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Abstract

This paper presents a direct rendering paradigm of trivariate B-spline func-
tions, that is able to incrementally update complex volumetric data sets, in the
order of millions of coefficients, at interactive rates of several frames per second,
on modern workstations. This incremental rendering scheme can hence be em-
ployed in modeling sessions of volumetric trivariate functions, offering interactive
volumetric sculpting capabilities.

The rendering is conducted from a fixed viewpoint and in two phases. The first,
preprocessing, stage accumulates the effect that the coefficients of the trivariate
function have on the pixels in the image. This preprocessing stage is conducted off-
line and only once per trivariate and viewing direction. The second stage conducts
the actual rendering of the trivariate functions. As an example, during a volumetric
sculpting operation, the artist can sculpt the volume and get a displayed feedback,
in interactive rates.

1 Introduction

Volume Rendering, as a subfield of Volume Visualization, is concerned with the rendering
of volumetric data. In contrast to other methods of volumetric visualization, in Volume
Rendering the volumetric data is processed directly.

A common way of representing the volumetric data is via a three-dimensional grid of
vozels. Just like a two dimensional grid of pixels, a grid of voxels is a three-dimensional
grid that consists of cubes that are denoted as volumetric cells or voxels. A two dimen-

sional image is typically represented by assigning a scalar or a vector value to each pixel.



Similarly, a three-dimensional volumetric data set is represented by assigning scalar or
vector values to the voxels. A three-dimensional grid of uniform voxels is also called a
vormap.

One approach at Volume Rendering is based upon algorithms which cast rays into
the volume, one for each pixel in the two dimensional viewing plane. The intensities
that are accumulated for each such ray form the output image. As a consequence, these
algorithms are view space oriented and view point dependent. As an example, [17] and
[10] present algorithms for ray casting. [17] stops the ray whenever an opaque surface
is encountered, while [10] computes the color and opacities of the casted rays from the
scalar values which are assigned to the voxels. Optimizations include the termination of
the ray tracing as a function of the encountered opacity [11], using spatial coherence of
the data [11], controlling the number of casted rays and the number of samples per ray
[12] and performing sparse samples along the ray’s path [2].

In virtually all existing Volume Rendering work, the volume is represented as a
piecewise constant or sometimes as a piecewise linear trivariate function. Clearly, higher
order trivariate functions can yield a smoother result and better represent freeform
volumes [15]. One noticeable exception that do attempt to directly handle higher order
trivariate functions is [1]. Chang, Rockwood and He [1] render freeform volumes instead
of voxels. A freeform volume is a trivariate polynomial or rational function defined over
a parametric domain that is a volume. In order to visualize the volume, the functions
defined over the volume are evaluated in [1] to produce a dense set of sampled points, in
object space. These points are assigned function values which are converted to intensity
and opacity values. Rendering takes place by computing the intensity or opacity integral
along the ray of each pixel. This computation of the integral is conducted in a back to
front order and takes into account the intensities and opacities of the points which affect
each pixel. Nevertheless, the intensity integral is computed numerically according to
a discrete set of samples along the path of the ray inside the trivariate, instead of the
exact computation over the continuous trivariate representation. In addition, interactive
manipulations can not be performed because only the final value of the integral for each

pixel is saved instead of the whole data set of the sampling points. Hence, changes of



individual control points require the reevaluation of a whole set of rays.

In [7], a robust method to extract the boundaries of scalar trivariate functions is pro-
posed via the computation of the scalar field of the determinant of the Jacobian of the
trivariate function. This approach is clearly more accurate than the traditional conver-
sion into a piecewise linear or even a piecewise constant approximation that is combined
with polygonal iso-surface extraction methods, such as Marching Cubes [13]. The direct
manipulation of the higher order function not only provides accuracy but is also more
robust, better handling the cracking, or black holes, problem as well as degeneracies
due to sampling that are common to the marching Cubes method. Unfortunately, the
approach of [7] is slow and cannot be used in interactive sessions.

