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Abstract

This paper presents a model fabrication scheme that automatically approxi-
mates a model whose boundary consists of several freeform surfaces by developable
surfaces and then unroll these developable surfaces onto a plane. The model can
then be fabricated by assembling the sets of developable surfaces which have been
cut from planar sheets and rolled back to their proper Euclidean locations. Both
the approximation and the rolling methods can be made arbitrarily precise.

1 Introduction

It is common to find freeform surfaces manually approximated and assembled as sets
of piecewise developable surfaces [9]. In general, freeform surfaces are not developable
and cannot be exactly represented as piecewise developable surfaces. Yet, “developable

surfaces are of considerable importance to sheet-metal- or plate-metal-based industries
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and to a less extent to fabric-based industries” [17]. Parts of aircrafts and ships are
assembled from piecewise planar sheets unidirectionally bent into their model positions.
Certain fabric and leather objects are made using patterns made from planar sheets.

Since developable surfaces can be unrolled onto a plane without distortion, they can
be cut from planar sheets, bent back into their final position, and stitched together.

In [3], a flattening approximation is computed for freeform surfaces to eliminate the
distortion in texture mapping. Surfaces are split into patches along feature (geodesic)
lines and approximated as flats. However, we are mainly interested in isometric pro-
jections that preserves intrinsic distances and angles [2, 9]. Physically, such maps only
bend the surface with no stretching, tearing, or distortion. One of the most interesting
properties of developable surfaces is their ability to be laid flat on a plane without dis-
tortion by simply unrolling them [9, 10]. Therefore, we would like to generate a surface
approximation using piecewise developable surfaces [9, 10], for which an isometric map
to a plane exists.

Currently, the process that determines how and where to decompose the model re-
quires human ingenuity and does not provide a bound on the accuracy of the approxi-
mation. This paper explores a technique for automatically decomposing the sculptured
model, using a C° approximation with error bound control, into sets of developable
surfaces.

The Gaussian curvature of a developable surface S(u,v), K, is zero everywhere [9, 10],

i.e. K(u,v) = 0. The class of developable surfaces is difficult to deal with, so we will
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first concentrate on a superset of it, namely the class of ruled surfaces. In order to be
able to use ruled surfaces instead, we need to derive the conditions in which a ruled
surface is also developable. Let |G| and |L| be the determinants of the first and second

fundamental form [2, 9], respectively.

Lemma 1 Let R be a regular ruled surface, R (u, ) Ci(u) * v + Cy(u) * (1 — v),
€ (0,1). R is developable if and only if <nT, 55 =0

Proof: Given a regular surface 5, its Gaussian curvature, K, is zero everywhere

_
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By differentiating R twice in v, it is clear that a—R = 0. We can immediately rewrite

O’R \*
|LR| = - <n7°7 m> s (2)

(therefore, it is developable) if |L| = 0 since K and |G| # 0 for regular surfaces.

|L| as

and the result follows. B

Therefore, to determine if a ruled surface is developable, one can symbolically com-
pute o(u,v) = <nT, §j§> (That is, represent the scalar surface o(u,v) as a polynomial
Bézier or piecewise-rational NURBs scalar surface. See [12, 13] for more) and make sure
it is zero everywhere within a prescribed tolerance. In other words, using the convex
hull property of the Bézier and NURBs representations, all the coefficients of the scalar

surface o(u,v) must be zero within a prescribed tolerance.

The mixed partials, also called the twist of the surface [1, 13], are a measure of the
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“crosstalk” in the parameterization. Equation (2) measures this “crosstalk” projected
in the direction of the surface normal.

Assuming one can approximate a given surface by a set of disjoint (except along
boundaries) piecewise ruled surfaces within a prescribed tolerance, lemma 1 can be
used to verify that each member of the set of ruled surfaces is also developable. Each
developable surface can then be unfolded, laid flat and cut from a planar sheet such as
paper or metal. In section 2, we also consider the case in which a ruled surface is not
developable and present an approximation scheme with a tolerance control. By folding
each laid down surface back to its Euclidean orientation and stitching them all together,
a C'° approximation of the computer model is constructed.

