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Abstract

This paper presents an algebraic based approach and a computational framework for the simulation of multi-axis CNC
machining of general freeform tools. The boundary of the swept volume of the tool is precisely modeled by a system
of algebraic constraints, using B-spline basis functions. Subdivision-based solvers are then employed to solve these
equations, resulting in a topologically guaranteed construction of the swept volume. The presented algebraic-based
method readily generalizes to accept tools of arbitrary free-form shape as input, and at the same time, delivers high
degree of precision.

Being a common representation in CNC simulations, the computed swept volume can be reduced to a dexels rep-
resentation. Several multi-axis test cases are exhibited using an implementation of our algorithm, demonstrating the
robustness and efficacy of our approach.

1. Introduction One of the two main contributions of this work is the pre-
cise construction of these non-linear algebraic constraints
This work addresses the problem of precise computa- using B-spline basis functions [I4] and solving these using

tion of the swept volume of a solid moving along a one robust algebraic constraint solvers [7] to a desired accu-
parameter family of rigid motions, in R3, towards 5-axis racy. The constraint solvers provide a topological guaran-
computer numerically controlled (CNC) machining verifi- tee for the returned solution, and ensure finding all real
cation. Owing to the inherent mathematical and compu- solutions, up to a specified tolerance. The second contri-
tational complexity, a robust and efficient implementation bution of this work is the generality of the inputs accepted.
of sweeps has remained elusive until now. If an approach Most previous algorithms for CNC machining simulation

has been general, it did not deliver a high degree of pre-  restrict the tool shape to be composed of simple surface
cision [9] and if an approach yielded accurate solution, patches such as spheres, cylinders, cones or tori. Such as-
it imposed serious restrictions on the class of inputs [42]. sumptions restrict the applicability of the algorithm. For

The proposed method offers precision, while accepting tool instance, router bits used for wood-working [13] have more
of arbitrary shape as input. This is done by resorting to  general shape and may not be simulated and verified by
an algebraic representation and employing state-of-the-art ~ such an approach. Our algebraic formulation using B-

constraint solvers [7]. While the resulting algorithm ac-  spline functions allows for such general shapes.
cepts any solid with free-form boundary as input, swept No non-trivial solid sweep admits an explicit, closed-
along a general path in R3, in this work we demonstrate its form representation [4] and some form of approximation,
efficacy by sweeping any axis-symmetric tool, along spher- within a desired tolerance, must be performed, while con-
ical linear interpolated (SLERP) motions, for the purpose structing the envelope surface of the swept volume. Most
of verification of 5-axis CNC machining. methods sample a set of points on the envelope, at seem-
CNC machining is an ubiquitous manufacturing tech- ingly arbitrary locations, which are then interpolated. In
nique. 5-axis CNC commands require complex spatial mo- contrast, the proposed method integrates this tolerance

tions of cutters, where the positions of milling cutters have into the envelope construction at an early stage to derive
5 degrees of freedom (one degree of freedom is eliminated a computational advantage. While the proposed approach
due to the cutter’s rotational symmetry). Apparently, the can be arbitrarily precise, we also support the practical
problem of finding a consistent tool path in 5-axis space, representation of dexels [35], that is a common choice in
while ensuring no collisions, is non-trivial. In a case of =~ CNC machining simulation. This is done by computing
a faulty cutter movement, significant financial losses may  slices of the computed sweep envelope along pre-defined
occur because of damaging expensive production parts. In planes and lines in R3, towards a dexel representation of
order to prevent such occasions, the industry has adopted the swept volumes. Finally, self-intersections - a difficult

an additional step of verifying CNC tool paths, wherein, problem in envelope construction - are naturally and effi-
the correctness of the tool path is verified by subtracting ciently handled.

the swept volume of the tool from the stock and comparing The rest of the paper is organized as follows. A brief
the resulting part against the desired part. survey of previous CNC simulation methods is given in

The boundary of the swept volume, henceforth the en- Section Then, Section [3| formulates the problem and
velope, is a surface which can be defined implicitly via gives the required definitions, only to be followed by our
an under-constrained system of non-linear equations [3§]. method that consists of two main phases:
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i The primary step consists of construction of the en-
velope condition as a system of algebraic equations,
which are solved up to the desired precision using alge-
braic constraint solvers. This is discussed in Section 4l

ii The secondary step involves obtaining a dexel repre-
sentation of the envelope from the precise solution of
the above algebraic constraints. The boundary of the
swept volume is thus represented in a discrete form.
This, along with the overall algorithm is portrayed in
Section

The resulting algorithm is implemented with the aid of the
IRIT [16] kernel and results on CNC machining simulation
are given in Section[6] Section [7]concludes the paper with
directions along which this work may be extended.

2. Previous work

Verification of CNC tool paths is a simulation of mate-
rial removal (or material adding in 3D additive manufac-
turing processes). The most advanced simulation methods
are based on the computation of swept volumes, which is a
widely used technique for verification of 5-axis milling op-
erations. First was the theory of envelopes [38] that mod-
eled swept volumes by computing a family of silhouettes,
also known grazing curves, of the moving tool and “stretch-
ing” surfaces over these silhouettes. However, this partic-
ular approach fails to handle cutters with sharp edges and
self-intersections of the swept volumes.

