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Abstract

In this work, the matching problem between two free form parametric surfaces,
Si(u,v) and Sy(r,t), has been considered in the context of a first stage of the
metamorphosis process, which is defined as gradual and continuous transformation
of one key shape into another.

A method is presented to approximate the two reparametrization functions,
r(u,v) and t(u, v), via a discrete sampled set of N2 grid samples on the surfaces. The
N? samples on the source surface are matched against the N? samples on the target
surface, employing a resemblance metric between their Gauss fields as a criterion.
The method preserves the connectivity of the two key surfaces as well. Thus, the
resulting reparameterization functions, interpolating the discrete solution must be
diffeomorphism. The algorithm works with simple open surfaces, i.e. the surfaces
that are homeomorphic to a disk.

Keywords: Computer aided geometric design, free form parametric surfaces, matching,

morphing.

1 Introduction

Free form parametric surfaces are being extensively employed in various fields such as
computer graphics, computer vision, robotics and geometric modeling. The problem of

finding a match between free form surfaces (or other three-dimensional objects) attracted
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considerable attention in the literature during the last decade. The motivation for this
problem may come from different areas. It is a useful tool for object recognition in com-
puter vision, where an object has to be matched, and hence recognized, against a library of
canonical objects [18, 11, 1]. Docking of molecules in molecular biology employs matching
algorithms to find a geometric fit between parts of the boundaries of two molecules [7].
In geometric modeling, proper, self-intersection free, ruled surfaces’ construction, and
modeling of sweep and blending surfaces require the correspondence between the key
curves [3].

In computer graphics, the matching problem is typically considered in the context
of the first stage of the metamorphosis process. Morphing (or metamorphosis) may be
defined as gradual and continuous transformation of one key shape into another. The
morphing problem has been investigated in the context of two-dimensional images (see
for example [2, 8, 17]), planar polygons and polylines (i.e. piecewise linear curves) in [9,
14, 15], free form curves in [3, 5, 13], and even volumetric representations (see [10, 4]).
Herein, we would like to investigate the matching problem in the context of free form

surfaces.

1.1 Matching Criteria for the Free Form Surfaces

The first stage of any metamorphosis problem requires the establishment of a correspon-
dence between the details of the given source and destination objects. When we consider
the metamorphosis between free form parametric surfaces, this stage is equivalent to find-
ing a match between the two parameterizations of the two surfaces.

Regrettably, the proper criterion for matching the two surfaces is not readily available.
When one is examining a match between two surfaces which are similar in some way, it

is possible in many cases to visually evaluate the quality of the metamorphosis sequence.



For example, consider two animals with four legs that are to be matched. One could
expect that the legs of one animal will be matched to the legs of the other, as would the
heads of the two animals, etc. In contrast, if the two surfaces are significantly different,
it is also difficult to visually and/or mentally evaluate the quality of the match.

The geometrical form of the surface may be described by any of its intrinsic (i.e.
parameterization independent) properties. The criterion we shall consider in this work is
the resemblance of the unit normal fields of the two surfaces. The unit normal field of
the surface is translation and uniform-scaling invariant, but if one surface is the rotated
version of the other, the first normal field will be the rotated version of the second. In
our case, we exclude non uniform scaling, since this operation changes the shape of the
geometry (for example, from sphere to ellipsoid).

Other criteria may be used for the surface matching. Another optional criterion is the
resemblance of the principal curvatures ki and i, i = {1,2} through all the points of
the parametric domains for the matched parameterizations (see [16]). It’s also possible
to compare the mean and Gaussian (or total) curvatures of the given surfaces, which
define the surface in a unique way up to their position and orientation in space, but not
scaling. While the normal field criterion (defined in the Section 1.2) is invariant to scaling,
the curvature criteria are sensitive to scaling, but are immune to rotation and translation.
However, the ratio of the principal curvatures, :—31), represents a good criterion that resolves
the scaling dependency. J

Consider a match between surfaces using a normal field criterion with the aid of the

Gauss Maps:

Definition 1.1 The Gauss Map G of the parametric surface S : D — IR is a mapping



to the unit sphere §%, G : D — S?%, comprising the following points:
(z,y,2)€S*: Fu,v) €D

(r,y,2) = ﬁ(u,v) = <gEZ7Z; i ;EZ7Z;>7 (1.1)

where S* = {(:zj,y,z) eR*: 24y 422 :1}_

Given Gauss Map of a region of the first surface, So(u,v), we seek the best possible

resemblance to the Gauss Map of the matched region of the second surface, Sy(u,v).

