
Visibility
as an

Intrinsic Property
of

Geometric Models

Adi Bar-Lev Gershon Elber

Department of Computer Science
Technion, Israel Institute of Technology

Haifa 32000,
Israel

Email: gerhson@cs.technion.ac.il
Phone: 972-4-829-4338

Fax: 972-4-822-1128

Abstract

This paper presents a technique to improves the perfor-

mance of algorithms that exploits visibility based analysis

in computer graphics, such as ray tracing. The presented

approach maintains a list of visible polygons for each and

every one of the polygons in the model as well as for, op-

tionally, the light sources in the scene. A pre-processing vis-

ibility analysis stage that is view-independent is computed

once per scene, creating a Visibility Data Structure (VDS)

that becomes part of the model. This, before any visibility

intensive computer graphics algorithm takes place. The ap-

proach presented may be combined with most acceleration

methods for ray tracing such as octree or voxel based spa-

tial subdivision. Furthermore, any algorithm that requires

visibility computations can exploit the VDS, from Radios-

ity to NC machining. Though the presented technique is

fairly intuitive, it demonstrates the usability of a visibility

data structure of a scene.

1. Introduction

One of the most important image synthesis methods in

contemporary computer graphics is the ray tracing [4] tech-

nique, a scheme which can produce almost photo realistic

images. Nonetheless, the ray tracing technique consumes

an excessive amount of time during the rendering process,

a limitation that has been alleviated via numerous optimiza-

tion methods which we briefly survey here.

Bounding volumes - One of the first acceleration meth-

ods that has been used with the ray tracing algorithm. A

bounding volume is a volume which completely contains an

object in the scene or a group of such objects. The main

idea behind this method is to replace objects in the scene

with an easy to compute volumes. The intersection test now

has two phases - the first involves a simple ray-volume in-

tersection test, and the second test with all the polygons in-

side the volume, thus making significantly fewer computa-

tions than before. Whitted [11] used spheres as bounding

volumes, observing that they are the simplest volumes for

intersection tests. A more advanced technique which was

derived from the bounding-volumes, was the hierarchical

bounding volumes technique which was introduced by Ru-

bin and Whitted [7] as a method to decrease time complexity

by a logarithmic factor depends on the number of objects in

the scene and their order. Later work by Kay and Kajiya [6]

et. al., tried to tighten the volume so that a ray intersecting

the bounding volume is almost always intersecting the poly-

1

gons within it.

3-D spatial subdivision - much like the bounding vol-

ume method, this method also tries to reduce the time com-

plexity by eliminating unnecessary Ray-Surface Intersec-

tion (
�����

) tests with polygons which can not possibly inter-

sect with the ray. One of the first techniques developed fol-

lowing this line, divided the space containing the scene into

voxels and traversed the voxels along the ray, each time con-

sidering the intersections only with the polygons in the vox-

els that are being traversed along the path. A more advanced

spatial subdivision technique exploits octal trees (octrees)

[5] to recursively subdivide the space into eight sub-regions.

This subdivision is conducted until a maximum level of di-

vision is achieved or until there is no more than one polygon

in the voxel. Using this technique, one can logarithmically

reduce the computation time, for the same reason as the hier-

archical bounding volumes. See [5, 2, 1] for other varieties

of spatial subdivisions. Other approaches to the spatial sub-

division use a hierarchical uniform space division approach,

thus gain both the simplicity of the uniform space division

technique, and the speed of the octal trees technique by us-

ing a refined division. [12, 13].

First-hit - the ray tracing algorithm can also be acceler-

ated when taking the viewpoint into consideration. Given

a view point, a scan-line algorithm can be used to sort out

the first polygon being hit by each first ray. (for more de-

tails see [10]). This technique reduces the amount of com-

putation time spent on the first-ray casting, to the level of a

simple scan-line computation cost.

We have introduced three basic approaches to acceler-

ation of the ray tracing algorithm. More details on these

methods as well as many other methods can be found in [4]

and [9].