In order to overcome these limitations, the sweep-
envelope differential equation (SEDE) method was devel-
oped [26] 9] and is one of the most comprehensive meth-
ods for sweeps. This approach uses the trajectories of
the sweep-envelope differential equation which start at the
initial grazing points of the moving object. The SEDE
method computes only one grazing curve at the initial po-
sition of the tool, so the computation complexity is drasti-
cally reduced. Intermediate grazing points are computed
from differential equations based on the tool motion equa-
tion, using the Runge-Kutta method. The SEDE method
assumes the tool profile to be smooth; therefore, precise
verification for a flat-end tool (cylinder shape) requires ap-
proximation of the tool shape (rectangular) with relatively
high order equations [26]. Further, the SEDE method was
extended to calculate the swept volume generated by ma-
chining tools for a large class of sweeps [37], and to detect
and model self-intersections [30] (ball-end mill only). How-
ever, the above methods suffer from lack of precision which
arises from the numerical solution of differential equations.

Several approaches are based on the Jacobian rank de-
ficiency [I], 2, [3l 43]. The boundary of swept volume is
defined as the singular set of the Jacobian of the sweep
map. The boundary to the resulting swept volume, in
terms of enveloping surfaces, is obtained as the image of
the singular set through the sweep map. Due to the gen-
erality of the Jacobian condition, this approach works for
sweeps of multiple dimensions, however, due to symbolic
computation used for finding the singular sets, only ana-
lytic surfaces are accepted as input.

Some researches optimized finding swept volumes for a
generalized milling tool shape. They exploited the stan-
dard definition constraints applied on the cutter profile.
By introducing rigid body motion theory to define a mov-
ing frame, the closed-form solutions of swept profiles for

a generalized cutter geometry were obtained [T} [T5] [45].
Another parametric approach models the envelope surface
by decomposing the cutter into a set of characteristic and
great circles which are generated by two-parameter fami-
lies of spheres [6]. While the above methods give precise
solutions, they restrict the tool shape to be composed of
spheres, cylinders, cones and tori.

Further improvements were focused on special tech-
niques to address a particular simulation issue. For in-
stance, the problem of self-intersection, for a ball-end cut-
ter, was partly resolved [23] using the triangle strip repre-
sentation, which leads to a discretization of the boundary
of the swept volume. Another example includes [31I, 32]
that focused on toroidal cutters, which was later extended
to cutter shapes [27] that include spheres and cones.
In [22], swept surface model of a cutter, in the shape of a
drum, was discretized and represented with voxels, leading
to imprecision in the solution. Clearly, the above methods
are tailored for tools of specific shapes and do not accept
general tools as input.

The authors in [I2] derived the silhouette curve con-
straint for a toroidal cutter surface as a quartic polyno-
mial and modeled the envelope surface using Z-buffers.
Further, [21] defined a polygon boundary of the volume
swept by using instantaneous helical motions, i.e., trans-
lation along an axis, compounded with rotation around
the same axis. These methods rely on special tool shapes
such as torus, ball- or flat end and do not accept general
freeform surfaces as input.

Swept volume boundary was also derived with the aid of
the Gauss map [24, 25]. It takes piecewise C'-continuous
tool shape into account and identifies self-penetration of
the cutter at 5-axis movement. The swept volume of the
cutter is generated by stitching up envelope profiles at dis-
crete time instants. This method is limited to bull-nose,
ball-end and flat-end tools.

In some cases, the envelopes of swept volumes are rep-
resented with various surfaces. [40] syntheses NURBS mo-
tion such that the swept surface of such a motion with a
cylindrical cutter closely approximates a given ruled sur-
face. Another approach, which fits a NURBS surface to a
set of envelope profiles was introduced in [39] for toroidal
cutters. Besides, Bézier motion was used as well [41], 42],
in order to derive an exact representation of the swept
volume of a flat-end cylindrical cutter.

Peternell et al. [29] obtain a set of points on a sampled
set of characteristic curves. A formula is derived for the
evolution of the characteristic curve which ensures that no
two characteristic curves are too far. This approach, how-
ever, does not yield a topological guarantee for the con-
structed envelope. Wallner et al. [36] compute the bound-
ary of the swept volume of a given body along motion
specified by a discrete pose cloud, however, the input ob-
ject is restricted to be polyhedral. A procedural implicit
description of the swept volume of a solid is given in [19].
This approach requires a curve-surface intersection com-
putation in order to answer the membership query for each
point in R? with respect to the swept volume. Nelaturi et
al. [28] generalize sweeps and Minkowski sums via opera~
tions of products and quotients of configurations spaces.
Sullivan et al. [33] model the swept volume of a cutter us-
ing adaptive distance fields. In this approach a shape is
modeled, either analytically or procedurally, by a signed
Euclidean distance field. While such an approach is fast
and also gives good numerical precision, topological guar-



antees are lacking. There have also been efforts to study
the approximation of free-form objects by envelopes of sur-
faces of revolution [10} 5l 44, [§].

3. Preliminaries

In this section, we define some preliminary constructs
which are used by our method. We adopt an algebraic
approach in order to model the envelope. The property of
the B-splines basis functions, being closed under addition
and multiplication [I7], is extensively exploited in order to
derive a precise representation of the well-known envelope
condition [38], that defines the boundary of the swept vol-
ume as an implicit surface in a 3-dimensional parameter
space. Thanks to our B-splines representation, the en-
velope condition can be evaluated precisely and is solved
up to the desired precision, using constraint solvers. This
section provides a prelude to our algebraic construction.