1.2 Matching by the Normal Fields

Every good matching criterion must capture the intrinsic geometric property of the sur-
face, which is independent of the parameterization. For example, if we aim to match
the two surfaces in Figure 1 using the criterion described in this Section, i.e. the resem-
blance of the normal fields of the surfaces So(u,v) and Si(u,v), then the humps are fully
characterized by their Gauss Maps (see Definition 1.1) and should be matched.

A hump in the plane is to be metamorphed into a slightly different hump in the same
plane, but in a different location. The simple metamorphosis, using a simple convex

combination of the two surfaces without any reparameterization,
Si(u,v) = (1 —t)So(u,v) + tS1(u,v), t€][0,1],

creates the result that is shown in Figure 2, i.e. the first hump is continuously growing
smaller while the second one is growing larger. During all the intermediate steps, we
have two humps on the plane. The intent of the user was probably that the hump feature

would be preserved and translated from one place to the next, as is illustrated in Figure 3.
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Figure 2: Convex combination metamorphosis without the matching of the relative pa-

rameterizations of the two key surfaces.

Figure 3 is the result of a matching process that follows the discrete approach which is
presented in this work.

The initial idea of matching the free form surfaces via the normal field criterion is
derived from [3]. For matching of planar curves, the tangent field criterion works quite

well. The normal field criterion may be considered as its counterpart for surfaces. In

addition, the normal field is invariant to translation and scaling transformations, but, as

already stated, is sensitive to rotations.



Figure 3: Convex combination metamorphosis after the matching of the relative parame-
terizations of the two key surfaces. Note the match of the particular feature shown in the
picture. Compare the sequence with Figure 2

Here, we shall examine the problem of matching two simple and open free form para-
metric surfaces: Sy : D — IR® and S; : D — R?, where D = [0,1] x [0,1] is the
parametric domain for the both surfaces.

Let the unit normal field, Z\_fz(u, v), of surface S;(u, v) be as defined as in Equation (1.1).
Consider the similarity of the normal fields, Z\70(u, v) and Z\71(u, v), of surfaces Sp(u,v) and
S1(u,v) as the criterion for the matching of the surfaces So(u,v) and Sy(u,v). In this case,
the solution to the matching problem is equivalent to the following optimization problem:

find the maximum of the functional,

max J (s(-,-),t(-,-)) = S(E%iﬁ)/o /0 <Z\70 (u,v), N, (s(u,v), t(u, v))> dudv;
st (s(u,v),t(u,v)) €D, ¥Y(u,v)€D
S—Z(u,v) %(u,v)

Seu,v) 5w, v)

(1.2)

J (s,1) (u,v) = det >0, VY(u,v)€D,

D=(0,1)x(0,1)
where s(u,v), t(u,v) are the two reparameterization functions that we seek.
J attempts to minimize the angle between the corresponding normals of the first and
second surfaces, over all points in D, and (s,t) : D — D is a valid reparameterization of

D, i.e. diffecomorphism. The diffeomorphism condition is equivalent to J (s,t) (u,v) > 0,

6



see [12], pp. 224, 234.

In this work, we introduce an algorithm that approximates the solution of the prob-
lem (1.2). Our method works with the discrete version of the problem. Even in this
simplified discrete version the optimization task is not trivial. In order to find the opti-
mal correspondence between the parameterizations of the two surfaces and satisfy all the
conditions of (1.2) we need to explore nearly all possible matches. The number of such
matches is exponential in the number of samples. In the one dimensional case, the prob-
lem has been solved with the aid of dynamic programming (see [3]), which is impossible
in two dimensional case due to complex connectivity conditions. Thus our solution for
the surfaces is not a globally optimal solution, but merely a local minimum approximiza-
tion. The algorithm that is described in this work has one additional constraint: the four
corners of the rectangular parametric domain D are fixed, i.e. our boundary conditions

are:
s(0,v) =0, s(l,v)=1,
(1.3)
tH(u,0) =0, t(u,1)=1.
Condition 1.3 may be relaxed by allowing 90° rotations and reflections of corners to
corners.
This paper is organized as follows. In Section 2 the detailed algorithmic description

can be found. In Section 3 some simple but illustrative examples are introduced. Finally,

we conclude in Section 4.