Consider a scene that is (mostly) static. When a ray, � ,

bounces off an object, � , only a subset of objects in the

scene might get hit by � . Because the scene is assumed

static, one can, a-priori, compute the set of visible objects

that � can see. Clearly � might intersect only one of these

objects that are visible to � .

Two fundamental issues then need to be addressed. First

and foremost, how can one compute or even approximate

this Visibility Data Structure (VDS). In addition, assuming

the existence of the VDS, how can it be exploited in various

algorithms that require visibility computations.

While the notion of a model is typically associated with

its geometry, other entities are also frequently considered

part of the model, such as the model’s topology, material

properties and texture, etc. It only seems natural to expect

that the VDS will also become part of the (static) model. Re-

search on visibility is not new, including in the context of

efficient rendering [8, 3]. This paper attempts to stress the

importance in the consideration of this VDS a portion of the

model.

In section 2, we introduce the concept of visibility be-

tween the polygons in a given scene. In section 3, we use

this characteristics to reduce the time spent on
�����

test for

each reflected ray, for ray tracing. Our method does not deal

with the first ray since this ray is view-dependent, and the

“First Hit” acceleration scheme can be employed in order to

reduce the computation time at this stage. Section 4 demon-

strates our modified ray tracer that exploits the VDS on sev-

eral different scenes, while we conclude in section 5.

2. The Construction Of The VDS:

�	��
��
�������������������	�����! ��	��"���#	�	$!%

Definition 1 point & see object � , iff there exist a

point ')(*� such that the line segment &�' inter-

sects no other object in the scene.

Definition 2 A point set +-, IR . is called a visi-

bility domain if every two points &0/1'�(2+ see the

same set of objects in the scene.

Consider line segments 354 in IR 6 or polygons 354 in IR 7 :
Lemma 1 Given an 8 -dimensional scene, 8:9; /1< with = line segments (polygons), the disjoint

partition of IR . into visibility domains has at most>@? =@ACB domains.

proof: Given two polygons, 3�D and 3 6 , IR . is subdivided

into three visibility domains. One domain where only 3ED is

visible, one domain where only 3 6 is visible, and one do-

main where both are visible. These three domains are delin-

eated using a constant number of lines in IR 6 (planes in IR 7).
Given = polygons, we are presented with

>@? = 6 B such lines

(planes).
>@? = 6 B lines in IR 6 (planes in IR 7) can intersect

in at most
>@? = ACB different points (lines). In general posi-

tion, each of the
>@? = ACB intersection points (lines) is shared

by four neighboring visibility domains. Each visibility do-

main employs at least one intersection point (line). Hence,

the number of visibilitydomains is also bounded by
>@? = ACB .

The partition imposed by Lemma 1 is most likely to be

overly refined because different domains might share the

same set of visible polygons. In Figure 1, all the visibility

domain inside the circle share the same set of visible poly-

gons. Nevertheless, the bound is hard and in Figure 1 the

seven segments in the figure cast
��� ? ����� B � ; infinite

lines with none being parallel. Due to this
>@? =2ACB complex-

ity, the visibility of any scene which is moderately complex

is intractable to compute. While numerous approaches exist

[14, 15, 16] to heuristically resolve the visibility question,

we select in this work a simple method mainly in order to

demonstrate its potential capabilities on the computational

efficiency, for example, in ray tracing. This method can be

further developed and combined with other visibility meth-

ods in order to achieve better results in time and space com-

plexity.

Definition 3 Polygon 3�� is invisible to polygon

304 iff 	 &)(304 and 	�' (3
� the line &�' intersects

some polygon 3�� . If 304 is invisible to 3�� then 3
�
is invisible to 354 . This relation is symmetric.

Before we can describe our approach in details, we must

define the following:

1. Let
 be the set of all polygons in the scene.

2. Let 304�(�
 denote a polygon in the given scene.

3. Let ��4 be a light source in the scene.

4. Let ��4 ,�
 be the set of polygons that are considered

visible from a polygon 354 , or a light source �E4 .
Hereafter, assume that every scene has its VDS that pro-

vides for every polygon 354�(�
 and possibly for every light

source ��4 , the list of its visible polygons �04 .