Section 2 develops the background required for this method, and presents the basic
algorithm. In section 3, we investigate several possible extensions including optimization,
stub generation, and handling of trimmed surfaces. Section 4 lays out several examples
including some models assembled from paper.

All the examples throughout this paper were created using an implementation that

is based on the Alpha_l solid modeler, developed at the University of Utah.

2 Algorithm

Let S(u,v) be a nonuniform polynomial B-spline surface. Let Cy(u) = S(u, Vmin)
and Cy(u) = S(u, Vmazx) be the Vmin and Vmaz boundary curves of S(u,v) respec-
tively, Cy(u) # Cy(u). Let R(u,v) be the ruled surface constructed between C(u) and

Cs(u). Let fx’(u,v) be the representation for R(u,v) in the same B-spline basis as that
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of S(u,v). fx’(u, v) can be obtained from R(u,v) via appropriate degree raising [6, 7] and

refinement [8] in the linear (ruled) direction, v. Then,

I9(0.0) = Bl = I3 P B ) (o) = 3 3 Qu B () Be(o)]
= I (P~ QuIBL B (o)
< mas(|Ps - Qyl. ¥ i), g

since the B-spline basis functions are nonnegative and sum to one.

The difference of two rational surfaces can be computed in a similar way although
it is more complex and must deal with products of scalar surfaces when the two are
brought to a common denominator [13].

From the way R is constructed it is clear that the first row of S control mesh is the
same as the first row of B control mesh, that is Fy; = Qo; Vj. Similarly, the last row
of S control mesh is the same as the last row of & control mesh, that is P,,; = Q. V.
The jth column of S control mesh will be referred to as P,;. Equation (3) provides a
simple mechanism to bound the maximum distance between S and the ruled surface R.

[soparametric curves of R (and fx’) in the ruled parametric direction have constant
speed since R is linear in this parameter. The bound in equation (3) provides a good
bound of the distance when the v isoparametric curves of S also have constant speed,
that is when HM;S—UZH = ¢, for all wuq.

Unfortunately, when 22 is not constant, the number of ruled surfaces in the resulting

v

approximation can be unnecessarily large in order to meet the required tolerance. A
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Figure 1: The speed of 57s isoparametric curve in the ruled direction is emulated by the

ruled surface R approximating it. In (a), the jth column of S mesh, P,;, is projected
onto the line connecting Fy; and P,; (b). The spacing of the projected points is used

to construct the mesh of R’s in (c).

method to correct for this problem uses the fact that control points can be associated
with spline node values to obtain a surface-mesh parametric relation [16]. By degree
raising R into fx’, equally spaced in Euclidean space rows are introduced into the mesh
that preserves the constant speed in the ruled direction, v. Since S does not have, in
general, constant speed v isoparametric curves, one can consider unequal spacing of the
introduced mesh rows. Such strategy can project a single column in the v direction of
the control mesh of S, P,;, onto the linear segment connecting Fy; and P,,; which are
also control points of Cy(u) and Cy(u) respectively (see Figure 1). The spacing of these
projected points can then be used to place the interior control points of R. Figure 1
demonstrates this process. Figure 1 (a) has the original surface S. The control mesh of

S is used in Figure 1 (b) to define the mesh of fx’, by projecting a single column of the
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mesh of S, P,;, onto the line connecting Fo; and P,; (b). The new ruled surface, fx’,
constructed with this new spacing is shown in Figure 1 (c).