2 Discrete Approach to Matching

In practice, one could consider the matching problem in the discrete case. Any possible
approach for solving the matching problem in a discrete manner will be using a discrete

matching criteria, following the ones described in the Section 1, i.e. the Gauss Maps of



the given surfaces (see Definition 1.1).

The relations between the Gauss Maps of the two given surfaces can be helpful in
the different stages of matching the relative parameterizations of the two surfaces. For
instance, some initial matched points on the two surfaces might be prescribed either on
the boundary for open surfaces, or may be an arbitrary point on the parametric domain:
{(u0,v0),(s1,t1)} € D, such that point Sp(ug,ve) would correspond to point Si(sq,%1).
The matching process would exploit the resemblance of the Gauss Map’s locations of the
neighborhoods of the feature initial points, toward a complete match between the surfaces.

Here, we shall consider the problem when both surfaces are open and simple, i.e. the

following relation holds:

Si(u,v)|op = 05 (2.1)
Si(ur, v1) = Silug, v3) = (uy,v1) = (g, v2); (2.2)

where
Si={(z,y,2) € R*: H(w,v) €D Si(u,v) = (w,y,2)} . (2.3)

The input of the discrete matching problem is the square grid of the points P?. =

27]

(u;,v;) of size K = 2% k € T+ in both directions of the parametric domain D:

K-1 l J
wov)lijmor W= vi=g 7 (24)

The solution of the discrete problem will be O(K?) pairs of the matched points:
{(uiv Uj)v (Siv t])}f?]_zlo 5

s.t. (si,t;) € 0D V(i,7): (ui,v;) € D  and vice versa.

(2.5)

The set of points (s;,¢;) approximates the value of the function
(s(uiyv;),t(ui,v;)) that maximizes the object functional J (s(-,-),%(-,-)). In addition,
the mapping (s(-,-),%(+,-)) should satisfy conditions that are defined by Equation (1.2).
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Recall that the algorithm for free form curve matching of [3] considered the discrete
version of the matching problem as well. The complexity of the straight-forward search
of the optimal allowable reparameterization for the discrete versions of free form curves is
equal to number of all possible versions of allowable reparameterizations, i.e. is exponen-
tial in the number of curve samples. Nonetheless, the problem was solved with the aid of
dynamic programming that can find the optimal solution in O(n?) time, where n is the
number of samples on each curve.

Unfortunately, this approach does not work for the search of the optimal surface repa-
rameterization. As in the one dimensional case (curve reparameterization), we have some
constraints on the matching of the samples on the surfaces. The most severe constraint is
the connectivity of the mapping, which in the two-dimensional case cannot be formulated
in such simple way as in the one-dimensional case.

In the case of surface matching, the conditions are more complicated. If a point
PP = (ug,v;) is mapped to the point P}, = (s;,1;), the eight points adjacent to P,

] 1,77

0 0 0 0 0
i.e. the points P? Lot Pisigs Pilians Piioas 777]“, 772_|_1] 1 Piyyjand PRy ooy (see

: 1 1 1 1 1 1 1
Figure 4), are mapped to either P} or to Pl .\ Pl Py s Pl Py Py joas

1,77
772»1_|_17j and 7721+17j+1, and due to continuity/connectivity constraints, polygon

1 1
73 { —1,7— 173 73 1]—|—17Dz ]—I—lpz—l—l ]—I—lpz—l—l,] i+1,5— 1 2] 1}

must contain the point 7321],

but none of the points Py ;, where k& ¢ {i,i£1}, or | ¢
{j,7 £ 1}, so that the isomorphism condition is satisfied (see Equation (1.2)).

Let us introduce some new notations. Denote by A, a convex quadrilateral that is a
subset of the parametric domain, D, of surface S(u,v).

