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Abstract
The use of blending and filleting operations in solid mod-

eling and computer-aided geometric design is well estab-
lished. The question of filling a gap between two (or more)
surface boundaries or rounding a sharp edge has been ex-
tensively investigated. The vast majority of the prior work
on blending and filleting concentrated on a wide variety of
fitting schemes as well as attempts to establish and guaran-
tee better continuity conditions.

This work extends the notion of filleting and blending
modeling tools and elevates them into shaping operations
that are either functional or ornamental in nature. The ex-
tended shaping operations can be conducted between two
boundaries of two adjacent surfaces, much like traditional
blending or filleting methods. Furthermore, the presented
extended forms can also be applied to the interior of a sin-
gle surface, guided by arbitrary parametric curves in the
domain of the patch.

Additional Key Words and Phrases: Curves & Sur-
faces, Decoration, Ornaments, Geometric Modeling Oper-
ations, Rounding, Cubic Hermite.

1 Introduction

Blending and filleting operations are important tools in
any contemporary geometric modeling environment. The
ability to smooth corners or to continuously connect two
adjacent surfaces into a single object is considered manda-
tory in any computer-based modeling environment. Blend-
ing and filleting surfaces are typically required to beG1.
That is, the blending surface must share a tangent plane with
the surfaces whose gap it fills, along their shared boundary.

Different authors denote these type of surfaces differ-
ently. Blending surfaces, filleting surfaces, or even joining
and rounding surfaces are the terms typically used. For the
sake of consistency, we only employ the term blending sur-
face in this work.

Classically, a blending surface is constructed along a
shared seam or an intersection between two other already
specified surfaces, called theprimary surfaces. Typically,
two of the boundary curves of the blending surface lie on
the primary surfaces. These two boundary curves will be
referred to asrail curves, following [8].

Blending surfaces may be subdivided into two types. The
first is the exact type, in which the cross section must fol-
low a prescribed form, typically circular; the second is the
imprecise type, in which the cross section is only loosely
specified. The former is known as constant radius blend-
ing and the latter as a “thumb fill”, having a thumb running
along the filleted area creating a non circular yetG1, or tan-
gent plane, continuously smooth filling.

Given a seam along which a blending surface needs to
be constructed, the standard approach for deriving the rail
curves is based on offsetting both primary surfaces [5, 15,
16]. This approach also guarantees the exact radius distance
needed for constant radius blending. Another alternative to
constructing the rail curve is by forming an intermediate
circular sweep surface around the seam and intersecting it
against the two primary surfaces [4].

In [2, 8, 14], blending approaches that do not use a con-
stant radius are presented. These approaches are appealing
for their simplicity and the elimination of the requirement
of an offset surface computation. Blending algorithms for
algebraic surfaces, including [1, 18], have been developed
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separately. See [17] for a nice survey of the different exist-
ing blending techniques.

Another type of related work, such as [3], includes fea-
ture pasting over spline surfaces. These works add details to
the spline surface in the form of a displacement map. This
approach is an extended view of the hierarchical B-spline
refinement scheme presented in [11].

In our work, the blending operations are extended into
three-dimensional decorative features on the surface, for or-
namental purposes. Hence, we are also interested in related
previous work on three-dimensional texture and displace-
ment mapping [10]. In computer graphics, texture map-
ping is considered an important and successful tool toward
photorealism in image synthesis and rendering. A variant
of texture mapping that creates the illusive perception of
three-dimensional surface details is known as bump map-
ping. This variant is a special type of texture mapping where
the normals that are fed into the shader are perturbed, in-
stead of the colors, creating the effect of a bumpy shape.

A major drawback of the bump mapping technique is
inherent in the fact that this bumpiness is illusive and the
surface remains smooth. Along the silhouette curves the
shape is not affected by the assigned bumps, as it should
be. Some attempts at creating real three-dimensional texture
over a surface were made, employing, for example, cellu-
lar texture generators [9]. A three-dimensional texture was
constructed in [9] using a simulation of natural cellular de-
velopment toward the modeling of surface details such as
scales or thorns.

The graphics community frequently uses displacement
mapping to alleviate some of the difficulties in the use of
bump mapping. Here, a height map above the surface is de-
fined and applied to the surface. The height map is typically
an explicit function that is described as an image, with the
pixels denoting height. The end result is a surface with a
modified geometry.