Two examples of interactive rendering of geometry using ray casting while manip-
ulating the geometry, are [18] and [14]. In [18], Wang and Kaufman use a local ray
casting algorithm to render three-dimensional objects which are interactively modified
by the user. The objects are defined via a three-dimensional density function whose
value at a certain location represents the density of the object’s material at that loca-
tion. The density function is defined over a voxmap. Modifying the object is translated
into changes in the values of the density function. In order to render the object, a ray
is casted from each pixel towards the voxmap to determine the pixel’s color. Wang and
Kaufman measure the minimal distance of the ray from the object using the density
function defined over the volume. This distance is used to create anti-aliased pixel color,
thus saving the need for image space super-sampling. In addition, since only a small part
of the object’s volume is modified in a typical modifying operation, rays are casted only
for the pixels which are affected by the modified region. As a consequence, interactive
speed can be reached. Nevertheless, since the object is represented by a piecewise linear
density function, the color computed for each ray is only an approximation limited by
the sampling rate of the density function. In [14], Mizuno, Okada and Toriwaki also
use a ray casting algorithm to render three-dimensional objects which are interactively
modified by the user. The objects in [14] are represented and modeled via intersection
lists between the object and each viewing ray. The intersection points at the head of

each list, which are the points of the object visible to the viewer, are used to generate



the image of the object. Fach time the object is modified, the rays that intersect the
modified volume are re-casted and their intersection lists are updated. Interactive speed
is achieved due to two reasons. The first is the relative low number of lists which have
to be updated - only the lists of the view lines which intersect the modified volume. The
second is the typical small size of these lists - as stems from the fact that, frequently,
a ray stubs a single object at few locations only. Only intersection points between the
object and the viewing rays are considered. Hence, opacity information of the object
can not be employed, and only an opaque face of the object is rendered.

In [8], a comprehensive and detailed review of the field of Volume Visualization is

given and more on the topic can be found there.

1.1 What is a Trivariate

Before presenting our rendering technique, it seems appropriate to briefly consider the
kind of representation that is being used for representing the rendered objects.

Just like an (explicit) scalar bivariate surface that assigns a scalar zg value to every
point (x0,y0) in the XY plane (see Figure 1), an (explicit) scalar trivariate function
q(x,y, z) assigns a scalar, wg, value to every point, (2o, Yo, 20), in the three-dimensional
space.

Like all tensor product B-spline functions, scalar trivariate tensor product B-spline
functions [16, 6] have a control-mesh that consists of scalar coefficients, P;;; € IR. These
trivariate B-spline functions are of the form:

-1

(u,v,w) Z Z Pk Bioy (1) Bj o, (V) Bro,, (W), (1)

i=0 j
where B;,,(u), Bj,,(v), and By, (w) are the B-spline basis functions of orders o, o,,
and o, respectively, P;;, are the scalar coefficients in a volumetric mesh of size [ x m x n,
and ¢(u,v,w) is a scalar function. In the ensuing discussion and due to their simplicity,
we assume the B-spline basis functions are uniform.

The (rendered) objects are defined as implicit forms that are represented with the

aid of trivariate tensor product B-spline functions. An iso-surface at level ¢ could be
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Figure 1: An example of an explicit bivariate function, f(z,y) = —(2* + y*). The
bivariate function assigns a height to each (x, y) location on the plane. The constant
set of f(a,y) is an implicit curve, f(z,y) = —50 in this example.

extracted from the representation, solving for ¢(u,v,w) = go. Alternatively, the trivari-
ate field could be considered as a translucency field and the opacity of the object should
be integrated along the line of sight. Trivariate based representations are employed, for
example, in [1, 7, 15, 16], and trivariates from all these sources could be rendered using

the approach presented in this work.

1.2 The Presented Work

In this work, we present an accurate interactive Volume Rendering technique which vi-
sualizes the opacity of an object that is represented as an implicit trivariate function. As
in [1], and in contrast with [14], the end result is continuous and the degree of continuity
can be controlled via the degree of the trivariate functions. Nonetheless and while [1] also
handles and renders trivariate functions, in this work we strive for interactive rendering

rates of several frames per second while we assume a fixed viewing direction. We will



demonstrate that every second one can incrementally update thousands of coefficients
of the trivariate functions, in a sculpted scene with complex trivariate(s) that consists
of millions of coefficients, hence providing the means for interactive manipulation and
editing of trivariate volumes.