If the set A coincides with the entire parametric domain, D, then we define the line
(A) to be the left edge, 4.(A) to be the right edge, v,(A) to be the upper edge, and
v4(D) to be the lower edge (down from A), on the boundary of A, in the following way



0 0 0
Pili o Pii Pit1-1
0 0 0
Pi_1; \Pw Pil;
\
\
\_ —_ - — — — - — =
0 0 0

Figure 4: The matching of the neighborhood of the point (u;, v;) in the parametric domain
Dy of the first surface with polygon P on the parametric domain D; of the second surface.

(see Figure 5):

(D) =(0,v), v e (0,1),
(D) =(1,v), v € (0,1),
(2.6)
Yu(D) =(u,0), u € (0,1),
va(D) =(u, 1), u € (0,1)

Let £ and Ly be two straight lines, each intersecting two non adjacent edges of the
boundary of A: the line £; intersects the left edge v;(A) as well as the right edge +,(A);
similarly, the line £, intersects the upper and lower edges of the set A, i.e. ,(A) and
v4(A) (see Figure 5). Note, that £, and £, divide A into four convex quadrilateral areas,

each containing precisely one of the vertices of the original quadrilateral d.A.

Definition 2.1 Let the straight line, £;, ¢ € {1,2}, in the plane of the parametric domain
D, be defined by the implicit equation a;u + b;v + ¢; = 0. We say that point (uy,v) € A
is above the line L;, if a;uq + by + ¢; > 0 and that point (ua,ve) is below the line L; if

a;Us + b;vy 4+ ¢; < 0.
Denote by Upper(A) the subset of A, which is located above the line £; and by

10



Figure 5: The convex quadrangle A divided into four areas by the lines £4 and L,.

Lower(A) the subset of A that is below the line £y. In a similar way, the set Right(A) is
the subset of A above the line £, and the set Left(A) is the subset of A below the line
L.

If line £, is parallel to the u-axis and passes through the centers of the edges y;(A)
and ~,(A), then the set of all points of A located above £; will be denoted by Upper(A),
and the set of all points of A below the line £; by Lower(A). Analogously, if £, is
parallel to the v-axis and passes through the centers of the segments 7, (A) and v4(A),
then Right(A) is the set of all points of A above the line £, and Left(A) is the set of all
points of A located below the line £s.

The upper, lower, right and left edges of A serve as the upper, lower, right and left
edges for the corresponding subregion of A (i.e. for the subsets {Upper(A) N Left(A)},
{Upper(A) N Right(A)}, {Lower(A) N Left(A)}
and {Lower(A) N Right(A)}, which are incident with these edges). The remaining edges

of those areas lie on the lines Lo and £; (see Figure 6).

11



Ya(A)

Figure 6: The edges of one quarter UL = {Upper(A)ﬂLeft(A)} of the convex quadrangle
A.

Finally, denote by G;(A), the Gauss map of the subregion of S;(u,v), defined by the

parametric domain A C D:
Gi(A) ={(z,y,2) €S*: F(u,v) € A, Ni(u,v) = (2,y,2)}. (2.7)

2.1 Distance Between the Two Sets of Points in the Parametric
Domain

Consider the distance between the set of points A in the parametric domain Dy of the
first surface So(u,v) and one point (ug,vo) in the parametric domain D; of the second

surface Si(u,v) as the distance between the normal Zvl(uo, vo) and the Gauss Map of A:

dist ((ug,vo), A) = (u?SEA arccos <<ﬁ1(u0,v0), ﬁo(u,v)>> , (2.8)

As was shown in [13], the matching of the relative parameterizations of two free form

curves, and as suggested in [3], the existence of a valid reparameterization between the

12



given source and target curves can guarantee a self-intersection free metamorphosis be-

tween the two curves.

Definition 2.2 A match s : [ag, bo] — [a1,b1] for the curves vy : [ag,bo] — R® and
v1 : [a1,b1] — IR? is said to be valid if for every t € [ag, bo] the angle between the vectors

Loo(t) and L~y (s(t)) is less than Z.

