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Given two objects, their bisector is defined as the set
of points which are at equal distance from the two ob-
jects. Bisector construction plays an important role in
many geometric computations: e.g., Voronoi diagrams’
construction, medial axis transformation, shape decom-
position, mesh generation, collision-avoidance motion
planning, and NC tool path generation, to mention only
a few.

Unfortunately, the bisector of even simple geometric
primitives is not always simple. While the bisector of
two lines in the plane is a line, the bisector of two skewed
lines in IR? is a hyperbolic paraboloid of one sheet [1].
The bisector of two spheres of the same radius is a plane.
However, the bisector of two spheres with different radii
is a hyperboloid of two sheets or an ellipsoid (see the
sidebar “Point-Sphere Bisector”).

Freeform polynomial/rational primitives have bisec-
tors which are significantly more complex than those
for linear or circular primitives. For example, in the
plane, the bisector of two cubic polynomial curves 1s
an algebraic curve of degree 46 (see the sidebar “De-
gree of Planar Bisector Curve”). Moreover, the bisector
curve is non-rational, in general. Because of these lim-
itations, previous work has considered various approx-
imation techniques for bisector curves in the plane. In
particular, Farouki and Ramamurthy [5] developed an
approximation algorithm that can reduce the approxi-
mation error within an arbitrary bound.

There are some special cases in which the bisector has
a simple closed-form or a rational representation. Dutta
and Hoffmann [1] considered the bisector of simple sur-
faces such as natural quadrics and toroidal surfaces. For
these special types of surfaces, the bisector has a simple
closed-form representation. Farouki and Johnstone [4]
showed that the bisector of a point and a rational curve
in the same plane is a rational curve. Elber and Kim [3]
showed that the bisector of two rational space curves
in IR? is a rational surface. Similarly, the bisector of
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a point and a rational space curve in R® is a rational
ruled surface [3].

This article shows that the bisector of a point and
a rational surface in IR® is also a rational surface.
This result implies that the bisector of a sphere and
a surface with a rational offset is also a rational sur-
face. Pottmann [9] classified the class of all rational
curves and surfaces with rational offsets, which includes
the Pythagorean Hodograph (PH) curves as an impor-
tant subclass of all polynomial curves with rational off-
sets [6].
cones, tori), Dupin cyclides, rational canal surfaces (see

Simple surfaces (planes, spheres, cylinders,

discussion in the next paragraph), and non-developable
rational ruled surfaces all belong to this class of rational
surfaces with rational offsets [2, 8, 10]. Consequently,
our result can be applied to a wide variety of rational
curves/surfaces for the construction of their rational bi-
sector curves/surfaces with circles/spheres.

A canal surface is defined as the sweep envelope sur-
face of a moving sphere (possibly with a variable ra-
dius). Given a rational trajectory curve for the center of
the sphere and a rational radius function of the sphere,
Peternell and Pottmann [8] recently presented a surpris-
ing result that the canal surface is rational. The offset
of a canal surface is another canal surface that is ob-
tained by simply increasing the radius function by the
offset distance and sweeping the enlarged sphere along
the same trajectory. Consequently, rational canal sur-
faces (defined by rational trajectory curves and rational
radius functions) are closed under offset operation and
admit rational representations for their bisector surfaces
with arbitrary spheres.

The rest of this article is organized as follows. We
begin with the construction of a rational bisector sur-
The result is
then extended to that for a rational bisector surface of

face of a point and a rational surface.

a sphere and a rational surface with rational offsets.
The implementation of the proposed algorithm as well



Point-Sphere Bisector

Let S,(0O) C R’ be a sphere of radius r with its center at

O. The bisector of a point Q € IR® and a sphere S,(0) is
either an ellipsoid or a hyperboloid of two sheets, depending
on whether @ is contained in the interior or in the exterior
of the sphere S, (0). Note that each point P on the bisector
surface satisfies

for some § > 0, where d(P, S;(0)) is the distance between
P and S,(0).

Case I: @ is inside the sphere S, (O) (see also Figure 2 (a)):

In the configuration shown above, we have

1P =0l +P-Q
= (r—4)+946

= r,

which means that, for each point P on the bisector, the
sum of its distances to O and @) is constant. Hence, the
point P is on an ellipsoid. Moreover, O and @ are the two
focal points of the ellipsoid.