Let T denote the tool in R? undergoing a sweep mo-
tion. We use a parametric boundary representation (B-
rep) form for T, wherein, T is represented by its bound-
ary, 0T, which separates the interior of T' from its exterior
and is composed of a number of C! continuous patches
of surfaces and curves. In this work, all the curves and
surface patches comprising 0T are modeled using B-spline
basis functions. T is swept along a path in R? defined as
follows:

Definition 1. A one parameter family of rigid mo-
tions in R? is defined as a map M : [0,1] — (SO(3),R3?),
where SO(3) is the group of 3 x 3 rotation matrices.

We assume here for simplicity, and without loss of gen-
erality, that the time interval of the sweep is [0,1]. For
each t € [0,1], M(t) = (A(t),b(t)) where, A(t) is a rota-
tion matrix and b(¢) is a translation vector. The entries
of the matrix A(t) as well as the curve b(¢) are modeled,
again, using B-spline basis functions. The motion M is
assumed to be C' continuous and acts on a point p € R3
at time t as p — A(t)p + b(t). Further, the tool T" at time
t under M is given by {A(t)p+ b(t)|p € T} and is denoted
by T'(t).

Definition 2. Given a tool T and a motion M, the swept
volume of T" along M is defined as {{;co 1 7'(t)} and

denoted by V. The envelope is the boundary of V and
denoted by 9V.

Since we use the B-rep form, it suffices to compute 9V in
order to obtain a complete representation of V. Towards
this, we define the boundary operator as follows:

Definition 3. Given a set Y and a subset X C Y, the
boundary operator takes X and gives the boundary of

X in Y. We denote the boundary operator within a given
set Y by Oy.

For instance, dgs (V) = 0V. In Section |4} the boundary
operator is invoked within R3, as well as within lines and
planes in R3.

4. The proposed method

At the core of our method lies the precise construction
of the envelope condition and obtaining its solution using

constraint solvers. In this section, we describe three alter-
native approaches to compute the envelope, which differ
in the dimension of the solution space. The envelope is
characterized by the necessary condition that the veloc-
ity vector at a point on the tool surface is tangent to the
tool at that point [38]. This leads to a constraint with
three variables in the parameter space of the sweep, whose
solution, in general, is a set of 2-manifolds (surfaces). Sec-
tion describes the direct computation of the envelope
that returns 2-manifold solutions. In Section [4.2] we com-
pute slices of the envelope along planes and directly return
1-manifold (curves) solution slices on the envelope. The
third alternative, which involves computing intersections
of the envelope with lines, is described in Section [£.3]

4.1. Complete tool envelope computation

Consider a smooth regular parametric surface patch,
F(u,v) C 97T, for (u,v) € D. Here, D is the domain of F’
and without loss of generality, assumed to be [0,1]%. We
use tensor-product B-spline surfaces to model F. One may
use rational B-splines in order to precisely model surfaces
such as spheres and cylinders. Rationals are seamlessly
supported by our approach, since the denominator (that
is positive throughout) may be ignored while computing
the zero-set. With some abuse of notation, we denote the
transformation of F(u,v), at time ¢ € [0,1], under the
motion M as:

F(u,v,t) = A(t)F(u,v) + b(t). (1)

B-spline functions are closed under addition and multipli-
cation. Hence, the map F(u,v,t) may be precisely ex-
pressed in an algebraic form using B-splines. The velocity
of any point (u, v, t) is given by V (u,v,t) := A’'(t)F(u,v)+
b'(t), where ' denotes the derivative with respect to ¢. Let
N(u,v) denote the unnormalized outward normal to F,
at (u,v). The outward normal at F(u,v,t) is given by
N(u,v,t) :== A(t)N(u,v). Clearly, N(u,v,t) and V(u,v,t)
are also B-spline forms. The envelope generated by the
sweep of F' is obtained as the solution of the following alge-
braic constraint (precisely representable in B-spline form)
in three variables, (u,v,t) [38]:

AV : (N(u,v,t),V(u,v,t)) =0. (2)

Here (,) is the standard inner product in R3. Hence,
Equation is also amenable to a representation using B-
spline functions. The solution to Equation is, in gen-
eral, a 2-manifold, whose image through the map F(u, v, t)
gives the envelope. Figurel[l|shows in blue, a surface of rev-
olution. Its envelope surface is shown in transparent red.
Equation is solved for all surface patches of T in order
to compute the corresponding component surface patches
of V. Furthermore, curves along G discontinuities of 9T,
i.e., where two faces of 9T meet with G'-discontinuity, also
give rise to surface patches of OV.

Let C C OT be a C! discontinuous curve of 9T. As T
moves along M, C sweeps a surface in R?, part of which
may appear on 0V. Let C(r) denote the parametrization
of C for r € I. Here I is the domain of C. The trans-
formation of C(r) under M, at time ¢t € [0,1], is given
by

C(r,t) .= At)C(r) + b(t). (3)



C(r,1)

F(u,v,1)

F(u,v,0)

Figure 1: The envelope of a sweep of a surface patch, F, of 9T is
a 2-manifold. F' is shown in blue at initial and final positions. The
envelope surface generated by F' is shown in transparent red. The
O discontinuity circular curve C(r,t) at the top flat end of the tool,
shown in yellow, generates the envelope surface which is shown in
transparent green.

The envelope surface C(r,t) is shown in transparent green
in Figure[[Jand is generated by the circular edge of the tool,
shown in yellow. A few iso-curves of the surface C(r,t) are
also shown.