Let us consider the same criterion for the normals of the source and target surfaces.
If the angle between the normal Zvl(uo, vo) and the normal Zvo(u, v), (u,v) € Ais greater
than 7, i.e. the match is not valid (see Definition 2.2) and one could use some (relatively
large) penalty as a replacement for the distance between them. We define the distance

between the two sets of points in the following way:

Definition 2.3 The distance between a finite set of points A in the parametric domain
of the first surface So(u,v) and a finite set of points B in the parametric domain of the

second surface Sy(u,v) is equal to

dist(A,B):(%) S dist ((u,0), ). (2.9)
(u,v)EB

Note, that the distance defined by (2.9) is not symmetric, thus it’s not a proper metric.

2.2 Matching Algorithm

Let us introduce a method for matching the points 77% = (u;,vj) sampled on a grid
in the parametric domain of the first surface, So(u,v), and points P}, = (sk, 1), 0 <
i,7,k,l < K —1 on a grid in the parametric domain at the second surface, Si(u,v),

following Equations (2.2) — (2.4). This method is, in fact, hierarchical and works in
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several resolutions, performing the steps described in Sections 2.2.1, 2.2.2 and 2.2.3. We

shall employ a matching criterion of the normal fields, as our example.

2.2.1 Matching of the Horizontal Isoparametric Curve

Find the straight line £y, connecting one point of v(D) with some point of ~,.(D) on the

parametric domain of the surface Si(u,v), such that both the values of,

dist <g0 <Upper(D)> ,G1 (Upper(D))> and
dist <g0 <W> , 01 (Lower(D))> ,

are minimized simultaneously. See Section 2.1 for the definition of the distance between
the set of points in the parametric domain Dy of the first surface and the subset of the
parametric domain D of the second surface. There are O(K?) options for such line

locations, we need to calculate these distances for each such line and select the best one.

2.2.2 Matching of the Vertical Isoparametric Curve

Find the straight line £5, connecting one point of v,(D) with some point of ~v4(D) on
the parametric domain of the surface Si(u,v), such that the four following distances are

simultaneously minimized:

dist (go <Upper(D) N Left(D)> ,G1 (Upper(D) N Left(D))> ;

dist ( Go ( Upper(D) N Right(D)) ,G1 (Upper(D) N Right(D))) :

dist

(6 (
dist <g0 <L0wer )N Left(D)> ,G1 (Lower(D) N Left(D))> ;
(6 (

Lower(D) N Right(D)) ,G1 (Lower(D) N Right(D))) .

14



2.2.3 Recursion

Recall that K is the number of points in one of the directions (u or v) in the square

parametric domain of the first surface, following Equation (2.4).

If K = 2, then there is only one sample point 77% in each of the four quarters of the

k3

parametric domain of the first surface So(u,v):

{Upper(D) N Left(D)} , {Upper(D) N Right(D)} ,

{Lower(D) N Left(D)} , {Lower(D) N Right(D)} .

One should select the corresponding point P}, = (s(uy,v;), t(us, v;)) for Pf; and associate

it with a quarter in the parametric domain of the second surface Sy(u,v).

For K > 2, recursively perform steps 2.2.1 — 2.2.3 on the domains

{Upper(D) N Left(D)} , {Upper(D) N Right(D)} ,

{Lower(D) N Left(D)} , {Lower(D) N Right(D)} ,
of surface So(u,v) and domains
{Upper(D) N Left(D)}, {Upper(D) N Right(D)},
{Lower(D) N Left(D)}, {Lower(D)N Right(D)},
of surface Si(u,v).
Examine the preimage of the matched isoparametric curves in the parametric domains
of the surfaces. The matching problem of the two surfaces So(u,v) and Sy(u,v) is trans-
formed to the problem of the matching of the two parametric domains. In the previous

section, we matched the curve (u, %), u € [0,1] in the parametric domain of surface

So(u,v) with some straight line connecting a point on (D) with a point on ~,.(D) on

15



Figure 7: Matching the quarters of the parametric domains on the first level. The dashed
curve on the first domain (left) is matched with the dashed curve on the second domain

(right).

the parametric domain of the surface Si(u,v) (see Figure 7). The curve (u, i) , u € [0,1]

is matched with the polylines, comprising exactly three linear segments: the first one in
the quarter {Upper(D) N Left(D)}, the third one in the quarter {Upper(D) N Right(D)}
and the second segment is connecting the previous two (see Figure 8).

