

ple merge algorithm, we could reduce the number of quadri-518

laterals by around 50%. (Again, see Figures 6 and 7, and also519

Tables 1 and 2). One should notice that the merge process de-520

creases the number of patches, however, it typically introduces521

C1 discontinuities along the merged edges.522

3.3. Lifting the quadrilaterals to Euclidean space via Surface-523

Surface Composition524

For each quadrilateral Qi(r, t) = (ui(r, t), vi(r, t)), i = 1, .., k,525

generated in the algorithms described in Sections 3.1 and 3.2,526

we precisely construct a tensor product surface527

SQi = S (Qi(r, t)) = S (ui(r, t), vi(r, t)), where S (u, v) is the ten-528

sor product surface of the trimmed-surface S t, using surface-529

surface composition [6, 7, 8]. Note S is a Bézier surface at530
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this time. The set SQi , i = 1, ..., k precisely tiles and covers531

the original trimmed surface, S t(u, v), but consists of only ten-532

sor product patches. Hence, for example, a tight bounding box533

for S t can be derived by computing the tight bounding box of534

the set SQi . More importantly, the integration over the original535

trimmed surface S t(u, v) can be reduced to a precise integration536

over a set of tensor product patches, SQi .537

4. Results538

All algorithms were implemented using the IRIT solid mod-539

eler framework [30] and were tested on a Macbook-Pro i7 2.7Ghz540

machine, running Window 7 64 bit. Extreme values of the Ja-541

cobian’s determinant, line-curve intersection points, extreme-x,542

and extreme-curvature points, operations which required solv-543

ing polynomial and rational equations, were all computed using544

the IRIT multivariate solver [26, 31].545

We start with more 2D examples of complex (trimming)546

curves, processed by the two presented quadrangulation algo-547

rithms: the star curve in Figure 8, and the animal curves in548

Figures 9 and 10. Among all presented examples in this work,549

both polynomial and rational trimmed surfaces and curves were550

found, with orders up to five.551

(a) (b) (c)

Figure 8: Star curved shape (a B-spline curve of order 3 and 100 control points):
(a) The (trimming) curve. (b) Result of the line-sweep algorithm (51 tensor
product surfaces). (c) Result of the minimal weight algorithm (41 tensor prod-
uct surfaces).

(a) (b) (c)

Figure 9: Horse shape (a B-spline curve of order 4 and 96 control points): (a)
The (trimming) curve. (b) Result of the line-sweep algorithm (31 tensor prod-
uct surfaces). (c) Result of the minimal weight algorithm (13 tensor product
surfaces).

(a) (b) (c)
Figure 10: Elephant shape (a B-spline curve of order 4 and 54 control points):
(a) The (trimming) curve. (b) Result of the line-sweep algorithm (15 tensor
product surfaces). (c) Result of the minimal weight algorithm (7 tensor product
surfaces).

The conversions to tensor product surfaces of two moder-552

ately complex 3D solid models from two different modeling553

environments, consisting of trimmed surfaces, are presented in554

Figures 11 and 12. Each (trimmed or tensor product) surface is555

painted in a different color with isoparametric curves so one can556

follow the established parametrizations. Clearly, the achieved557

parametrization is not always as appealing as one might hope558

for, and striving for improved parametrization can be a worthy559

consideration, depending on the application in hand. However,560

if this conversion for tensor product is toward precise integra-561

tion, then the regularity of the parametrization is all that is re-562

quired.563

(a) (b) (c)

Figure 11: Wrench model: (a) The original model (38 trimmed surfaces). (b)
Result of the line-sweep algorithm (53 tensor product surfaces). (c) Result of
the minimal weight algorithm (45 tensor product surfaces).

(a) (b) (c)
Figure 12: Solid model: (a) The original model (63 trimmed surfaces). (b)
Result of the line-sweep algorithm (151 tensor product surfaces). (c) Result of
the minimal weight algorithm (97 tensor product surfaces).