The envelope thus computed is precise up to the toler-
ance supplied to and provided by the solver. Note, how-
ever, that the envelope at this stage may be prone to local
and global self-intersections, a difficult problem in general
sweeps. Trimming of such self-intersections in our context
is discussed in Section [l

4.2. Sections of 0V along planes

We now come to the direct computation of slices of 0V
along general planes, in R3. Towards this, we define the
section operator as follows.

Definition 4. Given a set X C R? and a plane P C R3,
the section of X along P is defined as the intersection
X NP and denoted by Sp(X). A section along a line, L,
in R? is defined similarly, and denoted S;(X).

The following simple, yet powerful, Lemma is employed
by our method in order to speed-up the computation of
sections of JV:

Lemma 5. While acting on the swept volume, the sec-
tion operator commutes with the boundary operator, i.e.,

Sp(0rs(V)) = 0p(Sp(V))-

In other words, the diagram shown in Figure [2| com-
mutes. It is much more efficient to compute 9p(Sp(V))
rather than to compute Sp(dg3(V)), since it is simpler to
apply Op compared to applying Ors. Here, we also com-
pare the univariate sections of the envelope along planes

Figure 2: The above diagram commutes. The swept volume V is
shown at the top left, with OV and interior, V°, shown in black and
red respectively. The envelope, 0V, can be obtained by applying Ogs
to V and is shown at the top right. The plane P is indicated by a
dotted parallelogram. The set Sp(0V) is shown at the bottom right
by a closed curve shown in black. An alternative, more efficient, way
of computing Sp(9V) is via Sp(V), shown at the bottom left.

with univariate characteristic curves [29], which are sub-
sets of the envelope for fixed time instants. The character-
istic curves are more geometrically meaningful compared
to sections along planes since the later contain points of
the envelope from many time instants. Although, sections
along planes are more computationally efficient.

Let P be a plane in R? given by Apx+Bpy+Cpz+ D)y =
0. Let F be a C'-continuous, regular, surface patch of
0T with a parametrization, as described in Section 4.1
The section, Sp(0V), of the sweep of F' is obtained as
the solution of the following two simultaneous algebraic
constraints (in B-spline form) in three variables, (u,v,t):

(N(u,v,t),V(u,v,t)) =0,

4
(F(u,v,t), (Ap, Bp, Cp)) + Dp = 0. W

The first constraint in Equation (4], identical to Equa-
tion , ensures that point (u,v,t) satisfies the enve-
lope condition. The second constraint ensures that point
F(u,v,t) lies on P. We use the univariate constraint
solver [7] of the IRIT [I6] kernel to solve the above set
of equations. The solution to the above set of equations,
in general, is a 1-manifold. The solution is a set of curves
in the parameter space, D x [0, 1], and its image through
F(u,v,t) gives the section of the envelope along the plane.
This is illustrated in Figure[3] The plane is shown in trans-
parent cyan. The face F' at initial and final positions is
shown in blue. The envelope is shown in transparent red.
The section, Sp(9V), is indicated by curve shown in black.
Note that, an axis orthogonal plane will result in the same
computational complexity as any general plane, P, since
the complexity of the resulting algebraic constraints re-
mains the same in both the cases.

We now come to the sections of envelope surfaces gen-
erated by C! discontinuity curves of dT. Let C(r) be a
C' discontinuity curve of 9T with parametrization as de-
scribed in Section We compute the section of surface,



Figure 3: The section of the envelope along a plane. The envelope
surfaces, generated by the face F' C 8T (shown in blue) and curve
C C 9T (shown in yellow), are shown in transparent red and green,
respectively. The plane, P, is shown in transparent cyan and the
section, Sp(9V), is indicated by curves shown in black.

C(r,t), defined in Equation , along the plane, P, by
solving the following algebraic equation in two variables,

(r,t):
(C(r,1), (Ap, Bp, Cp)) + Dp = 0. (5)

This is also illustrated in Figure |3} The envelope is shown
in transparent green, generated by the curve, shown in
yellow. The envelope shown in green is only partially vis-
ible, since it obstructed by the envelope surface shown in
pink, generated by the surface, F'(u,v), shown in blue.
The plane, P, is shown in transparent cyan. The section
of the envelope along P is a closed curve and is shown in
black. Note that some portion of this curve does not lie
on the boundary of the swept volume and is indicated by
a dashed curve.

4.8. Sections of 0V along lines

The computation of sections of 9V along lines in R3,
follows similar to the sections along planes, as described
in Section [£.2] The section Sz (0V) along any line £ is, in
general, a set of points. We again exploit the fact that the
boundary operator commutes with the section operator
along lines, as illustrated schematically in Figure [4]

Let the line £ be defined by the intersection of planes
P1,Pa, Py # Po, where P; is given by A;x + By + Cpz +
D; = 0,4 = 1,2. The section Sz (V) for the sweep of C!
continuous, regular, surface patch F' of 9T is obtained as
the solution of the following three simultaneous algebraic
equations (in B-spline form) in three variables, (u,v,t):

Figure 4: The above diagram commutes. The swept volume V is
shown at the top left, with 9V and V° shown in black and red re-
spectively. The envelope, OV, is obtained by applying Ogs to V and is
shown at the top right. The line £ is indicated by a dotted line. The
set S, (9V) is shown at the bottom right by a pair of points shown in
black. An alternative way of computing Sz (9V) is via Sz (V), shown
at the bottom left, by a red line-segment.