A line integral is computed, as an off-line preprocess, along the path of each casted
ray. The evaluation of the integral is performed by summing up a collection of the scalar
trivariate B-spline functions. During the preprocessing stage, the B-spline basis func-
tions, which blend each control coefficient of the trivariate function, are pre-evaluated
and their effect on each individual pixel is stored. During an interactive stage, the val-
ues of the control coefficients are modified via, for example, a sculpting or modeling
environment. The modified values and the data generated in the preprocessing stage
are exploited together toward the reevaluation of an updated trivariate representing the
image of the object, in interactive rates.

This paper is organized as follows. Section 2 describes the preprocessing stage during
which the effect of the B-spline basis functions on individual pixels is evaluated and
Section 3 depicts how the interactive rendering is being conducted. Section 4 portrays
some examples of rendered objects using the presented approach, and finally, in Section 5

we conclude and discuss future work.

2 Off-Line Preprocessing Towards Interactive Ren-
dering of Trivariates

In order to conduct the rendering process of the object in interactive rates, the influence
of the B-spline basis functions on each individual pixel is computed during the prepro-
cessing stage. Section 2.1 discusses the ray casting algorithm which is used for com-
puting the contribution and generating the coefficients for all pixels involved, whereas

Section 2.2 elaborates on the computation and storage of the data and the image.



2.1 Ray Casting

The ray casting approach typically casts rays from pixels in the screen into a volumetric
data set. The quantity that is accumulated for each ray originating in each pixel is
converted into color or intensity and is assigned to the pixel. For example, a ray can
accumulate the density of the volumetric data set along it’s path, letting a higher density
to be converted into a brighter color.

A ray casting algorithm typically visualizes the volumetric data set from a fixed
viewpoint, which is selected by the user. Once a viewpoint has been chosen, visualization
of the object and ray casting is conducted from the chosen viewpoint.

In the proposed scheme, the object is visualized by integrating the density of the
trivariate tensor product B-spline functions along the path of each casted ray. Denote
by P;j the value of a single scalar control coefficient in the control mesh of a trivariate

tensor product B-spline function (See Equation (1)). Then,
Vije = (i, i+ 04) X (J, J+00) X (k, k+0u), (2)

where o,, 0,, and o, are the orders of the B-spline basis functions on each dimension
respectively, is the volume in which P;;; has a positive contribution to the value of the
trivariate tensor product B-spline function. In other words, V;;; is the support volume
in which P B o, (w)Bjo, (V) Bro,(w) > 0. Since uniform knot vectors are employed,
the parametric domain (¢, ¢ 4+ 0,) X (J, j + 0,) X (k, k 4 0,) equals the subset of the
three-dimensional space which is occupied by Vijr. Denote by R, (r) the ray casted
through the pixel (p, ¢):

Roppay (1) 2 [—00, 00] — IR®. (3)
Since R, (1) is a straight line, R,,,,(r) is a linear vector function of r. Employ an arc
length parameterization, R, (s), to R, (r) such that s € [0, L] for R,,,(s) C Vi
That is, the ray penetrates Vi;r at R,,,,(0) and leaves V;j;. at R,,,, (L),

Rpai(s5) = (u(s),v(s),w(s)), (4)
for some linear functions u(s),v(s),w(s). Note that the domain [0, L] might be empty
if Ry N Vigr = 0.



Figure 2: A ray R,,,(r) intersecting the support volume, Vi, of a single control coeffi-
cient P;;;. The large box denotes the entire volume of the trivariate function representing
the object. The dots on R,,,,(r) denote the intersection points between R, (r) and the
entire volume as well as the support volume of Py.

The density of the trivariate function is integrated along the intersection domain of

Rpqr and Viik, Rp(s), s € [0, L]. Figure 2 shows how a ray R, (r) intersects the

volume, Vi, affected by a single control coefficient, P,j;.