Figure 13 demonstrates the effect of different weight func-564

tions, on three different curves. In order to better emphasize the565

effect of the weight function, the results presented in Figure 13566

are before applying the merge process. All the weight functions567

that we discuss here assign infinite weight value to invalid (self568

intersecting, etc.) patches. In the left column of Figure 13, the569

weight function used is: W(Q) = Perimeter(Q)/
√

Area(Q);570

a weight function that assigns large weights to patches with571

bad aspect ratios. Indeed, this first column has almost no long572

and skinny patches. The weight function used in the middle573

column is: W(Q) =
〈
∂S a(Q)
∂u , ∂S a(Q)

∂v

〉2
; a weight function that574

promotes conformality, and assigns smaller weight value to a575

mapping that preserves angles between iso-lines. More patches576

with close to orthogonal u and v iso-lines can be observed. Fi-577

nally, the weight function used in the right column is: W(Q) =578

Jmax(S a(Q))/Jmin(S a(Q)); a weight function that promotes patches579

with uniform Jacobian. More fairly rectangular patches can be580

seen on this right column.581

The presented algorithms were capable of handling com-582

plex solid models as well, and examples include a Sewing Ma-583
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Figure 13: Three examples of three different weight functions in each. Left

to right: Minimizing Perimeter/
√

Area, Minimizing
〈
∂S
∂u ,

∂S
∂v

〉2
, Minimizing

Jmax/Jmin.

chine, in Figure 14, with 327 trimmed surfaces, a coffee ma-584

chine, in Figure 15, with 927 trimmed surfaces and a Lawn-585

mower, in Figure 16, with 3779 trimmed surfaces. Figure 1586

exemplifies the processing of a complex trimming curve, in the587

shape of a teeth wheel, from the Sewing Machine in Figure 14.588

The weight function in Equation (3), was using, for all the ex-589

amples presented in this paper, α = 0.7, β = 0.05, and γ = 0.1,590

unless stated otherwise.591

(a) (b) (c)

Figure 14: Sewing machine model: (a) The original model (327 trimmed sur-
faces). (b) Result of the line-sweep algorithm (882 tensor product surfaces). (c)
Result of the minimal weight algorithm (693 tensor product surfaces).

(a) (b) (c)

Figure 15: Coffee machine model: (a) The original model (927 trimmed sur-
faces). (b) Result of the line-sweep algorithm (3047 tensor product surfaces).
(c) Result of the minimal weight algorithm (3152 tensor product surfaces).

Tables 1 and 2 provide more details and statistics. The ta-592

bles provide the number of input trimmed surfaces for each pre-593

sented model, the number of output patches (quadrilaterals) the594

quadrangulation method produced, before and after the merge595

process, and the number of patches that are singular in at least596

(a) (b) (c)
Figure 16: Lawnmower model: (a) The original model (3779 trimmed sur-
faces). (b) Result of the line-sweep algorithm (8246 tensor product surfaces).
(c) Result of the minimal weight algorithm (8495 tensor product surfaces).