<N(’U,,U,t), V(u,v,t)) =0,
(F(u,v,8), (Ab, By, Cp)) + Dy =0, (©)
(F0,1), (A2, B2,C2)) + D2 =0

The first constraint in Equation @, identical to Equa-
tion , ensures that the point (u,v,t) satisfies the enve-
lope condition. The second and third constraints ensure
that the point F'(u,v,t) lies on the planes P; and Pa re-
spectively, i.e., on the line £. In order to ensure that the
solver is well-behaved, the planes P; and P, are chosen
so that the angle between them is 7. The solution set,
which is a set of points in the parameter space D X [0, 1]
is mapped to the object space, by the function F(u,wv,t).
This is illustrated in Figure[5} The planes P;, P, are shown
in transparent cyan. The section S, (9V) is indicated by
a point shown in black on the envelope surface shown in
transparent red.

The section of the envelope surfaces generated by a C!
discontinuity curve, C(r) C 0T, is obtained as the solution
to the following two algebraic equations in three variables,
(r,t):

(C(r,t),(A}, By, CL)) + D) =0,
(C(r,t),(A2, B2, C2)) + D2 = 0.
In the example shown in Figure[5] the line £ intersects the
surface C(r,t) in two nearby locations, which are indicated

by a pair of black points on the surface C(r,t) shown in
transparent green. The curve C(r,0) is shown in yellow.

(7)

5. Overall algorithm

Section [4] presented three schemes to precisely evaluate
the envelope of a general tool, along a 5-axis motion. In
this section, we show how this formulation can be used
towards a representation common in CNC machining sim-
ulation, namely dexels (depth pixels) [35]. We give a dexels
based algorithm for computing the swept volume of a tool



P

Figure 5: The section of the envelope along a line. The line L is the
intersection of two planes, P1, P2, shown in transparent cyan. The
section Sz (9V) is indicated by points shown in black.

towards 5-axis CNC machining simulation, using the re-
sults of Section [4] Dexels are generalizations of Z-buffers.
While a Z-buffer maintains a single height value at each
point of a 2D grid, a dexel-grid may store multiple height
intervals at each point of the 2D grid.

Without loss of generality, we assume that the dexels are
parallel to the z-axis. Let X and Y denote the number of
columns and rows respectively for the dexel grid, D, so that
D is divided into X xY dexel locations. Figure[f|illustrates
a dexel-grid with X = 16,Y = 11, representing a torus.
Each dexel, D; ;, corresponds to a point (z;,y;,0) € R3
and maintains a list of real z-intervals which represent the
material of the stock to be machined. The distances be-
tween dexels along the x and y directions determine the
fineness of approximation of the swept volume and are
supplied by the user. These intervals are updated as the
computation of the envelope proceeds.

The three different algebraic formulations described in
Section [4] give rise to three possible algorithmic variants,
which are illustrated schematically in Figure[7] The three
differ in the dimension of the solution returned, which is
shown in red in Figure [7] The algorithm which uses the
formulation of Section is summarized in Algorithm
and is illustrated in Figure [7|(a). It takes as input, the
dexel grid, D, representing the raw stock which is to be
machined, the tool, T', in B-rep form, the motion, M, and
the numeric tolerance value, €.

First, for each surface patch, F' C 9T, the envelope sur-
face is obtained as a bivariate solution to Equation .
This is done by the function EnvelopeSrf2D in lines 2-4
of Algorithm [Il Secondly, for each C'' discontinuity curve
C C JT, the envelope surface is obtained by constructing
Equation (3)). This is done by the function EnvelopeCrv2D
in lines 5-7 of Algorithm The list, Envi2D, now con-

il

|

o

Figure 6: A dexel-grid with 16 x 11 dexels, representing a torus. The
dexels intervals which represent the interior of the torus are shown
in red. One of the dexels has been highlighted in blue.

‘Cl,j
Se, ,;(0V)

L;;

(a) (b) ()

Figure 7: The difference between the three algorithmic variants is
illustrated. The solution returned by these algorithms, which is of
dimension two, one and zero, in (a), (b) and (c), respectively, is
shown in red in each case.

tains all the envelope surfaces derived from all the surface
patches as well as C! discontinuity curves of 97.

Now begins the dexel approximation phase. Let L; ;
denote the line along the dexel D; ;. Each line £; ;,% =
0,...,X —1,7 = 0,...,Y — 1, is intersected with each
of the envelope surfaces in Envl2D using a line-surface
intersection routine. This gives a set of points, along with
the normals to the respective envelope surfaces at each
of these points. This is done in line 13 of Algorithm
To this set of points which lie on line £; ;, the boundary
operator, Jr, ., is applied in line 15.

The boundary operator, d¢, for any line, £, introduced
in Definition 3] discards the points which do not belong to
the boundary of the swept volume, after sorting them by
their z-coordinate, into paired intervals. Such points arise
due to local and global self-intersections in the envelope.
For example, in the sweep shown in Figure [5] the intersec-



tion of line £ with the envelope surfaces gives three points,
shown in black. One of these points, viz., the one in the
middle, does not lie on oV.

The operator 0 works by inspecting the normals to the
envelope at the points it received. Since the dexels are
assumed to be along the z-axis, a point with negative or
positive z-coordinate of the normal is considered as the
start or end of a real interval, respectively. The bound-
ary operator is summarized in Algorithm 2] The set of
intervals thus obtained is the section of the swept volume
of the tool along the line L, ;, i.e., Sg,;(9V). This set
of intervals is subtracted from the dexel D; ; representing
the stock, using a 1D Boolean subtraction operator in line
16 of Algorithm This subtraction is equivalent to the
removal of material from the stock by the tool.