2.2 Preprocessing of the Trivariates

In order to visualize the object, the orientation, or location and direction of each casted
ray, 1s first determined according to the indices of the pixel through which the ray is
casted. If an orthographic projection is employed, all of the casted rays are parallel,
and therefore they all have the same direction. This direction is set to follow the view
direction that is prescribed by the user. If a perspective projection is employed, the
direction of each ray is determined by the viewpoint that is prescribed by the user and
the location of the pixel that the ray is casted through.

Once the orientation of some ray is computed, the weighted contribution of each



control coefficient of the trivariate to the ray is evaluated and accumulated. Toward this

end the following observation is crucial:

Observation 1 During the interactive stage, only the values of the scalar
coefficients, P, are modified. The B-spline basis functions that blend each
coefficient, P, remain unchanged. Hence, the weighted contribution of each
control coefficient to each ray is fized and can be computed a-priori in the

preprocessing stage, given a fired view direction or viewpoint.

As a consequence, during the interactive stage, the actual density of a pixel is com-
puted via a blending between the precomputed fixed weighted contributions and the
current values of all the coefficients of the trivariates.

Recalling Equation (2), V;;x is the volume in which P;;; has a positive contribution
to the value of the trivariate function. The contribution of Pj;;, to the density of some
ray R, depends on the existence and form of the intersection between R, and V.
The weight of the contribution of P;;1. to the density of Ry,q,, Wpyq (Pijk), is given by

L

Worgy (Pij) =/ Bi(u(s))Bj(v(s)) Bi(w(s))ds, (5)

0

where B;(u), Bj(v), Br(w) are the B-spline basis functions blending P;;. and u(s), v(s),w(s)
and L are defined in Equation (4). Due to the fact that the object is represented by
trivariate B-spline functions, w,,,,(P;;1) can be computed analytically, because there

exists a closed from for the product and integral of B-spline functions [3, 4] .

Let the set Sz, , be,
SRy = 1Lijk | Wy (Pijr) > 0} (6)

In other words, Sg, , holds all the control coefficients whose weighted contribution to
the density of R, is positive.

The intensity of light passing through translucent material decreases exponentially.
See [9] for more information. The result of the computation of the density of an object
along a path of a ray depends, in the general case, on the order of the integration along

the path of the ray. For example, the color assigned to a ray that passes through a red



material and then through a green material is different from the color that is assigned
to a ray that passes through these materials in an opposite order. Nonetheless, in the
presented case, the densities accumulated along the casted rays are always mapped to a
level of gray, i.e. all objects are assumed uniform in their color. Therefore, we have the

following observation to our aid:

Observation 2 The order of accumulating the effect of the control coeffi-
cients, P, in integrating the density along some ray is irrelevant and has

no influence on the final result.

Examining the total density that is accumulated by ray R,,,, of pixel (p, ¢) equals,

T - ZP,‘]k €5Rpq; wpy g (Pijr)Pijn 1 (7)
ewplql (Pz]k)Pz]k )

pq = € = i
Pijh€SRp,q,

Observation 2 is made clear due to the multiplicative nature of the density function in
Equation (7). The inverse of I, is simply a product of terms of the form era(Fiox)Fisx,

As mentioned above, during the interactive stage, the values of the control coeffi-
cients, P,j;, are modified. Therefore, the weighted contribution of each control coefficient
to each ray must be stored, or else it would be impossible to compute the change in the
ray’s total density as a result of the change in the value of a control coefficient. Towards
this end, the preprocessing stage creates a special data structure for each control coef-
ficient, P,j;. This data structure holds references to all the rays for which the weighted
contribution of the control coefficient, Pz, is positive (See Figure 3). These n rays
are identified via the indices, {(pi, @)}, of their respective pixels in the image plane.
In other words, only the rays, R,,,,, through these n pixels have a positive weighted
contribution from Pk, wp,q, (Pijk), and hence only these positive weights, wy,q, (Pijr), are
recorded for P;j;. Due to the considerable memory costs that can be expected in storing
such information, the weighted contribution of the control coefficients must be reduced
to the bare minimum. Two different approaches are employed, in our case, to reduce

the size of this data structure:

1. By placing a bound on the maximal value of the weighted contribution of a single

control coefficient to some ray, we can map this real valued set to fixed point
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Figure 3: The preprocessing data structure contains for each coefficient in the trivariate,