Figure 1. The complexity of computing all the
visibility domains of a given scene is

>@? = ACB ,
where = is the number of segments or poly-
gons in the scene.

Definition 4 A VDS is said to be conservative iff

for every two visible polygons 3�4 and 3
� in the

scene, 3
� (���4 and 304�(���� .
Consider the extreme case for which �04���
 for all poly-

gons, 304 , in the scene. While highly conservative, this con-

struction is a valid VDS.

Our approach to approximate the VDS exploits this con-

servative methodology. We indeed start by setting �54���

for all polygons in the scene. We then attempt to remove

hidden polygons from 354 ’s visibility data structure �04 , us-

ing single polygons in the scene as occlusion buffers. Doing

so, enables one to alleviate the complexity of the problem

down from
>@? = ACB . In contrast, in order to find the exact

VDS solution of each polygon in a given scene, one must

test each polygon against each of the
>@? = A B domains, rais-

ing the total complexity even higher. Hence, the exact so-

lution is practically intractable. By computing the approx-

imated VDS of occlusions of single polygons, we signifi-

cantly reduce this complexity while remaining conservative.

It is clear that with this reduction of the complexity, we also

give up efficiency due to polygons which will be included

in the VDS although they are actually occluded by several

polygons simultaneously, in the scene.

Two types of visibility testing are conducted during the

VDS construction. The first involves the reduction of the

amount of polygons that are considered visible in each poly-

gon’s ��4 . The second tries to reduce the amount of polygons

in each ��4 of the light sources, thus aiming at the reduction

of the amount of light rays which will be cast during, for ex-

ample, image ray tracing process.

The first type of visibility test employs two main stages

that are denoted the ’Half Space VisibilityTest’ and the ’Vol-

ume Containment Test’, while the second type employs only

a ’Volume Containment Test’. Starting with �54��
 ��� 304��
for each 304 and ��4��
 for each ��4 , we use in each stage

a different approach to reduce the number of polygons that

are actually visible in � 4 for each of the polygons and light

sources in the scene.

While the VDS can significantly increase the memory

that is required to store geometric models, at the worst case

one needs to invest one bit for each (in)visible polygon in

��4 list of 354 . Therefore, for example, for a scene with

10000 polygons, the memory requirements are bounded

from above by � � ; megabytes. Nevertheless, it is clear that

in large scenes, the levels of occlusions are going to be quite

high, typically over 90%, and therefore the size of the VDS

can be made much smaller by using different representation

schemes such as hash table of indices.

�	���	�	� ��
���
����	��� ��� ��$�������
���"����
��$C"

This stage eliminates from �04 all polygons 3�� , that are

completely behind the plane containing the polygon 3 4 .
This back-face culling stage applies only to the computation

of the visibilityof polygons, and is not used on light sources.

An example of the test is shown in Figure 2.

For each 3
��(���4 , 3
� is behind 354 iff all the vertices of 3��

���

Polygon Pi

Polygon Pk Polygon Pj

Ray

Normal

Reflected
Ray

Figure 2. Polygon 3�� is behind polygon 354 and
so no ray can be reflected from 3�4 and hit 3
� ,
while polygon 3�� can be hit by a reflection as
is shown.

are behind the plane of 354 (see Figure 2), a test that can be

easily carried out using the signed result of substitutingeach

of the vertices of 3�� into 304 ’s plane equation. This test does

not perform any occlusion test by other polygons, it only at-

tempts to validate the possibility that 3 � can be hit by a re-

flected ray from 354 .
In summary of this stage,

Algorithm 1 Half Space Visibility Test of Polygons.

For all 304�(�
 do

��4��
 ��� 304�� ;
For all 304�(�
 do

For all 3 � (���4 do

If 3 � is behind 354 ’s plane then

��4�� ��4 ��� 3 � � ;
The time complexity of this stage equal

>@? = 6 B , where =
is the number of polygons in the scene.