This work also offers a variant of the methodology of
cellular and/or particle systems based on three-dimensional
textures and combines it with blending operations. The
three-dimensional texture of [9] is formed out of zero-
dimensional entities, or points. Here, we also examine a
similar application of three-dimensional texture but use one-
dimensional entities, or curves. These univariate texture de-
tail curves could be represented using techniques similar to
ones that are employed in blending operations.

Attempts were also made to glue geometry as ornaments
on prescribed surfaces. One recent example is [12], where a
primary-orientation pair of curves is used to guide the warp-

ing function along the base surface. Nevertheless, no conti-
nuity conditions are guaranteed in [12].

The rest of this paper is organized as follows. In Sec-
tion 2, we review background material on the cubic Hermite
interpolation scheme and in Section 3 we introduce our vari-
ant of the blending constructing methodology, a methodol-
ogy that offers the freedom to select arbitrary cross sections
as blending curves. In Section 4, we show one way of de-
riving the positional as well as the tangential constraints for
curves on surfaces. Section 5 presents several examples that
were created using the proposed scheme and, finally, we
conclude in Section 6.

2 Background

The cubic Hermite interpolation scheme offersC1 conti-
nuity [6]. Given an ordered set of points and tangent vectors
at these locations, each consecutive pair of points is fitted
using a single cubic Hermite curve that satisfies four con-
straints: the two locations or the end points,Pi andPi+1,
and the two end points’ tangent vectors,Ti andTi+1:

C(t) = Pih00(t) + Pi+1h01(t) + Tih10(t) + Ti+1h11(t),
(1)

wherehji(t) are the four cubic Hermite basis functions,
with i being the point index andj the derivative’s order:

h00(t) = t2(2t− 3) + 1,

h01(t) = − t2(2t− 3),

h10(t) = t(t− 1)2,

h11(t) = t2(t− 1).

These four cubic Hermite functions not only form a ba-
sis for the cubic polynomials but also satisfy the following
orthogonality constraints:

Curve C(0) C(1) C ′(0) C ′(1)
h00(t) 1 0 0 0
h01(t) 0 1 0 0
h10(t) 0 0 1 0
h11(t) 0 0 0 1

By construction, the functionsh1i(t) are zero atPi and
Pi+1 and similarly,h′0i(t) are zero atPi andPi+1. This
careful construction of thehji(t) functions guarantees com-
plete independence between the positional and tangential
constraints.

These cubic Hermite functions can also serve to interpo-
late two curves instead of two points. Given two rail curves
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C1(u) and C2(u) and two tangent fields along these two
curvesT1(u) andT2(u), the surface

S(u, v) = C1(u)h00(v) + C2(u)h01(v)

+T1(u)h10(v) + T2(u)h11(v), (2)

interpolates bothC1(u) andC2(u) at two of its boundary
curves. Moreover, it is easy to verify that the cross deriva-
tives, ∂S

∂v , along these two boundaries are equal toT1(u) and
T2(u).

The constructed surface,S(u, v), has no free degrees of
freedom remaining. Being a cubic and having four degrees
of freedom, they are all exploited by the four (two positional
and two tangential) constraints. In Section 3, we examine
ways to relax this limitation and allow us to employ an ar-
bitrary cross section curve in the interpolation, in a natural
and intuitive way.

3 The Basic Algorithm

We now examine the question of how one can employ
an arbitrary open planar curve as a cross section,Cs(v) =
(xs(v), ys(v)), to construct a shaped blending surface,S,
that interpolates between the two space curvesC1(u) and
C2(u), and follows the two tangent fieldsT1(u) andT2(u)
at these boundaries.

Our solution to this shaped blending surfaceS is con-
structive. We seek to preserve the complete separation
between the positional constraints and the tangential con-
straints. Consider the surfaceS1(u, v):

S1(u, v) = T1(u)h10(v) + T2(u)h11(v). (3)

Clearly,S1(u, v) satisfies the given tangential constraints
along the two boundaries. Yet,S1(u, v) identically vanishes
for v = 0 or for v = 1.