Piik, and its support volume, V;;k, seen in gray in (a), a list of indices of rays, (pi, q1),
[ =0,---,n,in (b), that are affected by P;jz. These rays affect the pixels in the image
plane as is seen in (c), inside the projection of the support volume.

representation. This maximal value is the solution of the following maximization
problem:
L
C= max (wpg(Fyr)) = max / Bi(u(s))Bj(v(s)) B(w(s))ds | , (8)
u(s),v(s)w(s) u(s),w(s)w(s) \Jo
where B;(u), B;(v), Br(w) are the B-spline basis functions blending a single con-
trol coefficient, P,j, over the volume Vi, and u(s), v(s), w(s) and L are defined

in Equation (4). This maximization problem is discussed in Section 2.3.

2. Error dispersing in the fixed point representation. Let D be the number of dif-
ferent possible values in the fixed point representation, and C be the solution of
Equation (8). Then, 4, = % is the length of the quantization interval. In or-
der to alleviate the effects of the truncation error, random noise in the form of
a number between 0 and ¢. is added to the weighted contributions of the control
coefficients before they are being converted into their fixed point counterparts.
Thus, these weighted contributions are randomly scattered around the middle of

the quantization interval.
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2.3 Finding a Supremum for a Single Control Coefficient’s Con-
tribution

In this section, we shall compute a supremum for the weight of the contribution of a
single control coefficient to a single ray (C in Equation (8)). As defined in Section 2.1, V;
is the support volume over which a control coefficient, P,;;, has a positive contribution.
The intersection interval between a ray and V;j; is determined by the direction of the
ray. The contribution of the control coefficient is given in Equation (5).

We shall compute the supremum for the case in which there are cubic B-spline basis
functions on all three-dimensions. This case is selected due to the high usability of the
cubic basis functions, an order we employ in most of the work presented here. For other
orders, the computation would follow similar lines.

For cubic basis functions, we have,
Vijp = [1,i+4) x [1,7 +4) x [k, k+4), (9)

or the support volume of P,j;. Since uniform cubic B-spline basis functions are employed,
the parametric domain of each basis function, on each dimension, is [0,4). Let R, be
a ray which intersects V;;;. Denote by h;, hj, hy > 0 the projections of R, , N Vir on
the axes of the parametric domain, and let ., = max(h;, hj, hy) < 4. Then, without

loss of generality, assume that hj = A4, and we have,

[ Biuts) Bi(o(s)) Buluwls))ds < 52 [ Bulu(s))ds, (10)

because B;(t) < %, Vt, for uniform cubic B-spline basis functions. For a uniform cubic

B-spline function defined over the parametric domain [0,4),

/04 By(t)dt = 1. (11)

Along the k direction, and in the worst case, the entire positive domain of By(t) is

affecting R,,,, and hence we have By(t) |1=04= Bk(%) |s=0.1,, or w(s) = %. Therefore,

/OL Br(w(s))ds = /OL B (4%) ds
= J # () G
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4 L
— / Bi(1) 2t
0 4
I 4
-z / By(1)dt
4 Jo
L
= = 12
: (12)
Finally, in the worst case, the intersection interval between R,, and V;;; is the main

diagonal of Vi, and L = 44/3. Hence,

% V3. (13)

O
O

C< §§/o By(w(r))dr = ~= <

Figure 4 illustrates two extreme cases. For cases where h,,,, does not cover all of the
parametric domain of By, the contribution will be smaller because the integral will be
computed only on a sub-interval of the parametric domain of By. Hence, C < %\/g, in
Equation (8). While this bound of C is clearly not tight, the example of the axis parallel
ray in Figure 4 yields

Bi(2) B, (2) By(s)ds = %3/ Bu(s)ds = =

[ Biuts)) Bi(o(s)) Butuw(s)yds = [ 2l .

0

or a \/3 factor from the established bound for C of %\/g.

Concluding the preprocessing stage, it should be noted that while the resulting data
structure is large, a single data structure could serve the three front, side, and up
views. Having a symmetric trivariate with similar knot sequences and orders in wu, v,
and w, by swapping the x, y, and z indices of the coefficients, one can employ the same

preprocessing data structure for all three views.

