
Revisiting the Problem of Zeros of Univariate Scalar Béziers

Jinesh Machchhara,∗, Gershon Elbera

aFaculty of Computer Science, Technion Israel Institute of Technology, Israel

Abstract

This paper proposes a fast algorithm for computing the real roots of univariate polynomials given in the
Bernstein basis. Traditionally, the polynomial is subdivided until a root can be isolated. In contrast, herein
we aim to find a root only to subdivide the polynomial at the root. This subdivision based algorithm exploits
the property that the Bézier curves interpolate the end-points of their control polygons. Upon subdivision
at the root, both resulting curves contain the root at one of their end-points, and hence contain a vanishing
coefficient that is factored out. The algorithm then recurses on the new sub-curves, now of lower degree,
yielding a computational efficiency. In addition, the proposed algorithm has the ability to efficiently count
the multiplicities of the roots. Comparison of running times against the state-of-the-art on thousands of
polynomials shows an improvement of about an order-of-magnitude.

1. Introduction and previous work

The problem of numerically finding zeros of univariate polynomials is ubiquitous in computer aided de-
sign [5] and engineering. Many geometric problems can be cast into that of finding zeros of polynomials, for
instance, computing intersections of curves and surfaces [27, 29], contact analysis of shapes [14], kinematic
analysis [2], etc. There have been many approaches to the problem of computing zeros of univariate polyno-
mials in the past [13, 20], such as, based on Newton’s method [11], using Descartes’ rule of signs [6, 16, 25],
based on subdivision [10, 22], to name a few.

In this work, we use the Bernstein representation for polynomials. Bernstein polynomials have several
useful properties such as the variation diminishing property, the convex hull property and numerical stability
with respect to perturbation of coefficients [8], which makes such a representation especially amenable for
numerical applications.

One of the earliest methods to exploit the variation diminishing property of Bézier curves in order to
isolate the roots of polynomials was given by Lane and Riesenfeld [17] in 1981. In 1990, Sederberg and
Nishita [28] proposed the technique of Bézier clipping for identifying regions of the domain which contain
roots. This was done by intersecting the convex hull of the control polygon with the zero axis. In 2007,
Bartoň and Jüttler [1] improved the technique of Bézier clipping using degree reduction to generate a strip
bounded by two quadratic polynomials, which encloses the graph of the input polynomial. This strip, when
intersected with the zero axis, gives the new interval potentially containing the roots. This approach, that
is also known as quadratic clipping, was shown to have quadratic convergence by Schulz [26]. In 2009, Liu
et al. [18] improved quadratic clipping by using cubic polynomials, yielding faster rates of convergence. In
2007, Mørken and Reimers [21] utilized the close relationship between the spline and its control polygon for
computing zeros of polynomials. They use the zeros of the control polygon as an initial guess for tracing
the zeros of the polynomial. The control polygon is iteratively refined until the roots are found. In 2013,
Ko and Kim [15] used bounding polygons to reduce the intervals containing roots of Bézier polynomials.
A hybrid of the convex hull, sharp bounds [23] and quasi-interpolating bounds [31] was used to refine the

∗Corresponding author
Email addresses: jineshmac@cs.technion.ac.il (Jinesh Machchhar), gershon@cs.technion.ac.il (Gershon Elber)

Preprint submitted to Elsevier February 14, 2016

intervals. Recently, in 2015, Chen et al. [4] improved the convergence rates achieved by Liu et al. [18] by
bounding the polynomial of interest by a pair of rational cubic polynomials.

Our approach, as explained in Section 1.1 uses the fact that polynomials represented in the Bernstein-
Bézier form admit efficient algorithms for polynomial multiplication and division [3, 9]. These are employed
to factor out the roots already computed, thus reducing the degree of the polynomial, as part of the solution
process.

1.1. Overview of our approach

We now give an overview of our method, which exploits several properties of the Bézier curves, for
computing zeros of scalar polynomials. The Bernstein basis for an n-degree univariate polynomial is given
by the set of functions θi,n(t) =

(
n
i

)
ti(1 − t)n−i, t ∈ [0, 1], for i = 0, . . . , n. A degree n scalar polynomial

in the Bernstein basis is expressed as c(t) =
∑n

i=0 piθi,n(t) where, pi ∈ R are the real coefficients of the
polynomial. While c(t) may have roots outside the domain [0, 1], in this paper we focus on finding the real
roots of c(t) in [0, 1]. Throughout this paper, we will consider [0, 1] to be the domain of definition of all
Bézier curves, unless stated otherwise.