Now assume we are given a surfaceS2(u, v) that satis-
fies the prescribed positional constraint. That is,S2(u, 0) =
C1(u) and S2(u, 1) = C2(u). Moreover, assume that
∂S2(u,v)

∂v identically vanishes forv = 0 or for v = 1. Then,

S(u, v) = S1(u, v) + S2(u, v), (4)

satisfies all four constraints.
We are now ready to introduce our construction scheme

for S2(u, v). Let

D(u) =
C2(u)− C1(u)

2
, A(u) =

C2(u) + C1(u)
2

, (5)

and letV (u) be an arbitrary 3-space vector field. Using
linear transformation of rigid motion and scaling, map the

prescribed cross sectionCs(v) = (xs(v), ys(v)), t ∈ [0, 1]
so thatCs(0) = (−1, 0) andCs(1) = (1, 0) (see Figure 1
for a few examples).

Now consider the surface

S2(u, v) = A(u) + D(u)xs(v) + V (u)ys(v)

=
C2(u) + C1(u)

2
+

C2(u)− C1(u)
2

xs(v)

+ V (u)ys(v), (6)

for v = 0, xs(0) = −1 andys(0) = 0 by construction, or

S2(u, 0) =
C2(u) + C1(u)

2
− C2(u)− C1(u)

2
= C1(u).

Similarly, for v = 1, xs(0) = 1 andys(0) = 0 we have

S2(u, 1) =
C2(u) + C1(u)

2
+

C2(u)− C1(u)
2

= C2(u),

or S2(u, v) is interpolating the given two curves,Ci(u), i =
1, 2. Consider now the cross derivative ofS2(u, v):

∂S2(u, v)
∂v

= D(u)x′s(v) + V (u)y′s(v). (7)

At this point we impose one additional constraint on
Cs(t):

C ′s(0) = C ′s(1) = (0, 0).

Then, inspecting Equation (7),∂S2(u,v)
∂v vanishes for both

v = 0 andv = 1. In other words,S(u, v) = S1(u, v) +
S2(u, v) satisfies all four constraints originally imposed for
S(u, v) in Equation (4).

Consider a B́ezier or NURBS curve,Cs(v), t ∈ [0, 1].
C ′s(0) = (0, 0) if P1 = P0 or the first two control points are
identical. Similarly, if the last two control points ofCs(v)
are identical,C ′s(1) = (0, 0). In practice and in all the ex-
amples presented as part of this work, including the exam-
ples shown in Figure 1, the first and last two control points
are set to be identical, coercing a vanishing speed at the two
curves’ end points.

We have complete freedom in selectingV (u). One rea-
sonable selection for this vector field could be the direc-
tion orthogonal to bothD(u) andA′(u) (see Equation (5)).
If the blending surface is (almost) planar,D(u) andA′(u)
(approximately) span its tangent space andV (u) will be in
the direction of the surface’s normal field. Hence, a default
plausible selection forV (u) could be

V (u) = D(u)×A′(u).
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(a) (b) (c) 1−11−11−1

Figure 1. Examples of cross sections used in shaped surface blending. These curves are constructed
so that their end points span -1 to +1 and furthermore, their speed at these end points is zero, by
duplicating the end control points.

Figure 2 presents several examples of the proposed scheme
with V (u) selected in a direction that is approximately or-
thogonal to bothD(u) andA′(u). Figure 2 (a) shows the re-
sult of using the traditional cubic Hermite form, while Fig-
ures 2 (b)-(d) present three examples of employing three
different cross sectional curves,Cs(v). The three cross
sections exploited in Figures 2 (b)-(d) are shown in Fig-
ures 1 (a)-(c), respectively. The cross section of Figure 1 (a)
is piecewise linear and hence isC0 continuous. As a result,
the reconstructed blending surface shown in Figure 2 (b) is
alsoC0 continuous (but is stillG1 along the shared bound-
aries!). The other two cross sections areC2 continuous and
the resulting blending surfaces areG1 along the boundaries.

This shaped blending construction scheme has a few de-
grees of freedom that could be further employed, intuitively.
Clearly, all the cross sections,Cs(v), (see also Figure 1)
could be scaled in height, effectively employing a different
V (u) vector field, while preserving all the continuity con-
straints. Figure 3 shows the same example as in Figure 2 (c)
but with different vertical scales ofCs(v).

A different degree of freedom for shaping the con-
structed surface is found in the magnitude of the prescribed
tangent vector fields,Ti(u). A change in the magnitude of
these fields affects neither the positional continuity nor the
tangential plane continuity. Figure 4 shows the example in
Figure 2 (c) with different magnitudes of the tangent fields.