Case II: @ is outside the sphere S.(0) (see also Fig-
ure 2 (b)):

In the configuration shown above, we have

1P =ol-P-el
= (r+46)—96

= r,

which means that, for each point P on the bisector, the
difference of its distances to O and @ is constant. Hence,
the point P is a hyperboloid of two sheets. Moreover, O
and @ are the two focal points of the hyperboloid.

Note that the bisector of two spheres Sy, (O1) and S,,(O2),
r1 < ra, is identical to the bisector of the point O; and a

sphere Sy, _r, (O2).

Degree of Planar Bisector Curves

Given two planar polynomial curves C (t) = (a(t),b(t)) and
C>(s) = (a(s),B(s)) of degrees m; and mao, respectively, the
point P = (z,y) on the bisector curve of C;(t) and Cs(s)
satisfies the following three polynomial equations [3]:

(P—Ci(t),Ci(t)) = 0,
(P—Ca(s),C3(s)) = 0,
<P - M,au) - 02(s)> = 0
That is, we have
a' (e +b(ty = a(t)d'(t) +b()' (1), (1)
a(s)z+8'(s)y = als)a'(s) +8(s)8'(s),  (2)

I
=2
—~ =
-
=

e(s,)r + f(s,t)y

where e(s,t) = a'(t) — a'(s), f(s,t) = b'(¢t) — B'(s), and
g(s,t) = 3(a(t)® +b(t)* — a(s)® = B(s)?).

When we eliminate the variable ¢ from Equations (1) and
(3), we get an algebraic equation in three variables z,y, s:

(4)

By further eliminating the variable s from Equations (2)
and (4), we get an algebraic equation in two variables z

and y:
(5)

F(z,y,s)=0.

G(z,y) =0,

which represents the bisector curve of Ci(t) and C>(s).

In the case of low degree curves Ci(t) and Ch(s), (1 <
m; < 3 and 1 < my < 6), we have observed that the
bisector curve of Equation (5) is an algebraic curve of degree
Tmimz — 3(m1 + m2) + 1, which is also irreducible over
rational coefficients. For two cubic curves, the degree is
thus 46, which is too high to be useful in practice.




as all the examples presented in this paper were created
using TRIT [7], a solid modeling system developed at
the Technion, Israel.

Bisector of a Point and a Surface

Let @ € IR® be a fixed point and S(u,v) C IR be a
regular C'l-continuous parametric surface. Assume that
P(u,v) is a bisector point of @ and S(u,v). Then, we
have

(P(u,v) = S(u,v)) || N(u,v), (6)

1P (u, v) = QI = [[P(u,v) = S(u, v)|l, (7)

where || denotes the parallel relationship, N(u,v) is the

normal vector of S(u,v), and || - || denotes the length of
a vector.

Equation (6) can be rewritten using the following two
constraints:

<P(u,v)_5(u,v),%> = 0,
<P(u,v)_5(u,v),w> =0, (8

whereas Equation (7) can be rewritten as follows:

(P(u,v) — Q, P(u,v) — Q)
= (P(u,v) = S(u,v), P(u,v) — S(u,v)),

or equivalently,

(P(u,v), S(u,v) — Q)

— <S(u’v)’5(u’v)>_<Q’Q>
= . . 9)

The constraints in Equations (8)—(9) are all linear in
P(u,v). Using Cramer’s rule, one can solve these equa-
tions for P(u,v) and compute a rational surface repre-
sentation of P(u,v) provided that S(u,v) is a rational
surface (see the sidebar “Rational Parameterization”).

Figure 1 (a) shows the bisector surface of a point
and a plane, which is a parabolic surface of revolution.
Figure 1 (b) considers the bisector surface of a point
and a bicubic surface. The bisector surface has degree
(11,11).

Figures 2-4 present several examples of the bisec-
tor surface between a point and a simple surface. The
sphere is represented using a rational biquadratic sur-
face. The cone and cylinder are represented using a
rational NURBS surface of degree (1,2). The torus is
represented as a biquadratic NURBS surface as well.
The bisector of a point and a sphere turns out to be a

rational parametric surface of degree (16,16). The bi-
sector of a point and a cone (or a cylinder) is of degree
(8,16). The bisector of a point and a torus is of degree
(16, 16).