The added degree of freedom of a non uniform v speed ruled surface approximation
includes the uniform v speed ruled surface as a special case and so can always be as
good approximation as the uniform speed approximation. Let Cy(v) and Cy(v) be two
isoparametric curves of S in the v direction. Since we consider only one column of S

/45

almost constant for all v. This condition holds fairly well for large classes of surfaces,

dCl (U) :
v 1S

mesh, this strategy will be able to emulate S v speed well only if H

but will not necessarily hold for surfaces constructed via highly non-isometric operations
such as a warp [4]. However, it does eliminate the need for degree raising or refinement
in the construction of fx’, since the continuity (knot vector) of S in the v direction is
inherited.

A distance bounded algorithm approximating an arbitrary tensor product surface as
a set of ruled surfaces is derived in algorithm 1 based on this process.

Algorithm 1 returns a set of ruled surfaces that approximates the original surface
S to within the required tolerance 7. Figure 2 shows an example of three consecutive
stages of algorithm 1.

Assuming S satisfies a Lipschitz condition, which automatically holds for B-spline
AX AY AZ

X A+ a0) be an upper bound on the first partial derivatives of S in

surfaces, let (
the v direction. Given a finite range in the v parametric direction, V, a bound on the

Euclidean size is readily available as (V%, V%, V%). Since algorithm 1 halves the
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Algorithm 1

Input:
S(u,v), surface to be divided in the v parametric direction.
7, tolerance of approximation to be used.

Output:
S, Set of ruled surfaces, approximating S(u,v) to within 7.

Algorithm:

RuledSrfApproximation( S, 7 )

begin
Ci(1),C5(t) <= Vmin and Vmax boundary of S.
R < ruled surface between (C4(t) and Cs(t).
R < R refined and degree raised in v.
If ( maXDistance(Ag,Aé )y < T )

return { R }.

else
begin
Subdivide S into two subsrfs S', S? along v.
return
RuledSrfApproximation( S', 7 ) U
RuledSrfApproximation( S?%, 7 )
end
end

parametric domain in each iteration, it halves the Euclidean bound in each iteration as
well, so convergence in algorithm 1 is guaranteed. Note that we are concerned only with
the v (ruled) direction since the representation is exact in the u direction.

Therefore, the less complex parametric direction, by some norm, may be a better
candidate to select for the ruling direction approximation. Another measure for the
selection of the subdivision direction may be the feasibility of the surface assembly. If

S is an elongated tube, it may be easier to select and assemble the surfaces as sequence
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Figure 3: Piecewise developable surface approximation layout of a sphere (a), the cross
sections of the developable approximation (b), and assembled (c).

of rings than as a sequence of elongated strips. A third consideration may be whether
the surface is closed in one direction or not. Such closed surfaces are very common, and
it is very natural to approximate such surfaces as a set of rings (see figures 2 and 3).

Once the set of ruled surfaces is determined, the surfaces must be laid flat on a plane,
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so they can be cut out. Lemma 1 can be used to verify whether the piecewise ruled
surfaces are also developable. Since the isometry mapping is nonlinear, in general, an
approximation must be used. We start the process by approximating the two boundary
curves of R that originated on S, C1(u) and Cs(u), as piecewise linear curves C’l(u) and
C’z(u), using refinement. An identical refinement should be computed and applied to
both curves to insure they have the same number of linear segments, n. A one-to-one
correspondence between the piecewise linear approximation of each curve is therefore
established. Then, from each pair of corresponding linear segments, one from C’l(u) and
one from (' 5(u), a bilinear surface is created. Each bilinear is further approximated as two
triangles along one of the bilinear diagonals. Finally, the 2n triangles are incrementally
laid out and linearly transformed onto a plane (see figure 4).

Let the error of the triangular approximation be measured as the maximal distance
between R and the triangular approximation, in a similar way to that of equation (3).

Because R is a ruled surface, the maximal error must occur along one of the two bound-

aries of R, Cq(u) and Cy(u) as,

maz ||Ci(u) — Ci(u)| i=1,2. (4)

As stated above, the laying down of the surface is a non linear mapping and is only
approximated. During the piecewise ruled surface approximation stage, it would be re-
quired to increase the number of ruled surfaces if a better approximation is necessary,
complicating the assembly process. However, the penalty for a better layout approxi-

mation is reduced to only an enlargement of the data set.
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Figure 4: A ruled surface is approximated by triangles and unrolled onto a plane.