We will exploit the fact that the Bézier curves interpolate the end-points of their control polygon. Upon
finding a root, t0, our algorithm subdivides c(t) at t0. Let cl(t) and cr(t) denote the resulting polynomials
corresponding to the sub-intervals [0, t0] and [t0, 1], respectively, with their domains again mapped to [0, 1].
Clearly, cl(t) and cr(t) vanish at 1 and 0, respectively. Since the Bézier curves interpolate the end-points
of their control polygon, it follows that the last coefficient of cl(t) and the first coefficient of cr(t) are zero.
cl(t) may be expressed as (1− t)cL(t) for some Bernstein polynomial cL(t) having one degree less than cl(t).
Similarly, cr(t) may be written as tcR(t) for some Bernstein polynomial cR(t) with one degree less than cr(t).
Factoring out the terms (1− t) and t from cl(t) and cr(t), respectively [3], eliminates the root t0 from these
two polynomials, yielding polynomials with smaller degrees to recurse upon that preserves all roots but t0,
thus giving a computational boost to the algorithm. This is explained schematically in Figure 1. The graph
of polynomial c(t) is shown in red, in Figure 1(a), along with its control polygon that is shown in green.
c(t) has two real roots, at t1 and t2. Assume we found the root at t2. Figure 1(b) shows the subdivided
polynomials cl(t) and cr(t) respectively, both containing the root, t2, at the respective end-point of their
domains, and hence have a vanishing coefficient there. Figure 1(c) shows the lower degree polynomials
obtained after factoring out (1− t) and t from cl(t) and cr(t), respectively.

The rest of this paper is organized as follows. Our basic algorithm is explained in Section 2. An interesting
efficient feature of our approach to count the multiplicities of roots, along with two more extensions of the
algorithm are given in Section 3. One extension lets the search for roots go outside the domain of interest,
and another initializes the Newton-Raphson method with better calculated seeds compared to the basic
algorithm. We compare the running times of our implementation of the algorithm with those of the state-
of-the-art alternatives, on thousands of polynomials. The results of the comparison, as given in Section 4,
show an improvement of about an order-of-magnitude. Finally, we conclude the paper, in Section 5, with
remarks on future work.

2. Root finding: the basic algorithm

In this section, we explain our algorithm for finding the real roots of univariate scalar polynomials, given
in Bernstein form. The proposed algorithm is based on subdivisions at detected roots.

As explained in Section 1.1, the proposed algorithm achieves a reduction in the complexity of the problem
by factoring out all the roots that are already found. A scalar Bernstein polynomial c(t) of degree n with
c(0) = 0 may be expressed as c(t) = tr(t), for some Bernstein polynomial r(t) with degree n − 1 [3]. The
coefficients of r(t) are obtained from those of c(t) as qi = pi+1

n
i+1 , for i = 0, . . . , n − 1. The proof appears

in Lemma 1, for completeness:

Lemma 1. A degree n scalar Bernstein polynomial c(t) =
∑n

i=0 piθi,n such that c(0) = 0 can be written as

c(t) = t
∑n−1

i=0 qiθi,n−1 = tr(t), where, qi = pi+1
n

i+1 for i = 0, . . . , n− 1.

2

t1
t2· ·

t1 t2· ··

t1·

(a)

c(t)

(b)

cl(t) cr(t)

(c)

cL(t) cR(t)

Figure 1: Overview of our approach. (a) Shows the graph of a degree 4 Bézier polynomial c(t) in red with roots at t1 and t2,
along with its control polygon in green. The t-axis is shown in black. (b) shows the polynomials cl(c) and cr(t) obtained after
subdividing c(t) at t2. cl(t) and cr(t) are again of degree 4 and contain the root at t2. (c) shows the degree 3 polynomials
obtained after eliminating the root at t2 from cl(t) and cr(t), factoring out (1 − t) and t, respectively.

Proof. Since c(0) = 0, the first coefficient, p0, is zero, and we have,

c(t) =
n∑

i=0

pi

(
n

i

)
ti(1− t)n−i,

=

n∑
i=1

pi

(
n

i

)
ti(1− t)n−i,

= t

n∑
i=1

pi

(
n

i

)
ti−1(1− t)n−i,

= t

n−1∑
i=0

pi+1

(
n

i+ 1

)
ti(1− t)n−i−1,

= t

n−1∑
i=0

pi+1
n

i+ 1

(
n− 1

i

)
ti(1− t)n−i−1,

= t

n−1∑
i=0

qiθi,n−1(t),

= tr(t),

where qi = pi+1
n

i+1 , for i = 0, . . . , n− 1, are the coefficients of the scalar Bernstein polynomial r(t) having

3

degree n− 1. �
Clearly, the term t can be factored out from c(t) in linear time with respect to the number of coefficients

in c(t). In a similar way, a degree n scalar Bernstein polynomial c(t) with c(1) = 0 may be expressed as
(1− t)s(t), for some scalar Bernstein polynomial s(t) with degree n−1, whose coefficients are obtained from
those of c(t) as pi

n
n−i for i = 0, . . . , n−1. The proof is similar to that given in Lemma 1. More importantly,

the following holds:

Remark 2. Let the set of real roots of c(t) be Rc and c(0) = 0. Then,

Rc = Rr ∪ {0},

where, c(t) = tr(t) and Rr is the set of real roots of r(t).

In other words, the set of real roots of r(t) identifies with the roots of c(t) up to the root at zero and hence,
we can continue working with r(t) instead of c(t), without missing any root, but in a reduced complexity.
A similar remark holds for a polynomial c(t) with c(1) = 0.

As a first step, our algorithm employs a sufficient condition for discarding sub-domains which do not
contain roots, by inspecting the signs of the coefficients of c(t). If they are either all positive or all negative,
the sub-domain does not contain roots and is purged. This follows from the convex-hull property of the
Bézier curves.