4 Curves on Surfaces

So far we have considered the constructed surfaces
toward a generalized functional blending application.
Nonetheless, one could equally employ this scheme over
the interior of a surface, placing three-dimensional univari-
ate ornaments over it. In essence, the end result is similar in
nature to the three-dimensional texture mapping presented
by [9]. Here, instead of using particles and/or cells, we at-
tempt to use arbitrary parametric curves.

Let c(t) = (u(t), v(t)) be an arbitrary curve in the para-
metric domain of surfaceS(u, v). We seek to prescribe an
ornamental feature,O(r, t), alongc(t) on S(u, v), follow-
ing the guidelines of Section 3. Towards this end, one needs
to derive fromc(t) andS(u, v) two positional constraints
and two tangential constraints. An additional cross section’s
specification will complete the prescription of the shape of
O(r, t).

We start by attempting to establish the width of the orna-
ment laid on the surface, in Euclidean space. The widthd

of the ornament will be derived by computing two offsets,
cd(t) andc−d(t), from c(t), in the parametric domain ofS.
The magnitude of the first order partials ofS(u, v) varies
across the surface. Put differently,S(u, v) is far from an
Isometry, in general. A curve parallel toc(t) in the paramet-
ric space ofS, cd(t), at some fixed distance,d, will rarely
retain this constant distance in the Euclidean space. That is,
if cd(t) is an exact offset ofc(t) by an amountd, we have
||cd(t) − c(t)|| = d. Yet, ||S(c(t)) − S(cd(t))|| is rarely a
constant function.

That said, and since we seek this estimated width for
mostly decorative purposes, the exact and fixed width in
the Euclidean space is of no real importance. By estimat-
ing the magnitude of the partials at one location,t0, along
c(t), we could estimate the required width in the paramet-
ric space,d, for achieving a certain width,∆, in Euclidean
space. Granted, this width will be exact for that location
only. Givend, the two positional constraints ofO(r, t) are
computed fromc(t) as offsetscd(t) and c−d(t), whered

is estimated from the magnitudes of∂S
∂u and ∂S

∂v at location
c(t0). Let τ(t) = (τx(t), τy(t)) be the unit tangent field of
c(t). Then,d is estimated by

d =
∆∣∣∣∣

∣∣∣∣τy(t0) ∂S
∂u

∣∣u = u(t0)
v = v(t0)

− τx(t0) ∂S
∂v

∣∣u = u(t0)
v = v(t0)

∣∣∣∣
∣∣∣∣
.

LetCd(t) = S(cd(t)) = S(ud(t), vd(t)). If bothS(u, v)
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(a) (b)

(c) (d)

Figure 2. A functional blend. (a) presents the traditional G1 continuous cubic Hermite surface blending
while (b)-(d) show the blending using the different cross sections that are shown in Figure 1. Cross
sections, similar to those used in (b)-(d), could serve some functional purpose in the object, such as
a T slot along which to slide.

andcd(t) are rational, so isCd(t). Cd(t) could be derived
via a composition operation that could be evaluated symbol-
ically [7].

Let n(u, v) be the normal field ofS(u, v), n(u, v) =
∂S
∂u × ∂S

∂v , which is another rational function. Then, and
following [14], define

Td(t) = C ′d(t)×n(u, v), T−d(t) = C ′−d(t)×n(u, v),
(8)

as the two tangential field constraints alongCd(t) and
C−d(t). These two new tangential fields are clearly tangent

toS as they are orthogonal to the normal field ofS. Further-
more, they are also orthogonal to the tangential fields of the
rail curves themselves,C ′d(t) andC ′−d(t). Finally, given a
rational form ofn(u, v) andC ′d(t), Td(t) is rational as well.

Given a curve in the parametric space of surfaceS, c(t),
we define the decorative ornament prescribed byc(t) on S

as

O(r, t) = Ao(t) + Do(t) ∗ xs(r) + n(u(t), v(t)) ∗ ys(r)

+T−d(t)h10(r) + Td(t)h11(r), (9)
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Figure 3. The height of the cross section function, set via scaling function ys(v), could be modified
while all the continuity constraints are fully preserved. These examples employ the cross section
seen in Figure 1 (b). Compare with Figure 2 (c).

where

Do(t) =
Cd(t)− C−d(t)

2
, Ao(t) =

Cd(t) + C−d(t)
2

.