The process of laying down the surface can also be applied to a ruled surface that is
not developable. By approximating the ruled surface using a set of triangles, as seen in
Figure 4, we construct a developable polygonal approximation to the ruled surface. Fur-
ther, the error in the approximation for the case of a ruled surface that is not developable

can also be bounded using equation (4).

3 Extensions

It is a logical next step to improve the efficiency of algorithm 1 by subdividing S at
v values that will minimize the number of ruled surfaces required to approximate S to
within a given tolerance 7. Automatically determining candidate locations is difficult.
However, a greedy approach can be adopted to determine a local minimum even though

it does not guarantee global minimum in the number of ruled surfaces. The normal
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curvature in the v direction (the direction in which the approximating surfaces are
ruled), k2(u,v) can be computed symbolically. The maximum values of & (u,v) can

then be used as subdivision locations. See figure 5 for one such example. The normal

: : S u | S oy -
curvature, r,, of S in tangent direction 325% + 325¢

[1(a,b)  TI(6) SL&7 .
I(a,b)  1(8) 8G8T’ )

Ky =

where § = (%, %) = (a,b) and G and L are the matrices of the first (1) and second (I7)

fundamental forms [9, 10], respectively.

From equation (5), when § = (0, d), that is, the tangent vector direction is d22

_ (0, d)L(0, )"
T (0,d)G(0,d)T

y 2
2. 25)
2
2 (88
*(5)
2
_ <n’ %> (6)
B
dv
Equation (6) is the normal curvature of the surface in the v direction. Equation (6)
is also geometrically the curvature vector of the v iso-curve projected in the surface

normal direction. Let 7', N, and B be the tangent, normal, and binormal of curve C(t),

respectively. For a non-arclength parameterized regular curve C'() (see [15]),

kN =B xT =

(47 % 55

i
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where s is the arc length parameterization of C'. Since (u, (v X w)) = ((u X v),w)
(5 x &) < &)

(%)
(5 x ). (5 xn))

k(N,n) =

since [ 42| = £ and n is orthogonal to 2.

k% can be symbolically represented as a scalar surface (see [12, 13]). Its isolated local
maxima are the suggested preferred locations for the piecewise ruled surface approxi-
mation subdivision. For obvious reasons, a maximum occurring on the boundary is of
no interest, but C'! discontinuities in the v parametric direction are likely candidates for
subdivision locations. Therefore, a surface should first be preprocessed and subdivided
at all locations where it is not C'! continuous. £%(u,v) should then be computed for the
resulting C'! continuous sub-surfaces. If the original surface is not C'?, k¥ will not even
be C°. Special care should be taken in evaluating x” along those discontinuous edges,
since limits from both sides along the C° discontinuities would converge to different,

values.

An example is provided in figure 5, which shows a surface with two very highly curved
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Figure 5: % (u,v) (b) is used to determine where to subdivide the surface (a).

regions in the v direction (figure 5 (a)). Those regions are very noticeable in the x2(u,v)
(figure 5 (b)) computed for this surface. Therefore, k% (u,v) can be used to automate a
scheme that makes a more optimal ruled surface approximation.

In some cases, the laid out ruled surfaces can be insufficient to assemble the model,
depending upon the assembly method. Some extra material might need to be included
as stubs so the pieces may be stitched or welded together. Such stubs can be constructed
by offsetting [11] the boundary curves of the planar representation of the approximating
ruled surfaces. Figure 6 shows an examples of stubs generated using this approach
that can be used for the layout of figure 2 (c). However, such stubs can cause a C°
seam between two folded developed surfaces resulting in a little stair with height equal
to the material thickness. An alternative approach would be to connect two adjacent
ruled surfaces using a separate stub made to span the two surfaces, from underneath,

eliminating the stair. This last method was used in all the paper models in Figures 9, 10,
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Figure 6: Stubs can be created by offsetting the planar boundary curves.

and 11.