If the domain is not discarded, an attempt is made to find a root in the current domain, numerically.
We employ the Newton-Raphson method, which is known to have a quadratic rate of convergence [13], for
this purpose and use an initial guess of 0.5 as an initial seed value. Upon successful finding of a root, t0, the
polynomial c(t) is subdivided at t0. As explained previously, both curves resulting from the subdivision of
c(t) contain the root, t0, at the respective end-points of their domains. The root at t0 is factored out from
these two new curves and the resulting lower degree polynomials are recursed upon. Alternatively, if no root
is found by the numeric step, c(t) is subdivided in the middle of the domain and the resulting polynomials
are recursed upon. The stopping criteria for the Newton-Raphson method is either a divergent step, or the
search going outside the domain, or the number of iterations exceeding a limit, 100 in our case (a case that
never occurred in all our tests).

Our method is summarized in Algorithm 1. The test for absence of roots (all coefficients positive or
all negative) is performed by the routine PurgeProblem in Line 1 of Algorithm 1. The Newton-Raphson
method is invoked in Line 4 by the routine NumericStep, with the mid-point (0.5) of the domain as the
starting seed. The case when a root is found by NumericStep is handled in Lines 6 to 9 while the case when
no root is found is executed in Lines 14 to 16. Note that we assume the curves are always within domain
[0, 1]. Yet, we keep track of the real domain by propagating the [tmin, tmax] values.

Algorithm 1 uses two tolerances, the numeric tolerance, ε, and the subdivision tolerance, δ. The roots are
searched up to ε, i.e., for each root, t0, returned, −ε < c(t0) < ε, while the minimal width of the domain of
any subdivided curve, to be considered by our algorithm, is set by δ. The termination of Algorithm 1 stems
from looking at its two sub cases. If a root is found by the numeric step, the algorithm recurses upon two
sub polynomials of one degree less. If no root is found by the numeric step, the algorithm recurses on two
polynomials, each with domain width half that of the original polynomial. Hence, the algorithm terminates
when either one of the following conditions hold: (i) the width of the problem domain [tmin, tmax] falls below
the subdivision tolerance, or (ii) the control polygon of c(t) does not cross the t-axis, or (iii) the degree of
c(t) is one.

3. Extensions of the algorithm

We now consider several extensions of the basic algorithm from Section 2. In Section 3.1, we present
an extension for counting the multiplicities of roots. In Section 3.2, we consider an alternative method of
initializing the Newton-Raphson method and in Section 3.3, we portray an extended framework which lets
the search for roots go outside the domain of interest.

4

Algorithm 1 BézierZeroFactored(c, tmin, tmax, ε, δ)

1: if PurgeProblem(c, ε) then
2: return ∅;
3: end if
4: t0 ← NumericStep(c, ε, 0.5);
5: if t0 ! = ∅ then
6: (cl, cr)← Subdivide(c, t0);
7: cL ← Factor1MinusT(cl);
8: cR ← FactorT(cr);
9: return BézierZeroFactored(cL, t

min, t0, ε, δ) ∪ {t0} ∪ BézierZeroFactored(cR, t0, t
max, ε, δ);

10: else
11: if tmax − tmin < δ then
12: return ∅;
13: end if
14: t0 ← tmax+tmin

2 ;
15: (cl, cr)← Subdivide(c, 0.5);
16: return BézierZeroFactored(cl, t

min, t0, ε, δ) ∪ BézierZeroFactored(cr, t0, t
max, ε, δ);

17: end if

3.1. Counting multiplicities of roots

The extended ability to count the multiplicities of roots is naturally supported by our computational
framework. Each time a root is factored out, the terminal coefficient of the resulting polynomial is inspected
again. A vanishing coefficient, again after an elimination of t or (1 − t), implies that the root is repeated.
Hence, counting multiplicities is reduced to the examination of a single (terminal) scalar coefficient of cr(t)
to be zero, and hence, is highly efficient. This is demonstrated schematically in Figure 2 for a double root.
The pseudo-code for counting multiplicities of roots is given in Algorithm 2 which replaces Lines 7 and 8
in Algorithm 1. Herein, m0 is the desired root multiplicity. For clarity, both input and output curves are
designated as cl and cr in Algorithm 2 (against cL and cR in Algorithm 1) due to the recursive computation.
This extended ability is examined in Section 4. Note that, the Newton-Raphson method converges linearly
to a root with multiplicity greater than one [13].

Algorithm 2 CountRootMultiplicities (substituted for Lines 7-8 in Algorithm 1)

1: m0 ← 0;
2: do
3: cl ← Factor1MinusT(cl);
4: cr ← FactorT(cr);
5: m0 ← m0 + 1;
6: while |cr(0)| < ε

3.2. Initialization of Newton-Raphson method

It is known that the control polygon of a Bézier curve is an approximation of the curve itself. One can
compute the intersection of the control polygon of c(t) with the t-axis, in order to supply a better initial value
for the Newton-Raphson method, following [21]. Due to the variation diminishing property, the number of
intersections of the control polygon with the t-axis is greater than or equal to the number of real roots
of c(t). In this extension option, we examined both the first intersection point as well as the intersection
point closest to the mid-point of the domain, between the control polygon and the t-axis. The potential
computational benefits of both alternative initializations of the Newton-Raphson method are examined in
Section 4.