Note that we employ the normal field in Equation (9) to
orient the decorative ornament. This is clearly one plausi-
ble option to prescribe the free vector fieldV (u) in Equa-
tion (6), out of many such feasible options, as the orna-
ment will follow the surface orientation. In the Euclidean
space,Cd(t), C(t), andC−d(t) are not collinear, in general.
Hence, and whileAo(t) is the average of the two opposite
offsets,Ao(t) does not equalC(t).

So far, our algebraic manipulations ignored one potential
difficulty. The surfaces prescribed by our above construc-
tion schemes will indeed interpolate the two boundaries and
will certainly be tangent plane continuous there. Yet, these

surfaces also suffer from a significant limitation by being
dependent upon the original surface’s parameterization. Re-
examining Equations (8) and (9), the vector fields ofTd(t)
andT−d(t) depend upon the normal field,n(u, v), which is
not normalized, and hence is affected by a reparameteriza-
tion of S(u, v). Moreover, the unnormalized vector field of
n(u, v) also contributes directly to Equation (9), affecting
the height of the constructed ornament above the surface.

A remedy to these unnormalized vector fields may be
sought at two different levels, depending upon the required
accuracy of that vector field. The tangent vector fields,
Td(t) andT−d(t), must be kept precise for proper tangent
plane continuity. In contrast, the vector field ofV (u) in
Equation (6) (n(u(t), v(t)), in Equation (9)) need not be as
precise.
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Figure 4. The magnitude of the tangent fields, T1(u) and T2(u), could be modified while the tangent
plane continuity is fully preserved. These examples employ the cross section seen in Figure 1 (b).
Compare with Figures 2 (c) and 3.

Assume all vector field curves are given as piecewise ra-
tional NURBS forms. The computation of an approxima-
tion to a unit vector field out of a given unnormalized vector
field could be handled by simply normalizing all the con-
trol points of this B-spline vector field. This approach was
employed in all the examples presented in this work for the
imprecise vector fields that were used, specificallyV (u) and
n(u(t), v(t)) in Equations (6) and (9).

In [14], a refinement-based [6] method was employed
to approximate a unit vector field from a given vector field
W (t), and to an arbitrary precision. In [14], a polyno-
mial approximation of the magnitude of the given vector
field, w(t) =

√
〈W (t),W (t)〉, is constructed. Then, the

unit size vector field is approximated as the rational form of
W (t) = W (t)

w(t) . This second approach is not only guaranteed

to converge under refinement but, and more importantly, is
also safe in the sense that at no time is the direction of the
vector field modified, only its magnitude.

Section 5 presents some examples that were constructed
using the presented scheme of univariate ornamental textur-
ing using parametric curves on freeform surfaces.

5 Examples and Extensions

This section presents several examples of blending and
placing univariate decorative ornamental features along ar-
bitrary parametric curves on the surface. All the examples
presented in the section were created using an implemen-
tation based on the IRIT [13] solid modeling environment,
developed at the Technion. In all examples, the end result
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is a surface that is tangent plane continuous to the original
surface. Before demonstrating the proposed blending capa-
bilities, Figure 5, shows some additional cross sections that
we are about to employ in this section.

Figure 6 shows severalG1 continuous blends between
the body of the Utah teapot and its spout. Figure 6 (a) shows
one possible result of using regular cubic Hermite to pro-
duce this blend. Figures 6 (b) and (c) use the simple cross
section shown in 5 (d). The difference between 6 (b) and
(c) is in the normal field used. In (b) the normal field is a
radial vector field around the spout. In (c), the normal field
has an additional component, in a direction away from the
body. In Figures 6 (d) to (i), a more complex cross section,
of the shape shown in Figure 5 (e), is used. Figures 6 (d)
to (f) show the resulting geometry whereas Figures 6 (g) to
(i) present side views of the cross sections of these blends,
respectively. The differences in Figures 6 (d) to (f) stem for
the use of three different magnitudes for the vector field of
V (u), with the smallest at (d) and the largest at (f).

In Figure 7, a simple, single bump, cross section in the
shape of a Gaussian function (see Figure 5 (d)) is laid on
the freeform surface of the body of the Utah teapot as gen-
eral ornaments in the shape of the letters ’GMOD’. These
ornaments are laid along general curves in the parametric
space of the given surfaceS. The offsets of the curves are
computed in the parametric domain ofS, and then com-
posed withS in order to derive the rail curves and the nec-
essary generalized Hermite constraints, as is described in
Section 4.