Algorithm 1 ComputeEnvelope2D (D, T, M, ¢)

1: Envl2D <« (;

2: for all F' € 0T do
3 Envi2D <+ Envi2D U EnvelopeSrf2D(F, M ¢);
4: end for

5: for all C € 0T do
6

7

8

9

Envi2D < Envi2D U EnvelopeCrv2D(C, M);
: end for
: for all i € {0,...,X — 1} do

for all j€{0,...,Y -1} do

10: Pts + 0;

11: L; ; < LineZ(i, j);

12: for all Srf € Envi2D do

13: Pts <— Pts U LineSrfInter(Srf, £; ;);
14: end for

15: Intrvls < BoundaryOp(Pts);

16: BooleanSubtract(D; ;, Intruls);

17: end for

18: end for

The second variant of our algorithm, which exploits the
algebraic formulation given in Section is summarized
in Algorithm [3| and is illustrated schematically in Fig-
ure ). In this case, univariate sections of the envelope
are obtained along planes, P;,i = 0,...,X — 1, which are
parallel to the yz-plane. This is done in lines 3-5 of Al-
gorithm [3] by the function EnvelopeSrflD which takes as
input, a surface patch F' C 97T, the motion, M, the z-
intercept, z;, of the plane P;, and the numeric tolerance
€ and solves Equation . The univariate sections of the
envelope generated by C! discontinuity curves of 9T are
computed in lines 6-8 of Algorithm [3] by the function En-
velopeCrv1D, by solving Equation ()

We thus have 1-dimensional slices of the envelope, com-
puted along a set of parallel planes in R?. The number of
such planes as well as the distance between two consecu-
tive planes can be dictated by the desired dexels’ tolerance.
Each section of the envelope is topologically guaranteed,
up to the tolerance specified to the solver. Each section,
Sp, (0V), which is a set of curves, is intersected with each
of lines £; j,7 =0,...,Y — 1. For each line, a set of points
is obtained. This is followed by the dexel approximation
and is similar to that described for Algorithm

We now come to the final variant of our algorithm, which
uses the 0-dimensional formulation described in Section 43|

Algorithm 2 BoundaryOp(PtList)

1: Introls < 0;

2: IntrvlStart < NULL;

3: IntrvlEnd < NULL;

4: ZSortedPtList < SortByZCoord(PtList);
5. for all Pt € ZSortedPtList do

6: if Pt.Nrml.z < 0 then

7: if IntrvlStart = NULL then

8: IntrvlStart < Pt;

9: else if IntrvlEnd # NULL then
10: Intrvls < Intrvls U

[IntrvlStart, Intrvl End);

11: IntrvlStart + Pt;
12: IntrvlEnd < NULL;
13: end if

14: else if Pt.Nrml.z > 0 then

15: if IntrvlStart # NULL then

16: IntrvlEnd < Pt;
17: end if
18: end if
19: end for

20: return Intruls;

Algorithm 3 ComputeEnvelopelD(D, T, M, ¢)

1: for alli € {0,...,X — 1} do
2: EnvllD < (;
3: for all F' € 9T do
4: EnvllD < EnvllD U
EnvelopeSrflD(F, M, x;, €);

end for
: for all C € 0T do
7 EnvllD < EnvllD U
EnvelopeCrvlD(C, M, z;, €);
8: end for
9: for all j € {0,...,Y -1} do
10: Pts + 0;
11: ['i,j <« LlneZ(Z,j),
12: for all Crv € EnvilD do
13: Pts < Pts U LineCrvInter(Cruv, £; ;);
14: end for
15: Introls < BoundaryOp(Pts);
16: BooleanSubtract(D; ;, Intruls);
17: end for
18: end for

and is illustrated schematically in Figure c). In this
case, for each of the surface patches of 0T, the section of
the envelope is computed along each of the lines £; j,¢ =
0,...,X—-1,7 =0,...,Y — 1, by solving Equation

The same is done for C' discontinuity curves of 97", by
solving Equation @ This gives a set of points on which
the boundary operator is applied, as in the previous two
cases. Planes P; and P5, being orthogonal to the x- and y-
axes respectively, yield a set of points on the envelope, with
uniform distance along the z- and the y-axes. Some of the
points may not lie on the boundary of the swept volume.



Culling of such points is, again, done by the boundary
operator. The algorithm is summarized in Algorithm [4]

Algorithm 4 ComputeEnvelopeOD(D, T, M, ¢)

1: for alli€{0,...,X —1} do
2 for all j € {0,...,Y —1} do
3 Envl0D <+ 0;
4: [-:i,j — Lln@Z(Z,j),
5 for all F' € 0T do
6 Envl0D <+ Envl0D U
EnvelopeSrfOD(F, M, x;, y;, €);

7 end for
8: for all C € 9T do
9: Envl0D + Envl0D U

EnvelopeCrvOD(C, M, ;,y;, €);
10: end for
11: Introls + BoundaryOp(Envl0D);
12: BooleanSubtract(D; ;, Intruls);
13: end for
14: end for

The difference between the three variants of our algo-
rithm is illustrated schematically in Figure[7] The dimen-
sion of the solution manifolds returned by the solvers is
two, one and zero in Algorithms [I] [3] and [ respectively,
and is shown in red, in Figure[7(a),[7{b) and[7|c). The per-
formance of these three variants is compared in the next
section.