5

t1 t2 t3

· · ·

t1 t2 t3· ·· ·

t1 t2 t3· ·· ·

t1 t3· ·

(a)

c(t)

(b)

cr(t)
cl(t)

(c)

cL(t) cR(t)

(d)

cRR(t)
cLL(t)

Figure 2: Counting multiplicities of roots: (a) shows the graph of a degree 4 Bézier polynomial c(t) in red with roots at t1, t2
and t3, with multiplicities 1, 2 and 1, respectively. The control polygon is shown in green and the t-axis in black. (b) shows the
polynomials cl(c) and cr(t) obtained after subdividing c(t) at t2. cl(t) and cr(t) are also of degree 4 and contain the root at t2.
(c) shows the degree 3 polynomials cL(t) and cR(t) obtained after eliminating (1 − t) and t from cl(t) and cr(t) respectively.
Finally, (d) shows the degree 2 polynomials cLL(t) and cRR(t) obtained after eliminating the second root at t2.

3.3. Searching for roots outside the domain

Consider letting the Newton-Raphson search for roots go outside the domain, [0, 1], of interest. If such
a root is found, it can still be factored out, thus, reducing the degree of the problem. If a root, t0 > 1, is
found, the input polynomial c(t) is subdivided at t0 to obtain a polynomial, cl, corresponding to the domain
[0, t0] and a polynomial, cd corresponding to the domain [1, t0]. The polynomial cd is immediately discarded,
being outside the domain [0, 1]. Clearly, cl(1) = c(t0) = 0, and as before, the factor (1− t) is removed from
cl. However, herein cl is again subdivided at 1

t0
to bring cl back to the original [0, 1] domain. A similar

sequence of steps are followed when the root is found below zero, t0 < 0. The potential benefits of this
possible extension are also discussed in Section 4.

4. Results

The algorithm described in the previous sections was implemented in the IRIT [7] solid modeling environ-
ment. This section first compares the running times of the presented approach, on thousands of polynomials,

6

with the running times of three other algorithms, also implemented in IRIT, all on a PC with a 3.4 GHz
CPU (single thread) and 4 GB (32-bit executable) memory. Further, the presented algorithm is compared
with Quadratic clipping [1] and Cubic clipping [18] on the polynomials used in [1, 18]. We also compared the
running times of the presented algorithm with those of the roots finding algorithm of Matlab [19]. Finally,
we compared our algorithm with that proposed in [15].

A numeric tolerance of 10−10 (ε in Algorithm 1) and a subdivision tolerance of 10−3 (δ in Algorithm 1)
were used for all the runs, wherever applicable, unless stated otherwise. The subdivision tolerance is used
to terminate the algorithm when the width of the sub-domain becomes small, i.e., when tmax − tmin < δ.
In essence, the separation of adjacent nearby roots is limited by this subdivision tolerance. Hence, roots
which are apart by less than δ are deemed identical. The roots returned from all the different methods
were compared against each other to ensure the completeness and correctness of the solutions. Running
times for the basic approach presented in Section 2 appear under the column BZF (Bézier-Zero-Factored)
in Tables 1-5. The running times for the extension given in Section 3.2 for alternative initialization of the
Newton-Raphson method, using the first intersection and the one close to the middle of the domain, found
between the control polygon of c(t) and the t-axis, appear under the columns BZF-NRI1 and BZF-NRI2
respectively, in Tables 1-5.

The first method that we compare our approach with, computes the roots of c(t) by computing the points
of intersection between two curves in R2 [29], viz., the graph of c(t) and the t-axis. This method inspects
the intersection of the double wedge of c(t) with the t-axis to discard sub-intervals not containing roots [27].
The running times for this method appear under the column CCI (Curve-Curve-Intersection) in Tables 1-4.

The second method that we use for comparison, is a subdivision-based approach which uses cones bound-
ing the tangent field of polynomial c(t) in order to identify the intervals of domain which are guaranteed
to contain at most one root [27]. Once such an interval is identified, a root is searched using the Newton-
Raphson method. Further, this method inspects if the coefficients of c(t) are either all positive, or all
negative, in order to check for absence of roots, in which case, the sub-domain is discarded. This method,
in our implementation, is geared towards solutions of multi-variate polynomials and hence has some com-
putational overhead. The running times for this method of numerically computing zeros appear under the
column NCZ in Tables 1-4.

Finally, we compare our method against an analytic algorithm for finding the roots [24]. This can be
used only on polynomials with degree less than 6, though our implementation only supported polynomials
with degree less than 5 and uses Euler’s approach which first eliminates the coefficient of the cubic term in
the input polynomial. The running times for the same appear under the column Analytic in Tables 1-4.

In order to ensure the correctness of the time measurements, for each measurement, an aggregate time for
104 runs on each polynomial was noted and divided by 104. We used four sets of polynomials for comparison,
as described below:

1. Scalar univariate Bernstein polynomials with degrees between 3 and 100 were created by randomly
sampling the coefficients of the polynomials. In this case, the number of real roots was typically quite
small compared to the degree of the polynomial. For each degree, 100 different polynomials were
created, some of which are shown in Figure 3. The running times and the number of roots reported
in Table 1 are the average of these.

2. Scalar univariate Bernstein polynomials with degrees ranging from 3 to 14, with the number of real
roots equal to the degree, were created. This was done by generating monomials with randomly
generated roots and multiplying these together. The resulting polynomial in the power basis was
converted into the Bernstein basis. A few of these polynomials are shown in Figure 4. The comparison
of running times for these polynomials for all the six methods appears in Table 2.