�	��!	�"�2##
�$"% �'&2#	�0"C�0� �"% �0�0"(�
��$C"

The Half-Space testing stage of the visibility algorithm

eliminates approximately half of the polygons. Here, we

continue to further improve that result, yet remaining con-

servative. We assume that the polygons in the scene are all

convex polygons. Otherwise, they can all be decomposed

into convex polygons.

We start by approximating the �04 list of light source �E4 ,

and then continue to consider the computation of the �54 list

of polygon 354 , in the scene.

Approximating the ��� list of a Light Source: Denote

by ���� /�� 9 � /	� the � ’th edge of polygon 3�� . Given a point

light source �E4 at location
> 4 , and a convex polygon 3�� ,

compute the equations of the planes
 � �4 , through
> 4 and ���� ,

so that the positive side of the equation of
 � �4 contains 3
� .
Let
 ���4 be the plane containing polygon 3 � so that the neg-

ative side of the equation of
 ���4 contains
> 4 .

Denote the shadow volume of 3 � and ��4 as the intersec-

tion of all the half-spaces which are created by the planes

 � �4 /
�09��!/	� by,

���������� 9
��

� � �

 � �4 (1)

Clearly,
���������� is convex as it is the intersectionof convex

objects (half spaces). Denote by ���� /��09 � /	� the � ’th vertex

of polygon 3�� . Then,

Lemma 2 If all the vertices ���� of polygon 3�� sat-

isfy ���� (���������� / 	���9 � /	� then 3 � is invisible to

��4 .
Proof: Both 3�� and

��� ������ are convex. Therefore any

convex combination of ���� / �@9 � /	� must be contained in���!������ . On the other hand, all points &2()3�� are convex com-

bination of ���� /
��9 � /	� .
This result is not constraint to point light sources. For a

directional light source,
���"������ is simply the extrusion of 3 �

in the direction that is prescribed by � 4 .
Finally, it should be noted that

��� ������ need not be com-

puted explicitly and the containment of vertex �#�� in
���!������

can be verified by testing the sign of the substituted vertex

into all the equations of all the planes that form
��� ������ . In

summary, the visibility test for light sources,

Algorithm 2 Shadow Volumes of Light Sources.

For all ��40(Scene

��4��
 ;

For all 3
��(�
 do

Construct
���$������ from ��4 and 3
� ;

For all 3 � (���4 do

%
%&%&%&%
%&%
%
%&%&%&%
%&%
%
%&%&%&%
%&%
%
%&%&%&%
%&%
%
%&%&%&%
%&%
%
%&%&%&%
%&%
%
%&%&%&%
%&%
%
%&%&%&%
%&%

(A) (B)

%&%&%&%
%&%&%
%&%&%&%
%&%&%
%&%&%&%
%&%&%
%&%&%&%
%&%&%
%&%&%&%
%&%&%
%&%&%&%
%&%&%
%&%&%&%
%&%&%

Polygon Pj Polygon Pj

Polygon Pk Polygon PkPolygon PiPolygon Pi

Figure 3. Figure (A) shows the case of two
polygons which are invisible to one another
due to a complete occlusion by polygon 3 � ,
while in (B) Polygons 3�4 and 3 � are visible by
our definition because polygon 3 � does not
occlude them completely.

If 3 � , ��� ������ then

��4�� ��4 ��� 3 � � ;
The time complexity of this stage for one light source is>@? = 6 B , where = is the number of polygons.

Approximating the ��� list of a polygon: For the �04 list

of a light source, we have considered only one projection

point which was the light source’s origin or direction. Here,

we must consider all points on the surface of a given poly-

gon 304 (see Figure 3).

Given two convex polygons 3�4 and 3
� , construct the

shadow volumes
��� ���'�(� for all vertices ���4 /
�09 � /	� of poly-

gon 304 , in a similar way to the construction of a shadow vol-

ume between a point light source and a polygon. Denote the

intersection of these shadow volumes by,

���!���
� � 9

��

� � D
���!���'�(��) (2)

Again, because all
��� ���'�(� are convex, so is their intersec-

tion,
�������
� � . Then,

Lemma 3 Polygon 3�� is invisible to 354 if there

exist a polygon 3�� , such that 3�� is contained in���!���
� � (see Figure 4).