6. Results

In this section, we present results from an implementa-
tion of the algorithm proposed in Section[5] First, we com-
pare the three algorithmic variants, viz., Algorithms
and [ given in Section Then, we give four examples
of 5-axis machining simulations using analytic as well as
freeform tool shapes, along SLERP motions.

The motion of the tool is specified as a series of posi-
tions and orientations of the tool, (p;,0;) € R? x S2,i =
0,...,K, where, p; is the position of the tool center in R?
and o; is the orientation of the axis of the tool, specified
as a unit-length vector in R?. For each pair of consec-
utive positions (p;,0;) and (p;4+1,0i+1), the tool motion,
M;(t) = (Ai(t),bi(t)),t € [0,1] is derived as follows. The
translation b;(t) is specified by the linear interpolation of
the points p; and p; 1, i.e., b;(t) = (1—t)p;+tpi+1. The ro-
tation, A;(t), is specified by SLERP between vectors o; and
0;+1. Let §; denote the angle between o; and 0;41. The ma-
trix, A;(t), prescribes a rotation around the axis 0;41 X 0;
by an angle, «;(t), so that, «;(0) = 0 and a;(1) = ;. The
entries of the matrix A;(t) are composed of the trigonomet-
ric functions cos(«;(t)) and sin(c;(t)). We construct these
trigonometric functions as rational B-spline functions by
creating an arc of angle 6; of a unit circle whose two coor-
dinates furnish the functions cos(c;(t)) and sin(a;(t)).

We compare the running times of Algorithms and [4]
on three types of tools, viz., ball-end, flat-end and free-
form. Each of these tools is swept along two kinds of
motions. Two different dexel grid sizes are used for com-
parison. We begin by describing how each of these tools is
processed by our framework.

gisg

(a) (b) ()
Figure 8: Swept volume of a ball-end tool. (a) The tool is composed
of hemispherical, cylindrical and planar surface patches. (b) The
swept volume of the tool shown in (a) along a purely translational
motion. (¢) The swept volume of the tool along a motion having
rotational as well as translational components. The shadows of the
swept volume are shown in black.

The boundary of the ball-end tool is composed of a hemi-
spherical surface patch at the bottom, a cylindrical surface
patch at its flank and a circular, planar face at its top. The
top planar face does not play a role in machining and hence
may be ignored in the simulation. The hemispherical sur-
face patch is approximated by a tensor-product polyno-
mial B-spline surface [20] of order 4 x 4 and having 13 x 4
control-points. This gives an order 3 approximation. As
explained in Section [4.1, one may use rational B-splines
to get an accurate representation. The cylindrical surface
is modeled using a B-spline surface patch of order 4 x 2
and having 13 x 2 control-points, with a similar approx-
imation order. Each of these surface patches are used in
Equations (2)), (4) and (6)), in Algorithms and {4l re-
spectively, as explained i Section |5} The ball-end tool is
illustrated in Figure a). This tool is swept along two
different motions. The first motion, referred to as Sweepl,
is purely translational, and the resulting swept volume is
shown in Figure [§(b). The second motion, referred to as
Sweep2, involves rotation as well as translation. The re-
sulting swept volume is shown in Figure c).

The running times for the ball-end tool for the three al-
gorithmic variants, along the two motions, using two dif-
ferent dexel grid sizes, are given in Table[I} All the times
are in seconds. All runs were executed on a 4.2 GHz CPU
with 8 GB memory, on a single thread. As can be seen
from Table [I, Algorithm [3]is at least an order of magni-
tude faster than the other two variants. Part of the reason
for its efficiency may be that the envelope along multi-
ple dexels is computed from a single univariate slice of
the envelope returned by the solver. On the other hand,
computing the complete 2-manifold dV in Algorithm [1} is
very time consuming. Also, Algorithm [I] takes about the
same amount of time for both grid sizes since in this case
the solver is invoked only once for each surface patch of
the tool, irrespective of the grid size, and the grid process-
ing times are negligible, compared to the algebraic solvers’
costs.

A flat-end tool is composed of a circular planar disk at
the bottom, a G' discontinuity curve bounding the planar
disk, a cylindrical surface at the flank and a planar circular
face at the top. This is illustrated in Figure EE&). The sur-
face patches are processed as in the case of a ball-end tool.
In addition, the G discontinuity curve is used in Equa-
tions , (5) and in the three algorithms. The swept
volumes of the flat-end tool shown in Figure @](a along
Sweepl and Sweep?2 are shown in Figure [0[b) and [9fc), re-



Algorithm Dexel Grid Size Sweep1 Sweep2
Algorithm1 200 x 200 10.32 13.46
Algorithm3 200 x 200 0.35 0.63
Algorithm4 200 x 200 5.27 22.40
Algorithm1 500 x 500 10.34 13.92
Algorithm3 500 x 500 0.75 1.20
Algorithm4 500 x 500 35.40 134.50

Table 1: Running times of Algorithms and {4 for ball-end tool
on the two sweep examples, shown in Figure [§] with different dexel
grid sizes. All times are in seconds.

Figure 9: The swept volume of a flat-end tool. (a) The tool is com-
posed of cylindrical and planar surface patches, as well as G1 dis-
continuity, circular curves at the bottom and the top. (b) The swept
volume of the tool along a translational path. (¢) The swept volume
of the tool along a motion containing translation as well as rotation.
Note here that, due to the rotation, the right side of the swept vol-
ume appears thin, being away from the screen. The shadows of the
swept volume are shown in black.

gt !g!