3. Polynomials having roots with multiplicity of two, with degrees between 8 and 21, were created in a
manner similar to that for degree n polynomials with n roots described above, albeit, by repeating
one of the monomials. The running times for the same are tabulated in Table 3. In this case, our
algorithm with the extension given in Section 3.1 correctly counted the multiplicities. A few of these
polynomials are plotted in Figure 5.

7

#CtrlPt Avg #Root Analytic CCI NCZ BZF BZF-NRI1 BZF-NRI2
4 0.90 0.31 6.11 12.32 1.17 1.09 1.08

5 1.15 0.48 8.83 16.81 1.53 1.35 1.39

6 1.38 - 10.94 20.45 1.90 1.71 1.78

7 1.50 - 10.66 23.46 2.16 1.88 1.95

8 1.64 - 14.23 25.55 2.53 2.25 2.33

10 2.04 - 19.77 33.58 3.49 2.85 3.03

15 2.16 - 26.84 39.88 4.80 4.20 4.24

20 2.82 - 42.95 58.17 8.03 6.97 7.01

50 4.80 - 167.54 185.63 37.21 31.24 31.31

100 6.74 - 1923.35 1508.87 342.67 225.62 245.25

Table 1: Comparison of running times of the different algorithms on scalar Bernstein polynomials with randomly generated
control points. All times are in micro-seconds. See Figure 3 for a few examples of such polynomials.

#CtrlPt #Roots Analytic CCI NCZ BZF BZF-NRI1 BZF-NRI2
4 3 0.48 22.59 36.99 3.83 2.83 2.59

5 4 0.59 43.62 78.57 4.38 4.15 3.74

6 5 - 43.56 92.04 6.12 4.96 4.72

7 6 - 53.10 114.70 6.18 6.40 6.15

8 7 - 72.16 136.48 9.10 7.65 7.28

9 8 - 93.52 157.09 8.97 8.82 8.80

10 9 - 88.21 201.03 12.18 11.06 10.96

11 10 - 113.20 195.19 13.80 11.89 12.56

12 11 - 107.83 281.53 13.74 14.42 16.35

13 12 - 202.44 382.29 15.98 16.59 16.58

14 13 - 158.58 306.96 22.65 18.52 19.77

15 14 - 166.22 361.96 24.74 22.00 24.31

Table 2: Comparison of running times of the different algorithms on scalar Bernstein polynomials having the number of real
roots equal to the degree of the polynomial. All times are in micro-seconds. A few examples of such polynomials are shown in
Figure 4.

4. A Wilkinson’s polynomial with degree n is defined as c(t) =
∏n−1

i=0 (t− i
n−1). Wilkinson’s polynomials

are known for their numerical instability, in particular, the sensitivity of the roots to perturbation of
coefficients [30]. The comparison of running times on Wilkinson’s polynomials with degrees 13 and
20 are given in Table 4. The polynomials are shown in Figure 6. For polynomials of degree 13 and
20, the mean deviation of the roots returned by our method from the actual roots is 1.8× 10−15 and
1.5× 10−9, and the maximum deviation is 5.5× 10−15 and 7.3× 10−9, respectively, using the double
precision for representation of the coefficients.

As can be observed from Tables 1-4, Algorithm BZF is faster than the other methods by almost an
order-of-magnitude. Further, BZF-NRI1 and BZF-NRI2 show computational benefit over simple BZF,
as seen in Tables 1-5, with some exceptions as can be seen in Table 3 for polynomial with 21 control points.
While initializing the Newton-Raphson method with a location near the middle of the domain is expected
to more likely succeed compared to an initialization at the end of the domain, it requires the computation
of all the intersections between the control polygon of c(t) and the t-axis. Hence, in some cases BZF-NRI1
performs better than BZF-NRI2, for instance, in Table 1, while in some cases it is vice versa, for instance,
on the polynomials with high degree in Table 3.

It turns out that the out-of-domain root searching extension discussed in Section 3.3, allowing the domain
to expand beyond [0, 1], does not show a significant improvement in running times over the simple BZF. This
is probably because even if a polynomial has a root outside [0, 1], in most cases, that portion of polynomial
gets discarded by the routine PurgeProblem (Line 1 of Algorithm 1), as the control polygon is for domain

8

#CtrlPt
Unique

Roots Analytic CCI NCZ BZF BZF-NRI1 BZF-NRI2
9 7 - 102.90 169.35 8.16 9.87 9.02

10 8 - 107.82 214.43 10.89 9.84 9.66

11 9 - 125.18 211.18 11.34 12.27 12.54

12 10 - 774.45 240.14 12.62 13.03 14.02

13 11 - 351.35 285.84 14.61 15.06 15.27

14 12 - 1850.59 319.09 20.84 19.75 20.36

15 13 - 764.16 295.76 20.11 19.50 18.36

16 14 - 1394.23 408.83 22.11 23.50 22.71

17 15 - 1047.41 415.89 24.34 24.79 26.46

18 16 - 537.87 422.28 27.79 27.20 29.35

19 17 - 365.31 505.46 36.66 41.34 33.74

20 18 - 1597.59 553.07 38.18 41.47 33.76

21 19 - 622.01 554.67 36.33 46.53 37.95

Table 3: Comparison of running times of the different algorithms on scalar Bernstein polynomials of degree n having n − 1
distinct roots, with one root with multiplicity of two. All times are in micro-seconds. A few examples of such polynomials
appear in Figure 5.