Bisector of a Sphere and a Surface
with Rational Offsets

Let S4(Q) denote the sphere of radius d with its cen-
ter at ), and a normal field pointing outside, and let
Sa(u,v) denote the offset surface of S(u,v) by an offset
radius d:

N(u,v)

Sa(u,v) = S(u,v) + dM’

where N (u,v) is the normal vector field of S(u, v). Note
that N(u,v) is the normal field of Sg(u,v) as well, be-
cause the normal field is preserved under the offset op-
eration.

Without loss of generality, we consider only the bi-
sector points P along the positive normal directions:
outside the sphere S4(Q) and along the oriented side
of the normal direction N(u,v) of Sz(u,v). Then, the
bisector surface of the sphere S;(Q) and the offset sur-
face Sq(u,v) is the same as the bisector surface of the
point @ and the given surface S(u,v). A point P at an
equal distance r between Sg(@Q) and Sg(u,v) is at an
equal distance r 4+ d between @ and S(u,v), and vice
versa, for all d. Similarly, the bisector surface of the
sphere Sq(@) and the surface S(u,v) is the same as the
bisector surface of the point ) and the offset surface
S_q(u,v).

Assume that S(u,v) is a rational surface, which has
a rational offset surface S, (u,v), for some r # 0. Then
the offset surface S_g(u,v) is rational, for all d, since

we have
Seafins) = S0 =d
- d . N(u,v)
S ) = T W )
= S(u,v)—;(sr(u,v) S(u’v))’

where S(u,v) and S, (u, v) — S(u, v) are clearly rational.
Consequently, the bisector between S4(Q) and S(u,v)
is a rational surface if the surface S(u,v) has a rational
offset surface.

Simple surfaces (such as planes, spheres, cylinders,
cones, and tori) are all rational. Moreover, they have
rational offsets since the offsets of these simple surfaces
are again simple surfaces of the same type. Therefore,



Rational Parameterization

Note that a; ;(u,v) and b;(u,v), (1, = 1, 2, 3), are all ratio-
nal functions if S(u,v) is a rational surface. By Cramer’s

Let rule, we can obtain rational parameterization of p(u,v),
28 (ut, v) . o) ) py(u,v), and p:(u,v) as follows:
= (ai1(u,v),arz(u,v),a1s(u,v
ou P EL AU BL A1t B bi(u,v)  aiz(u,v) ais(u,v)
aS(u, v bo(u,v) ase(u,v) azs(u,v)
(av ) = (a21(u,v),a22(u,v), azs(u,v)), (u,0) = ba(u,v)  asa(u,v)  asa(u,v)
S(u,v) —Q = (as1(u,v),as2(u,v),ass(u,v)), Pott, v} = ai(u,v)  az(u,v)  as(u,v) |’
az1 (u,v)  az(u,v) as(u,v)
<S(u,v), 85(8“’“)> = bi(uv), an(uv) an(uv)  as(u,v)
u
85 (u, v anr (u,v)  bi(u,v)  ais(u,v)
<S(U7U)7 (81) )> = ba(u,v), azi(u,v)  ba(u,v) azs(u,v)
(u,0) as1(u,v)  bs(u,v) ass(u,v)
2 2 =
IS (u, v)|I” — ||l = ba(u,v) Pyt ar(u,v)  a2(u,v) aia(u,v) |’
2 e az1(u, v)  az(u,v) azs(u,v)
P(U7U) = (pm(u,v),py(u,U),pz(u,v)), Cl31(U7U) Cl32(U7U) Cl33(U7U)
then Equations (8)—(9) can be reformulated as follows: an(u,v) arz(u,v)  biu,v)
az1 (u,v)  as(u,v) bo(u,v)
anr (u,v) ara(u,v) ars(u,v) Pa(u, v) b1 (u,v) _ as1(u,v) as2(u,v) bs(u,v)
pz(u,v) =
az1 (u,v) az(u,v) azs(u,v) py(u,v) | = | ba(u,v) | . an (u,v)  arz(u,v)  ais(u,v)
as1 (u,v) asa(u,v) ass(u,v) pz(u,v) bs(u,v) az1 (u,v)  az(u,v) as(u,v)
as1 (u,v)  as2(u,v) ass(u,v)
[ ]

Figure 1: A bisector surface (in gray) of a point and a plane is shown in (a). A biquadratic surface is constructed
that has the shape of a parabolic surface of revolution. In (b), the bisector surface (in gray) of a point and a general

bicubic surface 1s shown.

one is able to compute the bisector surface between a
sphere and a simple surface as a rational surface. Dupin
cyclides and canal surfaces (defined by rational spine
curves and rational radius functions) are also rational
and closed under offset operation [2, 8]. Therefore, the

bisector between a sphere and a surface (of these special
types) also becomes a rational surface. Figure 5 shows
an example of the bisector surface between a sphere and
a canal surface.