(b) ()

Figure 10: (a) A free-form tool and its swept volumes along a trans-
lational motion (b) and motion containing translation as well as ro-
tation (c). The shadows of the swept volume are shown in black.

spectively. The relative running times for Algorithms
and [4] for the flat-end tool along Sweepl and Sweep2 are
similar to those of the ball-end tool.

An example of a free-form tool is shown in Figure [L0f(a)
which has one surface patch of order 4 x 4 having 13 x 14
control-points. The swept volumes of the tool shown in
Figure [10[a) along Sweepl and Sweep2 are shown in Fig-
ures [10(b) and c), respectively. The relative running
times of Algorithms and [4 for this tool are again
similar to the ball-end tool. Clearly, Algorithm [3] is the
algorithm of choice and is used in the rest of this section.

We now present four complete 5-axis CNC machin-
ing examples, simulated by the implementation of Algo-
rithm [3] The first example performs the machining of the
exterior surface of the body of the Utah teapot [34]. We

use only a half of the teapot body for clarity of demon-
stration. The surface of the body is shown in top-left of
Figure A flat-end tool is used to perform a sequence
of cuts starting from a rectangular stock. A few snapshots
from the simulation, which took about a minute to com-
pute (excluding rendering time), are shown in Figure
A dexel grid of size 300 x 300 is used. The tool-path is
designed by adaptive-sampling a set of points along the
iso-parametric curves of the surface of the teapot, and the
surface normals are used to orient the tool. These posi-
tions as well as the normals to the surface at these posi-
tions lead to the sequence of SLERP motions as described
at the beginning of this section, preserving a three orders
of magnitude accuracy.

The second CNC simulation example performs the ma-
chining of the interior of the body of the Utah teapot.
Again, we use only a half of the teapot surface. A ball-end
tool is used for this purpose. The tool path is designed
as follows. An offset of the teapot surface is taken at a
distance of tool-radius, in the interior direction. A set
of points is obtained by adaptive sampling along isopara-
metric curves of the offset surface, again preserving three
orders of magnitude of accuracy. These points give the lo-
cation of the tool, which is at the center of its hemisphere.
The orientation of the tool is obtained by connecting each
of these points with a common point at the top opening of
the teapot (see Figure [12{b)). A sequence of SLERP mo-
tions is obtained from this sequence of positions and ori-
entations of the tool. Hence, the machining is performed
“through a point” [I8]. A dexel grid size of 300 x 180
is used. A few frames from the simulation, which took
about a minute to compute (excluding rendering time),
are shown in Figure

The third example simulates the carving of an impeller
blade using a ball-end tool. The sequence of 2700 SLERP
motions is pre-specified. A dexel grid size of 600 x 300
is used and a few frames from the simulation, which took
about 8 minutes to compute (excluding rendering), are
shown in Figure

The fourth example simulates the 5-axis CNC machining
of a wooden hand-railing using the router bit shown in
Figure [10[(a). A dexel grid of size 300 x 300 was used for
this purpose. A few frames from the simulation, which
took about a minute to compute, are shown in Figure

The results shown in Figures and [14] are pro-
duced by fitting triangles over the respective dexel grids
of the stock being machined. Each square of the grid ad-
mits four triangles for each dexel interval, two at the start
end-points of the dexel-intervals and two at the end. Fur-
ther, the normals to the envelope computed at the dexel
locations are employed to achieve a smooth rendering.

7. Conclusion

This paper presents an algebraic-based computational
framework for 5-axis CNC machining simulation. This is
done by a precise algebraic formulation of the envelope
condition and solving the same using state-of-the-art con-
straint solvers. This has the advantage that the returned
envelope is topologically accurate, up to a specified toler-
ance. At the same time, the algebraic approach readily
generalizes to sweeping of free-form tools. The effective-
ness of our algorithms is demonstrated on several real-life
5-axis machining simulation examples.



()

Figure 11: A few frames from the 5-axis CNC machining simulation of the exterior surface of the body of the Utah teapot, using a flat-end
cutter. The original surface of the body (half) is shown in (a) by a blue highlight.

(e)

(b) .
<f>i

(d) I

Figure 12: A few frames from the 5-axis CNC machining simulation of the interior surface of the body of the Utah teapot, using a ball-end
cutter. The original surface of the body (half) is shown in (a) by a blue highlight. The central axis and the axis of the tool, for the “through

point” machining, are showin in cyan in (b).

This work may be extended along several lines. One
may choose to employ the solution of the algebraic con-
straints directly or employ an alternative representation,
instead of dexels, which could better exploit the numerical
precision inherent to our approach. One may explore the
option of choosing the dexels’ direction in a way to better
approximate the swept volume. Also, dexels along multi-
ple directions may be employed towards the same goal.

Being independent problems, the solution of each
plane/line section may be computed in parallel with ease,
in order to speed-up the execution. Such a parallel ap-
proach can make the presented algorithms usable with rea-
sonable response rates.



Figure 13: A few frames from 5-axis CNC machining simulation for carving of an impeller blade, using a ball-end cutter. The rectangular

area marked in (a) is zoomed into, in the rest of the images.

(2) (h)

Figure 14: A few frames from 5-axis CNC machining simulation for carving of a wooden hand-railing, using the router bit shown in Figurea).
The concavity in the path causes gouging which can be seen in the black rectangle in (g) and is magnified in (h).
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