#CtrlPt #Roots Analytic CCI NCZ BZF BZF-NRI1 BZF-NRI2
14 13 - 187.66 233.68 14.46 15.79 15.32

21 20 - 347.11 487.15 40.17 32.89 37.00

Table 4: Comparison of running times of the different algorithms on Wilkinson’s polynomials of degree 13 and 20. All times
are in micro-seconds. Wilkinson’s polynomials of degree 13 and 20 are shown in Figure 6.

Polynomial
QuadClip (1.7

GHz CPU)
CubClip (1.7

GHz CPU)
BZF (3.4

GHz CPU)
BZF-NRI1 (3.4

GHz CPU)
BZF-NRI2 (3.4

GHz CPU)
8.10 11.20 1.52 1.14 1.30

13.00 15.40 1.36 1.34 1.33

28.00 27.60 2.05 1.93 1.94

15.20 15.20 0.80 2.85 2.44

26.60 27.10 0.82 1.18 1.17

56.10 32.70 1.22 1.93 1.95

200.00 45.40 3.44 3.45 3.23

180.00 65.30 7.94 4.73 4.47

174.00 86.10 35.14 16.24 35.46

15.10 24.10 3.03 2.44 2.27

30.40 32.20 5.09 3.15 3.18

63.20 48.20 6.39 4.39 4.43

Single
root

Double
root

Triple
root

Near
Double
root

Table 5: Comparison of running times for BZF, BZF-NRI1, BZF-NRI2, Quadratic clipping [1] and Cubic clipping [18], for
an accuracy of 10−8 for all methods, on the polynomials used in [1, 18]. All times are in micro-seconds.

f4(t)
f8(t)
f16(t)
f4(t)
f8(t)
f16(t)
f4(t)
f8(t)
f16(t)
f4(t)
f8(t)
f16(t)

[0, 1] that contains no roots.
We further noted the running times of algorithms BZF, BZF-NRI1 and BZF-NRI2 on the 12 poly-

nomials used in [1] and [18], with single, double, triple and near double roots, identifying all roots (and
ignoring their multiplicities), as is done in [1, 18]. Each of these four classes has three polynomials in it,
labeled as f4(t), f8(t) and f16(t), with degrees 4, 8 and 16 respectively. We did not run tests on polynomials
with near triple roots used in [18] for the lack of precision while converting these polynomials from the
power basis to the Bernstein basis, when using the double precision representation. The running times for
Quadratic clipping and Cubic clipping are noted from [18] for accuracy of 10−8, in which, a computer with
Intel(R) 1.7 GHz processor and 512 MB RAM was reported. The comparison of the running times, given in

9

#CtrlPt Avg #Root
NR success

rates (%) #CtrlPt #Roots
NR success

rates (%) #CtrlPt
Unique

Roots
NR success

rates (%) #CtrlPt #Roots
NR success

rates (%)
4 0.90 (90/154) 58% 4 3 (3/4) 75% 9 7 (7/10) 70% 14 13 (13/21) 62%

5 1.15 (116/201) 57% 5 4 (4/6) 66% 10 8 (8/12) 66% 21 20 (20/33) 61%

6 1.38 (139/244) 57% 6 5 (5/8) 63% 11 9 (9/11) 81%

7 1.50 (150/270) 55% 7 6 (6/7) 86% 12 10 (10/13) 76%

8 1.64 (166/301) 55% 8 7 (7/10) 70% 13 11 (11/15) 73%

10 2.04 (204/333) 61% 9 8 (8/9) 89% 14 12 (12/15) 80%

15 2.16 (217/360) 60% 10 9 (9/12) 75% 15 13 (13/19) 68%

20 2.82 (282/482) 58% 11 10 (10/13) 77% 16 14 (14/20) 70%

50 4.80 (480/789) 60% 12 11 (11/12) 91% 17 15 (15/19) 78%

100 6.74 (674/1103) 61% 13 12 (12/12) 100% 18 16 (16/23) 69%

14 13 (13/18) 72% 19 17 (17/26) 65%

15 14 (14/18) 78% 20 18 (18/26) 69%

21 19 (19/23) 82%

Randomly generated coeffs. Degree n with n roots Repeated roots Wilkinson's polynomials

(Averaged over 100 polynomials)

Table 6: Success rates of the numeric step of Algorithm 1 for each of the four classes of polynomials.

Table 5, shows that BZF is much faster than both Quadratic clipping as well as Cubic clipping, even after
accounting for the difference in the processor speed used in [18] and that used in our tests. The CPU used in
our tests was twice as fast as that used in [18], while the speed-up achieved by BZF is far more than twice,
as can be seen from Table 5. Note that, the running times for BZF for double root polynomials are smaller
than those for single root polynomials. This is explained by the fact that the double root polynomials in
this case have the root at 0.5, which is also the seed used for initializing the Newton-Raphson method in
BZF.