Figure 8 shows the Utah teapot with ornaments placed
over all its surfaces. In Figures 8 (a) and (b), the teapot’s
body employs the cross section of Figure 5 (a) as ornaments
along one parametric direction of the surface of the body,
whereas in Figures 8 (c) and (d) the teapot’s body employs
the cross section of Figure 5 (b) along the other parametric
direction. The teapot’s lid in all four figures of Figure 8 em-
ploys theC0 continuous cross section shown in Figure 1 (a)
along the two parametric directions of the surface of the
lid whereas the spout and the handle use the cross section
shown in Figure 1 (b). Figure 8 shows the body, the lid, the
handle, and the spout with ornaments alongu or v isopara-
metric curves.

The height of the cross section could be modulated as a
function of the parameter of the rail curves. Recalling Equa-
tion (9), we can add a modulating scaling function,s(t), to
the normal field:

So(r, t) = Ao(t) + Do(t)xs(r) + n(u(t), v(t))s(t)ys(r)

+Td(t)h10(r) + T−d(t)h11(r).

Figure 9 (a) shows the Utah teapot with no modulating
function and a cross section in the shape of Figure 5 (c).
Figure 9 (b) is identical to Figure 9 (a) except for a wavy
modulating functions(t). In Figure 9 (c), the modulating
function is in the shape of a discontinuous square wave.

So far we have seen examples that modulate the height of
the constructed blending surface. Clearly, one can add sim-
ilar modulating functions to other degrees of freedom and,
for example, vary the magnitude of the tangent fieldsTi(t)
or even the width of the computed offset, d, making it a
function oft as well, asd(t). In Figure 10, we present three
examples of univariate ornaments laid over a torus freeform
surface with vaying width and height. The green ornament
in Figure 10 uses a scaling field of varying width of four sine
cycles. The red ornament uses the same four sine cycles to
control the height of the geometry whereas the cyan orna-
ment exploits the scaling field to modulate both the width
and height of the shape.

6 Conclusions and Future Work

This work presented a generalization of the concept of
blending surfaces toward either functional or decorative
purposes. TheG1 blending capabilities are augmented with
intuitive and powerful control over the interior cross section
shape of these constructed surfaces.

Ornaments placed on the surface can be either closed
loops or open ended. In the latter case, either the ornament
should be scaled down to an infinitesimal size or, alterna-
tively, caps should be placed at the two ends. Careful re-
examination of Figure 7 would reveal that the end points of
the digits are, in fact, open. Two caps at the two end points
could easily resolve this issue.

As demonstrated, with the aid of cubic Hermite func-
tions, ornamental shapes withG1 continuity can be placed
on or connected to different surfaces.G2 or higher order
continuity can be achieved in a similar manner, by employ-
ing quintic Hermite functions [6] or even higher order Her-
mite functions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 6. An example of a rounding between the body of the Utah teapot and its spout. (a) shows
an example of a regular cubic Hermite blend. In (b) to (i), blending variants using different cross
sections and parameters are shown. In (b) and (c), a simple cross section was used, a cross section
that is shown in 5 (d). In (d) to (i), a more complex cross section was employed, a cross section that
is shown in 5 (e). (d) to (f) show the geometry whereas (g) to (i) present their side cross sections,
respectively.
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(a) (b)
Figure 7. Three-dimensional features over freeform surfaces. Shown are two views of the letters
’GMOD’ etched over the body of the Utah teapot using a simple, single bump, cross section (see
Figure 5 (d)).

(a) (b)

(c)
(d)

Figure 8. More examples of univariate surface details over freeform surfaces. The Utah teapot is
presented with ornaments that employ the cross sections shown in Figures 1 and 5.
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(a) (b) (c)

Figure 9. Modulating the univariate ornaments on the surface. The body’s ornaments without modu-
lation (a), with a continuous wavy modulation (b) and with a discontinuous square wave modulation
(c).

(a) (b)
Figure 10. Three-dimensional features over freeform surfaces with varying width and height. Shown
are two views of three univariate ornaments laid over a torus. The green example uses varying width,
the red example uses varying height and the cyan example uses both. All three examples use a
simple, single bump, cross section (see Figure 1 (b)).
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