Proof: Consider a point &�(354 and construct a shadow

volume from & through polygon 3 � , ���!���* . Because & is a

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

Polygom Pi

Polygon Pj

Projection surface

The intersection profile
of the Shadow Volume from
Pi’s vertices toward Pj

Vi

0
V
i

1

V
i

2

Figure 4. An example of a shadow volume that
is created for polygon 3�4 by polygon 3�� (the
occluding polygon). The volume itself starts
from polygon 3�� and through the plane to in-
finity.

convex combination of ���4 , �������� � , ���!���* . We know that

3 �2, �������� � and therefore 3���, �������* . Then, 3 � must be

contained in all shadow volumes
��� ���* , for all &�(304 , and

hence 3 � must be invisible to 354 .
In summary:

Algorithm 3 Shadow Volumes’ Visibility Test

of Polygons.

For all 304�(�
 do

For all 3
��(���4 do

Construct
��� ���
� � ;

For all 3 � (���4 , ���9
	 /�� do

If 3 � , ���!���� � , then

begin

��4�� ��4 ��� 3 � � ;
� � � � � ��� 304�� ;

end;

The Complexity of this step is clearly
>@? = 7 B where = is

the number of polygons in the scene.

�	��
��
� �	"���%*���!��"���#	�	$

While the VDS is computed only once per scene, a re-

duction in the computational cost of the VDS is still desired.

With a time complexity of
>@? = 7 B where = is the number

of polygons in the scene, the approach continues to be too

slow, especially in complex scenes. This cost can be im-

mensely reduced by exploiting a heuristic which takes into

account the locations where occlusions might occur. Occlu-

sions are likely to occur by large polygons in the scene, and

between polygons that are relatively close to one another.

With that in mind, the list of polygons is kept sorted by area.

The user can now specify a threshold for an allowed ratio be-

tween polygons. Given two polygons 3�4 and 3
� in the scene,

the distance between the two polygons as well as their ar-

eas are compared against this threshold in order to determine

whether or not to conduct a shadow volume occlusion test

between the two. This heuristic may reduce the amount of

occlusion tests in cases where polygons are far away from

each other or are too small in relation to the average poly-

gons’ area. A similar heuristic may be employed for occlu-

sion tests of light sources.

It is, however, important to notice that these introduced

heuristics preserve the correctness of the conservative VDS

construction algorithm. This reduction in the number of oc-

clusion tests can only enlarge the number of the polygons

in each ��4 list, and possibly affect the original performance

during the exploitationof the VDS by, for example, ray trac-

ing. Nonetheless, with the use of the sorting heuristic, re-

ductions of more than a magnitude in computation time dur-

ing the construction of the VDS have been observed, and yet

the average ��4 list increased by only 1%.

This section proposed a conservative approach to the

computation of the VDS. While simple to construct, this

highly conservative VDS has significant effect on the reduc-

tion of the computational costs of algorithms that depends

on visibilitytesting such as image ray tracing as we are about

to demonstrate in the next section.

3. Ray Tracing Using VDS

We now consider one way to combine and employ the

VDS in image ray tracing applications. For each ray, � ,

that is reflected from polygon 3�4 , one needs to consider only

3
� (���4 against � .

Assume that the ray tracer employs a spatial subdivision

scheme such as an octree data structure. let � � be the poly-

gons’ list of voxel � of the octree. On each entry of � into

voxel � , for each 3�� (�� � , an
�����

test is conducted only if

3 �)(��4 . If 3 � �(��4 , 3 � is invisible to 354 , and so 3 � can

not be hit by any ray reflected from 3�4 .
For shadow computation, a light-ray � needs to be traced

between the given light source, and some point & (*3�4 . If

an intersection is detected before reaching 3�4 , point & is in

shadow. The � 4 list of the light source can improve this test,

by testing first if the polygon exists in �54 of the current light

source, and skip the ray traversal if the polygon is invisible,

immediately deducing that the point on 3�4 is in shadow.