The function roots in Matlab [19] computes the complex roots of polynomials given in power basis. This
is done by computing the eigen-values of the companion matrix [12] of the input polynomial. This approach
does not require numeric tolerance as an input parameter. However, the gained precision of roots thus
computed is less compared to our method. The roots returned by this Matlab function for the four classes of
polynomials used for our tests, as described previously, had an average precision of 10−8. Further, since this
method works with the power basis, it has issues with numerical stability. For instance, on the Wilkinsons’s
polynomial of degree 20, the achieved precision was 10−4, while our method gains a precision of 10−10. In
order to compare our algorithm with the roots function of Matlab, we exported the C code of this function
from Matlab and noted the running times of the same. It was observed that on polynomials with sparse
real roots, e.g., polynomials obtained by randomly sampling the coefficients of the polynomials, as explained
before, our algorithm was over 10 times faster than the Matlab function. On polynomials with dense real
roots, e.g., degree-n polynomials with n real roots, our algorithm was about three times faster than the
Matlab function.

Finally, we compared our method with that proposed in [15] on polynomials used in [15] and found our
method to be two orders-of-magnitude faster. For instance, the time reported in [15] for computing roots
of Wilkinson’s polynomial of degree 20 is 20 milli-seconds for a precision of 10−7, on a PC with 2.2 GHz
processor and 2 GB RAM, while BZF takes only 40.72 micro-seconds for the same, with a precision of
10−10, as shown in Table 4.

One main factor that contributed to the almost order-of-magnitude improvement in the performance
over the state-of-the-art is the success rate in the numeric search step for roots (Line 4 in Algorithm 1).
Newton-Raphson is very efficient in converging (quadratically for simple roots [13]) to the roots and our
experiments (see Table 6) show that over 50% (and sometimes even over 90%) of the recursive invocations of
BZF terminated with a successful finding of a new root in the domain in hand. This means that, amortized,
Algorithm 1 was recursively invoked less than two calls per root! Further, it was observed that Algorithm 1
almost never terminated due to the condition that tmax − tmin < δ (Line 11 in Algorithm 1), except once,

10

Figure 3: Some examples of scalar Bernstein polynomials with randomly generated coefficients. The domain [0, 1] is indicated
by a line-segment shown in black and the polynomials are plotted in red. The curves are trimmed at the top and at the bottom
for convenient display.

Figure 4: Some examples of scalar Bernstein polynomials with number of roots equal to the degree of the polynomial. The
domain [0, 1] is indicated by a line-segment shown in black and the polynomials are plotted in red. The curves are trimmed at
the top and at the bottom for convenient display.

when a root was present at a distance less than subdivision tolerance from the domain boundary, which is
extremely rare. As noted at the beginning of this section, the subdivision tolerance δ governs the minimal
distance between two different ajdacent roots and might affect the computation time only for almost-singular
cases, viz., when roots are very close.

5. Conclusion

This paper presented a fast algorithm for finding zeros of scalar univariate polynomials given in the Bern-
stein form. A speed-up in running times compared to the previous state-of-the-art alternative approaches of
almost an order-of-magnitude is reported. Unlike the traditional approach, wherein, the polynomial is subdi-
vided until a root is isolated, the proposed algorithm derives its computational advantage from factoring out
the roots already computed, hence, reducing the complexity of the sub-problems to recurse upon. Further,
the Newton-Raphson method, which is known to be highly efficient, is very effectively exploited, wherever

11

Figure 5: Some examples of scalar Bernstein polynomials having some roots with multiplicity greater than one. The domain
[0, 1] is indicated by a line-segment shown in black and the polynomials are plotted in red. The graph of the polynomial is
tangent to the t-axis at the root with multiplicity greater than one. The curves are trimmed at the top and at the bottom for
convenient display.

Figure 6: Wilkinson’s polynomials with degrees 13 (left) and 20 (right). The domain [0, 1] is indicated by a line-segment shown
in black and the polynomials are plotted in red. The curves are trimmed at the top and at the bottom for convenient display.

possible. Finally, a salient feature of this method is the ability to efficiently compute the multiplicities of
the roots, and is discussed in Section 3.1.

Like any numeric algorithm, the robustness of the presented approach must be further examined. Specif-
ically, roots with high orders of multiplicities are prone to numerical instabilities. Our test shows that using
double precision, the detection of multiplicities of triple roots up to tolerances of 10−10 can be unstable for
degrees larger than 4. This can be partially explained by the fact that each factoring operation scales the
coefficients by O(n), the degree of the polynomial. One possible way to alleviate this difficulty would be
to inspect the k terminal coefficients in order to detect a multiplicity of order k, and if found to be zero
within some tolerance, factor them out once by dividing by tk or (1− t)k (see also [3]), as the case may be.
Further, one could consider replacing the all-positive or all-negative coefficients test used in our method for
identifying sub-domains with no solution, by other, more sophisticated bounds such as quadratic clipping [1].

12

Finally, an extension of the proposed method to finding zeros of multi-variates would be very useful, for
instance, in computing curve-curve or curve-surface intersections.

6. Acknowledgment

The authors would like to thank the anonymous reviewers for their invaluable comments. This work was
supported in part by the People Programme (Marie Curie Actions) of the European Union’s Seventh Frame-
work Programme FP7/2007-2013/ under REA grant agreement PIAP-GA-2011-286426, and was supported
in part by the ISRAEL SCIENCE FOUNDATION (grant No.278/13).