Several optimizations may be applied to the matching algorithm in order to decrease
the computation time. In this work, we employed the following method to decrease the

search time of the closest vector on the Gaussian sphere.

2.2.4 Projecting the Gaussian Sphere

Consider the following problem: find the distance between one fixed normal vector and

the Gauss Map of some surface. Here, the distance can be computed as:

dist <Z\7,Q(S)> = inf arccos <<N’,ﬁ>> . (2.10)

7EG(S)

Note, that the above metric is equivalent to the following:

dist <N’,g(5)> = inf 1- <N’ﬁ> (2.11)

REG(S)

16
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Figure 8: Matching the quarters of the parametric domains on the second level. Note
the dotted-dashed curves: the straight line on the first domain (left) is matched with the
piecewise linear curve comprising three linear segments on the second domain (right).

In order to decrease the time of this search, one may preprocess the data comprising the
normals of Gauss Map into data structures that would minimize the query time. One
can aim at organizing the Gaussian sphere into a two dimensional hash table (see [18]),
possibly via a central projection, with an access to the e—neighborhood of each vector
on the sphere in constant time, i.e. O(1). The search of the normals which are close
to a given vector on the Gaussian sphere is another operation that should be conducted
efficiently. The task has been reduced to the problem of a point locating in the plane.
Such an optimization could reduce the complexity of the algorithm by the factor of

K?2.

3 Examples

We present some simple examples of matching two parametric surfaces using the approach,
described in Section 2.
One example has already been discussed in Section 1.2, see Figures 1, 2, 3. There, we

matched the hump shaped feature of the two given surfaces.
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In Figure 9, one can find two more examples of metamorphosis sequences for surfaces
with matched relative parameterizations.

One interesting example of reparameterization as computed by the presented algorithm
may be found on Figure 10. Note that the parameterization of (¢) is a rotated version of
the parameterization of (a). In Figure 11, one may see several pairs of matched points on

the low resolution key surfaces.

4 Conclusions and future work

In this work, a new algorithm for matching the relative reparameterizations of two free
form parametric surfaces has been defined. The algorithm deals with the simple surfaces
that are topologically equivalent to disk. The method creates and uses a discrete repre-
sentation of the two key surfaces using the information contained in the original data, i.e.
the normal fields of the given surfaces.

We plan to continue our research in the following directions. Assume that both the
source and destination surfaces are convex. In this special case and following the method
of Section 2.2, one is not required to measure the resemblance of the surfaces by the
distance that was presented by the Definition 2.3. It is enough to compare the boundaries
of the regions in order to evaluate the quality of the match. As was shown in [3], for every
fixed location of the lines £, and L, we may evaluate the best match for the boundaries
of the four regions in time O(K?).

Thus, the surfaces can be decomposed into the maps of convex, concave and hy-
perbolic regions as a preprocessing stage, before the matching process [6]. If the two
convex/concave regions were matched, then we may employ the quality of the match of
the boundaries to measure the resemblance of the surfaces. Otherwise (i.e. both regions

are neither convex nor concave simultaneously), the regions are to be matched by the

18
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Figure 9: Metamorphosis after matching the relative parameterizations of the two key
surfaces (left column) and before matching (right column). Note that the neck of the
wine glass remains slim in the left column and the lower part of the glass is matched with
the dish surface, which resemble each other, while this is not true for the other version
of the metamorphosis (right column). In (d), one can see that the neck of the glass has
completely vanished, and the shape does not resemble neither the glass (a), nor the curved

disk of (e).
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Figure 10: Metamorphosis after matching the relative parameterizations of the two key
face looking surfaces. Note the rotation of the isoparametric lines on the faces, while the

face features (nose, eyes) stay put.



Figure 11: Three pairs of matched points for low resolution faces.

previous algorithm that is described in Section 2.2.

Our approach does not find a global optimal solution but only approximates it using
a greedy scheme. Some other improvements may be considered using a multiresolution
approach. This way we expect to further reduce the time of the computation and improve
the quality of the match.

Finally, the presented algorithm is to be extended for the general simple surfaces in
the future, i.e. for the closed surfaces that are topologically equivalent to a sphere or a

cylinder.
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