In summary of this acceleration step:

Algorithm 4 Shadow Computation Using the VDS.

For each point &2(�3�� .
For all light sources �E4 do

If 3 � (���4 then

Trace a ray toward �E4 to test for

occlusion of & from �E4 ;
else

& is in shadow with respect to � 4 ;
4. Examples and Performances:

In this section, we present some results of ray tracing ac-

celeration with the VDS. All the scenes were tested with one

or two light sources and both tests where conducted with and

without shadow generation.

We have considered three scenes. The first one is denoted

the Open scene and contains a shelf with three teapots above

it. The teapots are partially occluded by stands. Another

teapot can be found below the shelf (see Figure 5). In a scene

like this, one can expect a high degree of occlusion of poly-

gons, and a moderate number of occlusions from the light

sources. In this scene, a gain of up to 40% in ray tracing time

have been observed due to the exploitation of the polygo-

nal VDS, and only a few percent due to the light sources’

VDS. This result is understandable considering that the light

sources see most of the polygons in the scene, thus the VDS

of the light sources is rarely beneficial. All the described re-

sults refer to the times of each of the occlusion stages sepa-

rately.

The second scene is similar to the Open scene, except for

the walls that were added around the scene in order to al-

low greater level for reflectance. In this scene, a gain of ap-

proximately 30% in ray tracing time have been observed due

Figure 5. The Open scene of several Utah
Teapots separated by stands

to the exploitation of the polygonal VDS. This closed scene

can be seen at Figure 6.

The third scene is denoted the Room, and is more general

(see Figure 7). The gain in computation time is about 18%

due to the exploitation of the polygonal VDS and only a few

percent due to the light sources’ VDS.

Table 1 presents the ray tracing times, while Table 2

shows the time of the pre-processing stage, and the average

number of occluded polygons in the VDS.

One can think of models such as architectural buildings,

where the acceleration will be much more significant due to

the higher levels of occlusion. Even in the relatively sim-

ple scenes we have presented, the average occlusion of the

polygons was above 90%.

5. Conclusions

We presented a method that can be used in static scenes

toward the acceleration of photo-realism rendering based on

the ray tracing algorithms. Reductions of 10% to 40% were

found in practice.

The ray tracing application is one example for the use of

this visibility paradigm and the VDS extension to the notion

of a “model”. Other applications in the field of computer

graphics and modeling can employ the VDS just as well. For

example, the Radiosity method can employ the VDS in or-

der to reduce the amount of elements each patch is consid-

ering on it’s hemicube, before getting to the rendering stage.

Scene Number of Shadows No VDS Polygonal VDS Light Source VDS Combined VDS
Light Sources (Relative Time) (Relative Time) (Relative Time)

Closed 1 no 149.32 89.18 (60%) - -
Closed 2 no 153.96 95.41 (62%) - -
Closed 1 yes 352.73 295.62 (84%) 351.9 (100%) 294.8 (84%)
Closed 2 yes 724.15 665.63 (92%) 712.0 (98%) 660.3 (91%)
Open 2 no 41.82 28.97 (69%) - -
Open 2 yes 84.16 69.04 (82%) 79.45 (94%) 64.66 (77%)
Room 2 no 309.10 257.04 (83%) - -
Room 2 yes 432.43 379.41 (88%) 430.26 (99%) 376.96 (87%)

Table 1. Ray tracing timings. Shown here, are the results of the ray tracing stage on the three scenes.
All the results are in seconds. All times were measured on a 166Mhz Pentium machine on top of the
Windows NT 4.0 operating system.