one point on their boundary. No patch in any of the presented597

results is singular in an interior location. In the line sweep-598

algorithm, singularity can be introduced in start and end events599

where the generated quadrilateral is triangular. And in the min-600

imal weight algorithm a quadrilateral that is composed of two601

segments of the trimming curve that share a C1 end point will be602

singular at that point. Hence, since we dont add interior Steiner603

points, singularities frequently happen at the boundaries, hav-604

ing (potentially) Jmin = 0 at some points on the boundaries. The605

minimal weight algorithm can use a weight function that penal-606

izes such cases and avoids as much as possible quadrilaterals607

composed of adjacent C1 segments. However, we haven’t use608

such weight function as we focus more on IGA applications,609

which require no singularities at the interior.610

Also provided in these tables, are computation times. As611

can be seen in Tables 1 and 2, the minimal weight quadrangula-612

tion algorithm typically resulted in less tensor product surfaces613

compared to the line-sweep quadrangulation algorithm. How-614

ever, the line-sweep algorithm is less time consuming. The total615

times stated in Tables 1 and 2 include the entire processing as616

portrayed by Algorithm 1, including the quadrangulations and617

surface-surface composition. Table 1 also provides the times618

for the surface-surface composition, for the line-sweep algo-619

rithm. As can be seen, the surface-surface compositions con-620

sume between 5% to 25% of the time, in this case, while the621

line-sweep quadrangulation consumes most of the computation622

time. On the other hand, for the minimal weight quadrangula-623

tion algorithm, the computational costs of the compositions are624

negligible.625

As stated, we are able to precisely compute differential and626

integral properties over the tensor products, computations that627

are far more difficult when the trimmed surfaces are provided.628

Herein, we briefly show how to compute the volume of the ob-629

ject and its precise bounding box. Our input consists of the630

models in Figure 17. Since we used symbolic integration, the631

geometry must be (piecewise) polynomial. Hence, arcs and632

circles were approximated using piecewise polynomials to an633

accuracy of ∼ 10−3. The volume of the quarter of a torus in634

Figure 17 (a) can be computed analytically. The analytic value635

is 0.493480, whereas the integration over geometry converted636

to tensor product surfaces yielded the result of 0.493757 and637

0.493757 (using our two portrayed quadrangulation methods).638

The last result is well within the arc approximation and in pre-639

cise agreement between the two presented quadrangulation al-640

gorithms.641

While we do not know the precise volume of the model in642
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Model
#Surfaces in Line-sweep algorithm

original #Patches #Patches #Singular Time (Sec.) Time (Sec.)
model Before Merge After Merge on Boundary Total Composition

Star (Figure 8) 1 51 51 50 0.0168 0.0023
Horse (Figure 9) 1 34 31 28 0.0165 0.0007
Elephant (Figure 10) 1 18 15 12 0.00796 0.00016
Wrench (Figure 11) 38 53 53 8 0.031 0.0099
Solid (Figure 12) 63 159 151 25 1.372 0.25
Sewing machine (Figure 14) 327 917 882 205 3.681 0.702
Coffee machine (Figure 15) 927 3397 3047 570 2.869 0.28
Lawnmower (Figure 16) 3779 9945 8246 2534 4.613 1.168

Table 1: Number of generated quadrilaterals and running time for the line-sweep algorithm. Compare with Table 2.

Model
#Surfaces in Minimal weight algorithm

original model #Patches #Patches #Singular Time (Sec.)
Before Merge After Merge on Boundary Total

Star (Figure 8) 1 76 41 36 238
Horse (Figure 9) 1 46 13 10 38.8
Elephant (Figure 10) 1 23 7 7 1.48
Wrench (Figure 11) 38 103 45 9 5.85
Solid (Figure 12) 63 240 97 14 25.4
Sewing machine (Figure 14) 327 1543 693 161 73.7
Coffee machine (Figure 15) 927 7978 3152 668 4834
Lawnmower (Figure 16) 3779 23062 8495 3069 3009

Table 2: Number of generated quadrilaterals and running time for the minimal weight algorithm. Compare with Table 1.

Figures 17 (b), we can again compare the results of the two643

quadrangulation methods. For Figure 17 (b), the computed644

volumes are 2.342239 and 2.342241, respectively, for the two645

quadrangulation variations.646

(a) (b)

Figure 17: Two examples of trimmed surfaces models used for precise evalua-
tions of differential and integral properties, via a conversion to tensor product
surfaces.

The ability to compute precise bounding boxes to tensor647

product surfaces (by examining the x−, y−, and z−extrema in648

the interior of the tensor product patches and on their boundary649

curves) allows one to compute precise bounding boxes to the650

converted geometry in hand. Figure 18 (a) shows the bound-651

ing box computed for the trimmed surfaces’ model (after clip-652

ping the tensor product surface of the trimmed surface to the653

2D bounding box of the trimming curves) by examining the co-654

efficients of the clipped surfaces. Figures 18 (b) and (c) show655

the precise bound boxes that result (by examining the x−, y−,656

and z−extrema, using differential analysis and computed with657

the aid of the converted model, using the two quadrangulation658

variants, and consisting solely of tensor product surfaces.659

As stated earlier, aiming at IGA applications, we show, in660

Figure 19, IGA simulation results of large deformation elas-661

(a) (b) (c)
Figure 18: The bounding box of a sweep model of a letter ’r’ is computed using
the original trimmed surfaces, examining the control points of the tensor prod-
uct surface that was clipped to the bounding box of the trimming curves (a). A
tight bounding box is computed by deriving the precise x−, y−, and z−extrema
of the tensor product surfaces, computed using the line-sweep quadrangulation
(b) and the minimal weight algorithm (c).