3 Interactive Rendering

As depicted in Section 2.2, each control coefficient, P, in each trivariate patch holds all
the references to the rays for which the weighted contribution of the control coefficient
is positive. As already stated, during the interactive stage, the object is modified by
changing the values of control coefficients in the trivariate functions’ control meshes.
Thus, after a reshaping operation is conducted, the exact subset of control coefficients

which were modified is known. For each control coefficient in this subset, the densities
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Figure 4: Two extreme cases of an intersection between a ray and V,jy.

of all the rays for which the control coefficient holds references to, must be updated. Let

k3

the old and new values of the coefficient P;;; be denoted by P{}lg and P[i", respectively.

Then, the density of a single ray is updated due to change in the coefficient P,;; by

—Pn¢%a (Pijk)
19k Prag\t v
v — [old € — [old e—(szw—Pi‘jlg)wplql (P,']k)‘ (14)
P19t P19t e_Pglgwplql (Pi]k) P19t

Again, recall that Equation (14) holds due to the multiplicative nature that has been
observed in Equation (7). Thus, updating the value of pixel (p, ¢) due to a change in a
single coefficient, P,j;, requires a small and fixed set of operations that is independent
of the rest of the coefficients affecting pixel (p, ¢).

The introduced visualizing algorithm can employ transparency to convey the object.
The generated image is a gray level image, in which a pixel with a brighter color denotes
an object with a higher density along the path of the ray. This transparency computation
can be combined with shading. In order to generate the shading information, normals
must be derived. These normals can be derived out of the trivariate tensor product
B-spline functions which represent the object.

Let the boundary of the object be an iso-surface of the scalar trivariate. This bound-
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ary is detected by the first location along a ray’s path in which the value of the trivariate
function representing the object is above a predefined threshold. Then, the normals are
computed on this iso-surface that forms the boundary of the object. Unfortunately,
complete rays must be re-casted in order to reevaluate the iso-surface and the normals,
every time some coefficient changes. Clearly, reshaping operations can now become
much slower. Nevertheless, due to the fact that only a small region of the object is
typically modified by each modeling operation, only the rays that affect some P in
the modified region, should be recasted. The evaluations of normals continue to yield
interactive modeling speeds of several frames per second for fairly complex trivariate
mesh resolutions of approximately a hundred coefficients cubed, as will be demonstrated
in Section 4

Finally, the shaded image and the transparent image of the object can be linearly
blended together, allowing the user to control the shading based upon the illumination

or upon the object’s density.

4 Examples

This section presents examples of objects that were rendered using the visualization
scheme introduced in this work. As already stated, any trivariate function could be
similarly rendered, such as the function from [1, 7, 15, 16].

The developed direct rendering tool is based on the Glut [5] toolkit from SGI that
is compatible with both SGI and PC WinNT environments. All the examples in this
section were recorded off an Onyx SGI having a reality engine graphics board. While
the data structures are large and take significant amount of time to compute, they
are computed only once. Further, these data structures allow us to achieve rendering
updates of several frames per second. One byte per weighted contribution has been
used in all presented examples. The size of the two dimensional images for all presented
examples is 512 x 512 pixels. All the objects in the presented examples were modeled
by assigning the coefficients of the trivariate function a value of zero at a location with

no material, a value of one hundred at a location with a material of the highest density,
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and intermediate values at locations with material of intermediate densities. We seek
the iso-surface at which the value of the trivariate scalar function is fifty, locations that
are considered to be on the boundary of the object. Thus, locations at which the value
of the trivariate function is above fifty are inside the object, and locations at which the
value of the trivariate function is below fifty are outside the object.