Scene Total Number Voxels Polygonal VDS time Lights VDS Time
of Polygons (invisibles) (invisibles)

Closed scene 8160
; � 7 8115.3 416.9 5630 114.3

Open scene 8088
; � 7 7903.8 319.24 5630 114.1

Room 3307 <�� 7 3072.4 974.23 939 18.25

Table 2. VDS computation: Presented herein are the computation time of the polygonal as well as the
light sources’ VDS. Also presented are the number of polygons that are found to be invisible, on the
average, for each polygon and light source. All the scenes represented in the table contain one light
source in the middle of the scene. All the results are in seconds. All times were measured on a
166Mhz Pentium machine on top of the Windows NT 4.0 operating system.

Figure 6. Similar scene to Figure 5 that is em-
bedded in a reflective closed box. Denoted
the Closed scene.

For NC-machining verification, the VDS can also be used to

more efficiently detect collisions with the moving tool.

The visibility analysis technique presented here is fairly

simple. Never the less, it can be combined with other visi-

Figure 7. An image of the Room with two light
sources.

bility analysis techniques such as Cells and Portals [14, 15,

16], thus reduce both the overhead in the computation time,

and the size of the data structure of each polygon.

Finally, we would like to emphasize the importance of

embedding a data structure similar to the VDS into com-

puterized geometry models. Much like color and texture at-

tributes, the visibility data structure is an intrinsic property

of the model that should be treated as such.

References

[1] H. Fuchs. On Visible Surface Generation by A-priori

Tree Structure. Computer Graphics 14, pp. 124-133,

1980.

[2] A. Fujimoto, T. Tanaka, and K. Iwata. Accelerated Ray

Tracing System. Comp. Graph. and App., pp. 16-25,

April 1986.

[3] T. A. Funkhouser and C. H. Sequin and Seth J. Teller.

Management of Large Amounts of Data in Interactive

Building Walkthroughs. 1992 Symposium on Interac-

tive 3D Graphics, pp. 11-20, March 1992.

[4] A. S. Glassner. An Introduction to Ray Tracing.

[5] A. S. Glassner. Space Subdivision for Fast Ray Trac-

ing. Computer Graphics and Applications IEE 4(10),

pp. 15-22, October 1984.

[6] T. L. Kay, and J. Kajiya. Ray Tracing Complex Scenes.

Computer Graphics 20(4), pp. 269-278, August 1986.

[7] S. Rubin, and T. Whitted. A Three Dimensional Repre-

sentation for Fast Rendering of Complex Scenes. Com.

Graph. 14(3), pp. 110-116, July 1980.

[8] S. J. Teller and C. H. Sequin. Visibility Preprocess-

ing for Interactive Walkthroughs.SIGGRAPH ’91 Pro-

ceedings, pp. 61-69, July 1991.

[9] A. Watt. 3D Computer Graphics, second edition.

[10] H. Weghorst, G. Hooper, and D. P. Greenberg. Im-

proved ComputationalMethods for Ray Tracing. ACM

Trans. on Graph. 3(1), pp. 52-69, 1984.

[11] T. Whitted. An Improved Illumination Model for

Shaded Display. Communication ACM 23(6), pp. 343-

349, June 1980.

[12] Krzystof S. Klimaszewski, and Thomas W. Sederberg.

Faster Ray Tracing Using Adaptive Grid. Computer

Graphics and Applications IEEE, pp. 42-51, January-

February 1997.

[13] Frederic Cazals, George Drettakis, Claude Puech. Fil-

tering, Clustering and Hierarchy Construction: a New

Solution for Ray-Tracing Complex Scenes. Computer

Graphics Forum, pp. 371-382, Volume 14, Number 3,

1995.

[14] David Luebke and Chris Georges. Simple, Fast Eval-

uation of Potentially Visible Sets. 1995 Symposium on

Interactive 3D Graphics, pp. 105-106, 1995.

[15] Thomas A. Funkhouser. Database Management for

Interactive Display of Large Architectural Models.

Graphics Interface, pp. 1-8, 1996.

[16] Seth Teller and Pat Hanrahan. Global Visibility Algo-

rithms for Illumination Computations. 1993 Computer

Graphics Proceedings, pp. 239-246, 1993.