Pottmann [9] classified the class of all rational curves



(a) (b)

Figure 2: Two views of the bisector surface between a point and a sphere. In (a), the point is inside the sphere and
the bisector surface is an ellipsoid. In (b), the point is outside the sphere and the bisector surface is a hyperboloid

of two infinite sheets.

(a)

(b)

Figure 3: Views of the bisector surface between a point and a cone and that between a point and a cylinder. In
(a), the point is outside the cone forming two infinite sheets due to poles in the bisector’s parameterization, while

in (b), the point is inside the cylinder.

and surfaces with rational offsets, which includes the
Pythagorean Hodograph (PH) curves as an important
subclass of all polynomial curves with rational off-
sets [6]. Pottmann et al. [10] showed that all non-
developable rational ruled surfaces also belong to this
class of rational surfaces with rational offsets. Conse-
quently, our result can be applied to a wide variety of
rational curves/surfaces for the construction of their ra-

tional bisector curves/surfaces with circles/spheres.

In Figure 5, notice that the bisector surface consists
of three components, where two adjacent components
meet at a self-intersection point of the bisector surface.

Only the middle part belongs to the true bisector sur-
face since the other two components are closer to the
canal surface than the sphere. The elimination of these

redundant components is called trimming.

Given a point and an arbitrary surface, their trimmed
bisector surface bounds a convex region that contains
the point [4].
between a sphere and a surface also bounds a convex

Similarly, the trimmed bisector surface

region that contains the sphere since it is essentially the
same as the bisector surface between the sphere center
and an offset surface. Given a surface and a multi-layer
of concentric spheres, there is a corresponding multi-



(a)

(b)

Figure 4: Two views of the bisector surface between a point and a torus. In (a), the point is at the center of the

torus, while in (b), the point is inside the torus.

Figure 5: A view of the bisector surface between a
sphere and a canal surface. The bisector was computed
by offsetting the canal surface and then computing the
bisector between the center of the sphere and the offset
of the canal surface.

When the

given surface is a surface with rational offsets, we can

layer of convex trimmed bisector surfaces.

generate a level set of convex trimmed rational bisec-

tor surfaces that propagate from a point. Moreover,
each bisector surface has its rational parameterization
inherited from that of the given rational surface. This
capability enables us to generate a new rational local co-
ordinate system in the neighborhood of the given point.

In general, the trimmed bisector surface may con-
sist of many subpatches bounded by the self-intersection
curve of the untrimmed bisector. Consequently, an ex-
act trimming procedure is non-trivial to develop since 1t
1s difficult to determine a priori how many subpatches
the trimmed bisector has. Based on the convexity of
the region bounded by a trimmed bisector, we can de-
velop a subdivision-based method that samples points
on the bisector surface, construct supporting planes at
the points, construct a convex polyhedron bounded by
these planes, and trim out the bisector surface compo-
nents that belong to the exterior of the convex polyhe-
dron. This procedure can be repeated to the surface
regions where trimmings have occurred. We defer more
details of this approach to a future work.

Conclusion

In this article, we have shown that the bisector between
a point and a rational surface is a rational surface. This
result implies that the bisector between a sphere and a
rational surface with rational offsets is also a rational
surface. The class of rational surfaces with rational off-
sets includes various different types of surfaces: planes,
spheres, cylinders, cones, torii, Dupin cyclides, rational
canal surfaces, non-developable rational ruled surfaces,
etc. Recent development of Pythagorean Hodograph



(PH) space curves also accelerates the advance of sur-
face design techniques for rational sweep surfaces with
rational offsets. Consequently, the bisector construction
scheme we have introduced in this article has much po-
tential for applications in practice.
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