When Boolean operators are applied to freeform models, trimmed surfaces result [14],
and only part of each tensor product surface is used in the final model. In order to ap-
proximate freeform trimmed surfaces with piecewise developable surfaces, it is necessary
to position the trimming curves in the plane with the developable surfaces. The prob-
lem is equivalent to finding the corresponding location of a specific surface Euclidean
point in the planar representation of a developable surface, given the (trimming curve)
point in the parametric space of the surface. With the added constraint that the surface
speed in the v direction must be constant to within a prespecified tolerance, locating
the given (u,v) point in the planar developable surface becomes a simplified problem.
Since the u direction is approximated as piecewise linear in the laying out stage, a binary

search in u can efficiently reveal the bilinear segment containing the point. Within the



Model Fabrication G. Elber 16

il

— &
\\\\\\\\\\\%\\\\W////////

Figure 7: Trimming curves should be laid out with the ruled surfaces.

bilinear surface the u direction is also assumed to be of constant speed and the exact
location is then interpolated from the flat bilinear four corner points. Finally, since
the developable surface representation is only an approximation, it may be desired to
re-execute the Boolean operations on the approximation. Appropriate trimming curves
will be re-created for the fabrication surfaces of the approximation instead of the original
surfaces. Figure 7 shows a simple layout with trimming curves and section 4 provides

several examples of more complex models composed of trimmed surfaces as well.

4 Examples

The algorithm developed was used to generate layouts for several computer models,
automatically. Figure 3 shows the sphere layout on a plane with its 3 dimensional
piecewise ruled surface approximation. Figure 6 shows the layout of the model in figure 2
with an example of stubs. Figure 7 shows the layout of a cone and a cylinder intersecting

each other with their trimming curves. Figure 8 shows a helicopter model [5], its layout
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Figure 8: A helicopter model (top left) laid out (bottom) and assembled (top right).

projection with the cross sections of the developable surfaces, and the assembled piece.
Figure 9 shows several models laid out using these techniques and then assembled
from heavy paper. Each developable surface was cut from paper and folded into its
3-space shape. Paper connecting stubs were used to hold and keep the pieces together.
More complex models can be created using Boolean operations when the model is a
union or intersection of several freeform surfaces. The layouts of the trimming curves of

these surfaces are also computed, in a way similar to the ruled surface layouts. Figures 10
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Figure 10: Computer model of a teapot (left) and assembled out of heavy paper (right).

and 11 show more complex models having several trimmed surfaces.
Table 1 provides some timing results for the model decomposition and layout com-
putation. Tests were run on a SGI4D 240 GTX (R3000 25MHz Risc machine). All tests

are measured in seconds.

5 Conclusion

This paper introduces a new approach to and provides a working algorithm for automat-
ing the decomposition and subsequent specification and layout of freeform models into

developable components. Not every freeform surface can be exactly represented using
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Figure 11: Computer model of an {16 (left) and assembled out of heavy paper (right).

Model Time (Sec.)
Tube (figure 6) 1.4
Pawn (figure 9) 3

Teapot (figure 10) 5
Helicopter (figure 8) | 7
16 (figure 11) 150

Table 1: Different models layout construction times.

piecewise developable surfaces. However, the introduced approach allows one to con-
struct a piecewise developable surface approximation to an arbitrary freefrom surface,
with tolerance control.

Throughout this paper, it was implicitly assumed that the material thickness is
negligible. Unfortunately, this is not always the case and compensating for the distortion
that can result is a future research topic. In addition, extending this methodology to
support stretching and tearing, should be investigated. Not only will that enable dealing
with arbitrary surfaces (which cannot be exactly decomposed into piecewise developable
surfaces) but this algorithm may then support the ability to handle fabric and other

anisotropic materials.
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Assembly is left to the enjoyment of the author and other model building enthusiasts.
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