Figure 5 shows a kid’s slide visualized by the presented direct volume visualization
technique. The original real slide is presented in the photograph of Figure 5 (a). The
computerized model of the slide was reverse engineered from the real slide, using the
approach presented in [15], into a scalar trivariate function whose transparent image
is shown in Figure 5 (b). Figure 6 shows the same slide object shaded. Figure 6 (a)
shows a blend between the gray level transparent image and the shaded image, and
Figure 6 (b) shows the shaded image of the slide, with normals computed along the
iso-surface boundary. Figure 7 shows the same slide object with the addition of another
trivariate patch used to model the caption on the slide’s slope. Preprocessing the trivari-
ate from the displayed viewing direction took about four hours on an 180Mhz R10000
SGI machine. As described in Section 2.2, the data computed during the preprocessing
stage consists of the weighted contributions of each control coefficient of the trivariate
functions to each ray casted from a pixel in the screen. We shall refer to this data as
the preprocessing data. The size of the preprocessing data of the slide object shown in
Figure 5 is about 250 MB. The size of the control mesh of the trivariate function rep-
resenting the slide object is 68 x 74 x 107 coefficients. Rendering a complete gray level
transparent image of the whole trivariate function representing the slide, on an 180Mhz
R10000 SGI machine, takes about 119 seconds. Direct rendering of a shaded image of
the same trivariate takes about 29 seconds. The time required for an update and a
rerender due to an interactive change of a single control coefficient, when no shading
information is generated, is about 3.5 x 107° seconds. For direct rendering with shading,
about 1.2 x 10™* additional seconds are required for each control coefficient.

Figure 8 shows a chair visualized by the presented direct volume visualization tech-
nique. The model of the chair was also reverse engineered from the real chair presented

in Figure 8 (a) using the approach presented in [15], into a trivariate function whose
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(b)

Figure 5: A photograph of a real kids slide that is reverse engineered into a trivariate
scalar function representation is presented in (a). The reverse engineered model is visu-
alized transparently in (b) by the presented direct volume visualization technique. The
cross marker seen in (b) is the cursor of the tool used to model the shape.

transparent image is shown in Figure 8 (b). Figure 8 (c¢) shows the same chair, this time
shaded. Preprocessing the trivariate from the displayed viewing direction took about
seven hours. The size of the preprocessing data is about 400 MB. The size of the control
mesh of the trivariate function representing the chair object is 91 x 90 x 80 coefficients.
Rendering a gray level transparent image of the whole trivariate function representing
the chair, on an 180Mhz R10000 SGI machine, takes about 186 seconds. Rendering a
shaded image of the same trivariate takes about 42 seconds. The time required for an
update and a rerender due to an interactive change of a single control coefficient, when
no shading information is generated, is about 4.5 x 10™° seconds. For rendering with
shading information, about 1.4 x 10~* additional seconds are required for each control
coefficient.

Figure 9 (a) shows a trivariate model of a human face reconstructed from data

generated by a three-dimensional scanner, and then visualized by the presented direct
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(2) (b)

Figure 6: The kids’ slide from Figure 5 shown in different levels of shading. (a) shows
a blending between the gray level transparent image and the shaded opaque image, and
(b) shows the shaded opaque image of the slide. The cross marker seen in (a) and (b) is
the cursor of the tool used to model the shape

volume visualization technique. Figure 9 (b) shows the human face shaded, and with
normals computed along the iso-surface boundary. Preprocessing the visualization data
took about twenty hours. The size of the preprocessing data is about one G'B. The
size of the control mesh of the trivariate function representing the human face object
is 121 x 121 x 121 coefficients. Rendering a gray level transparent image of the whole
trivariate function representing the human face, on an 180Mhz R10000 SGI machine,
takes about 491 seconds. Rendering a shaded image of the same trivariate takes about 65
seconds. The time required for an update and a rerender due to an interactive change of

a single control coefficient, when no shading information is generated, is about 4.6 x 107"
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(2)

Figure 7: The kids’ slide from Figure 5 with the addition of another trivariate patch
used to model the caption on the slope of the slide. (a) shows the slide visualized
transparently and (b) shows the shaded opaque image of the slide.

seconds. For rendering with shading information, about 1.9 x 10™* additional seconds
are required for each control coefficient. Finally, Figure 10 presents the model of the
face, after some editing operations, adding two horns to the face.