ticity analysis, utilizing the proposed untrimming approach, on662

a 3D trimmed object. The untrimming into tensor product B-663

spline patches and then to Bezier patches (as required by the664

IGA analysis) is shown in Figure 19 (b) whereas one 2D solu-665

tion is presented in Figure 19 (c). These Bezier patches are then666

all rotated in space to form the volume of revolution and enable667

the 3D analysis presented in (d). See also Acknowledgments.668

It is interesting to examine the orders of the resulting sur-669

faces. Figure 20 presents the orders’ distribution of (trimmed)670

surfaces in the input and the output (tensor product) surfaces,671

for both variations of quadrangulations. As expected and due672

to the surface-surface composition, the orders of the surfaces on673

the output are higher. Further, since the Line-sweep quadran-674

gulation algorithm uses ruled surfaces and the minimal weight675

quadrangulation algorithm uses Boolean sum, the orders of the676

resulting surfaces of the later can be higher. In some of the ex-677

amples, as can be observed in extreme cases in Figure 20, the678

Boolean sum and the surface-surface composition can result in679
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(a)

(b) (c) (d)

Figure 19: Large deformation elasticity analysis on a trimmed object utilizing IGA with the proposed untrimming approach. (a) A cross section of the object
consisting of one trimmed surface (in dark red), trimmed at both ends (blue zones). (b) Untrimming results of the cross section surface (showing one end), resulting
in only Bezier patches, ready for IGA analysis. (c) The 2D IGA solution on the cross section. (d) The 3D solution of the full model, which is a volume of revolution
of the 2D cross section Bezier surfaces. See also Acknowledgments.

higher degrees, especially when rational trimmed surfaces and680

trimming curves are involved.681

Finally, in682

https://sites.google.com/site/untrimming/683

IGES files of some of the presented models, as input trimmed684

surfaces and after converted to tensor products by both pre-685

sented algorithm, can be found.686

Figure 20: The distribution of orders in the input and output surfaces for the
Wrench model in Figure 11 (top) and for the Lawnmower in Figure 16 (bottom).
Note we count instances, having two instances of orders per surface, being a bi-
variate function.

5. Conclusion and future work687

In this paper, we introduce methods for converting a model688

consisting of trimmed-surfaces into a set of tensor-product sur-689

faces. The algorithm is robust and preserves the precision of690

the trimmed surfaces. Two variations of the algorithm are pro-691

posed for the quadrangulation stage. The first is an efficient692

line-sweep based approach, and the second allows user control693

over the result by minimizing a given weight function.694

There is room for improvement in the merge algorithm, in695

terms of reducing the number of total patches by utilizing some696

global optimization process. In addition, the number of gener-697

ated patches can be further reduced by merging back adjacent698

quadrilaterals that belong to the same original trimmed B-spline699

surface but were divided to different trimmed Bézier surfaces,700

due to internal knots or holes.701

The optimal orientation of the swept line in the line-sweep702

based quadrilateral generation algorithm, for generating mini-703

mal number of patches is a degree of freedom that will be inter-704

esting to explore. In the minimal weight algorithm, there might705

be triangular patches in the result, while we reduce their fre-706

quency by assigning a large penalty for triangles. However, in707

some cases, depending on the weight function, triangles can’t708

be avoided. Though each triangle can be split into three quadri-709

laterals, we strive to have only quadrilaterals in the result, with-710

out such splits. A better curve sampling scheme might result in711

less triangles and fewer number of patches in general.712

In this work, we only ensured that a trimmed surface will713

be faithfully and precisely reconstructed using a set of tensor714

product surfaces. If cracks (black holes) exist between adja-715

cent trimmed surfaces, that problem will persist. Stitching al-716

gorithms, while not part of this work, will complement the al-717

gorithms presented here, and will make them complete.718

Finally, the adaptation of the presented conversion meth-719

ods toward the untrimming of trimmed-volumes [2], is highly720

desired. Going up a dimension, from planar domains to volu-721

metric ones, is a major challenge. Yet, this need for volumetric722

integration is already here, toward the precise IGA computa-723

tion.724
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