References

[1] M. Bartoň and B. Jüttler. Computing roots of polynomials by quadratic clipping. Computer Aided Geometric Design,
24(3):125–141, 2007.

[2] M. Bartoň, N. Shragai, and G. Elber. Kinematic simulation of planar and spatial mechanisms using a polynomial con-
straints solver. Computer-Aided Design and Applications, 6(1):115–123, 2009.

[3] L. Buse and R. Goldman. Division algorithms for Bernstein polynomials. Computer Aided Geometric Design, 25(9):850–
865, 2007.

[4] X.-D. Chen, W. Ma, and Y. Ye. A rational cubic clipping method for computing real roots of a polynomial. Computer
Aided Geometric Design, 38:40–50, 2015.

[5] E. Cohen, R. F. Riesenfeld, and G. Elber. Geometric Modeling with Splines, An Introduction. A K Peters, 2001.
[6] A. Eigenwillig, V. Sharma, and C. Yap. Almost tight recursion tree bounds for the Descartes method. Proceedings of the

International Symposium on Symbolic and Algebraic Computation, ISSAC, 2006:71–78, 2006.
[7] G. Elber. Irit modeling environment. "http://www.cs.technion.ac.il/~irit/", January 2015.
[8] R. T. Farouki and V. T. Rajan. On the numerical condition of polynomials in Bernstein form. Computer Aided Geometric

Design, 4(3):191–216, 1987.
[9] R. Goldman. Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling.

Morgan Kaufmann, 2002.
[10] S. Gopalsamy, D. Khandekar, and S. Mudur. A new method of evaluating compact geometric bounds for use in subdivision

algorithms. Computer Aided Geometric Design, 8(5):337–356, 1991.
[11] T. A. Grandine. Computing zeroes of spline functions. Computer Aided Geometric Design, 6(2):129–136, 1989.
[12] K. M. Hoffman and R. Kunze. Linear Algebra. Pearson, 1971.
[13] E. Isaacson and H. Keller. Analysis of Numerical Methods. Dover Publications, 1966.
[14] Y.-J. Kim, G. Elber, and M.-S. Kim. Precise continuous contact motion for planar freeform geometric curves. Graphical

Models, 76(5):580–592, 2014.
[15] K. Ko and K. Kim. Improved subdivision scheme for the root computation of univariate polynomial equations. Applied

Mathematics and Computation, 219(14):7450–7464, 2013.
[16] W. Krandick and K. Mehlhorn. New bounds for the Descartes method. Journal of Symbolic Computation, 41(1):49–66,

2006.
[17] J. M. Lane and R. F. Riesenfeld. Bounds on a polynomial. BIT Numerical Mathematics, 21(1):112–117, 1981.
[18] L. Liu, L. Zhang, B. Lin, and G. Wang. Fast approach for computing roots of polynomials using cubic clipping. Computer

Aided Geometric Design, 26(5):547–559, 2009.
[19] MathWorks. Matlab. "http://www.mathworks.com/products/matlab/", January 2015.
[20] J. M. McNamee. A bibliography on roots of polynomials. Journal of Computational and Applied Mathematics, 47(3):391–

394, 1990.
[21] K. M. Mørken and M. Reimers. An unconditionally convergent method for computing zeros of splines and polynomials.

Mathematics of Computation, 76(258):845–865, 2007.
[22] B. Mourrain and J.-P. Pavone. Subdivision methods for solving polynomial equations. Journal of Symbolic Computation,

44(3):292–306, 2009.
[23] D. Nairn, J. Peters, and D. Lutterkort. Sharp, quantitative bounds on the distance between a polynomial piece and its

Bézier control polygon. Computer Aided Geometric Design, 16(7):613–631, 2006.
[24] R. W. D. Nickalls. The quartic equation: Invariants and Euler’s solution revealed. The Mathematical Gazette, 93:66–75,

2009.
[25] F. Rouillier and P. Zimmermann. Efficient isolation of polynomial’s real roots. Journal of Computational and Applied

Mathematics, 162(1):33–50, 2004.
[26] C. Schulz. Bézier clipping is quadratically convergent. Computer Aided Geometric Design, 26(1):61–74, 2009.
[27] T. W. Sederberg and R. J. Meyers. Loop detection in surface patch intersections. Computer Aided Geometric Design,

5(2):161–171, 1988.
[28] T. W. Sederberg and T. Nishita. Curve intersection using Bézier clipping. Computer-Aided Design, 22(9):538–549, 1990.
[29] T. W. Sederberg and S. R. Parry. Comparison of three curve intersection algorithms. Computer-Aided Design, 18(1):58–63,

1986.
[30] J. H. Wilkinson. The evaluation of the zeros of ill-conditioned polynomials. Part I. Numerische Mathematik, 1(1):150–166,

1959.

13

"http://www.cs.technion.ac.il/~irit/"
"http://www.mathworks.com/products/matlab/"

[31] R.-J. Zhang and G.-J. Wang. Sharp bounds on the approximation of a Bézier polynomial by its quasi-control polygon.
Computer Aided Geometric Design, 23(1):1–16, 2006.

14

	Introduction and previous work
	Overview of our approach

	Root finding: the basic algorithm
	Extensions of the algorithm
	Counting multiplicities of roots
	Initialization of Newton-Raphson method
	Searching for roots outside the domain

	Results
	Conclusion
	Acknowledgment