Tables 1 and 2 summarize all the results of this section. In all examples, the time
to update a single coefficient, in both the transparent and the shaded mode, was in the
order of less than a millisecond. Hence, hundreds if not thousands of coefficients could
be updated per second while achieving a rendering rate of at least a frame per second.
In the above examples, sculpting tools that affects less than a hundred coefficients at a
time, where typically used. Having an object of about one hundred cubed coefficients,

the tool typically affects 4% or 5% coefficients. Having about ten samples per second
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(2) (b) (c)

Figure 8: A photograph of a real garden chair that is reverse engineered into a trivariate
scalar function representation is presented in (a). In (b) and (c), the reverse engineered
model of the chair is visualized by the presented direct volume visualization technique.
(b) shows a transparent image of the chair, and (c) shows a shaded opaque image. The
cross marker seen in (b) and (c) is the cursor of the tool used to model the shape.

Pre- Pre- Mesh Size
Object || Figure(s) | processing | processing of
Time Data Size Trivariate
Slide 5,6 4 hours 250Mbyte | 68 x 74 x 107
Chair 8 7 hours 400Mbyte 91 x 90 x 80
Face 9 20 hours 1Gbyte | 121 x 121 x 121

Table 1: A summary of the preprocessing results shown in this section, computed on an

SGI Onyx with 180Mhz R10000 cpu.

of the motion of the tool and one ends up with about a thousand coefficients that are
updated per second.

The size of the computed data structure, in the preprocessing stage is large. Recall
that a single data structure could support the three views of front, side, and up for a
trivariate function with identical knot sequences and orders in the three direction. In
fact, due to the independence on the order of the coefficients in the line integral, six

different views (+x, ty, +2) could be derived by swapping the z, y, and z coefficients.
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(2)

Figure 9: A transparent image of the human face visualized by the presented direct
volume visualization technique. (a) shows a transparent image of the face, and (b)
shows a shaded opaque image.

Rendering of a Rendering of
Object whole Volume (Secs.) a Single Coefficient (Secs.)
No Shading ‘ With Shading | No Shading ‘ With Shading
Slide 118 29 3.5 x 1077 1.55 x 1074
Chair 182 42 4.5 x 1077 1.85 x 1074
Face 491 65 4.6 x 1077 2.36 x 10~

Table 2: A summary of the rendering times for the objects shown in this section, com-

puted on an SGI Onyx with 180Mhz R10000 cpu.

Moreover, these views need not necessarily be axes parallel and a single preprocessing
data structure could serve six different views, if the knot sequences and orders are
identical in the three axes.

Have a preprocessing data structure with a significant size to handle, the Onyx

machine we have employed has 192 MB of real memory and therefore this machine
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Figure 10: The same object as in Figure 9 after further modeling of two horns.

was unable to hold this entire preprocessing data set in real memory. As a result,
local sculpting operations could be made interactively while large interactive motion

commands experienced delays due to the memory swapping needs.

5 Conclusions and Future Work

In this work, we have presented a three-dimensional interactive rendering scheme of
uniform trivariate B-spline functions. The continuous trivariate representation yields
several advantages like the ability to transparently visualize the object by employing
accurate analytic computations of the object’s density along the casted rays, the capacity
to transparently visualize objects with a non-uniform density, and the capability to
interactively render the modifications which the object undergoes during a modeling
process.

Possible future work includes:

e Transparently visualizing the object from arbitrary viewpoints - As stated in this
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work, the visualization of the object can be currently conducted from a fixed
viewpoint. Updating the transparent image of the object after some modeling
operation involves simple arithmetic computations and can be performed interac-
tively. By preprocessing and preparing the necessary data structures from several
viewpoints, one can interactively update several images from several viewpoints
during the modeling process. Consequently, the user can interactively select a
viewpoint from which he/she would like to view the object. Nevertheless, the size
of the preprocessed data is large and effort should be invested in minimizing this

size.

e Transparently visualizing objects with a non-uniform color - As described in Sec-
tion 2.2, Equation (7) holds due to the fact that the rendered objects are considered
to have a uniform color. Therefore, the order in which the control coefficients are
integrated is of no importance, and the transparent image of the object can be
interactively updated as depicted by Equation (14). Finding an efficient method
for integrating the coefficients according to their distance from the user, for visual-
ization and interactive rendering, will enable one to transparently visualize objects

of various colors or properties.
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