Trimming Local and Global Self-intersections
in Offset Curves using
Distance Maps *

Gershon Elber

Computer Science Department
Technion
Haifa 32000, Israel
gershon@cs.technion.ac.il

Abstract. The problem of detecting and eliminating self-intersections
in offset curves is a fundamental question that has attracted numerous
researchers over the years. The interest has resulted in copious publica-
tions on the subject.

Unfortunately, the detection of self-intersections in offset curves, and
more so, the elimination of these self-intersections are difficult problems
with less than satisfactory answers.

This paper offers a simple, and equally important robust, scheme to
detect and eliminate local as well as global self-intersections in offsets of
freeform curves. The presented approach is based on the derivation of an
analytic distance map between the original curve and its offset.

1 Introduction and Background

Offsets of curves and surfaces are crucial in many applications from robotic
navigation, through CNC machining, to geometric design. This basic operation
could be found in virtually any contemporary geometric modeling system or
environment. The offset curve C(t) by amount d to a given rational curve C(¢)
equals,

Cq(t) = C(t) + N(t)d, (1)

where N (t) is the unit normal of C(t). The offset of rational curve C(t) is not
rational, in general, due to the necessary normalization of N(t).

The fact that C§(¢) is not rational introduces an enormous difficulty into
the computation of C§(t), as virtually all geometric design systems support only
rationals. Hence, C'9(t) must be approximated. Numerous publications can be
found on this topic of approximating offsets of rational curves as rationals [5, 7,
10-12].

The problem of proper offset computation is reflected in a more gloomy light
if one considers why offsets are so useful. The offset to a border line can offer the

* The research was supported in part by the Fund for Promotion of Research at the
Technion, IIT, Haifa, Israel.

2 Gershon Elber

path to follow at a fixed distance from that border, for robot navigation. Suc-
cessive offsets from a boundary of a pocket could similarly serve as the toolpath
along which to drive a CNC cutter. In geometric modeling, the offset of some
shape is a simple way of building a constant thickness wall out of the shape.

Given a general curve as is presented in Figure 1, in all these applications,
be it for robotic navigation, CNC machining, or geometric modeling, the offset
result shown in Figure 1 is not the one typically desired. Nonetheless and while
it is the accurate offset, the self-intersections in the resulting computed offset
are expected to be trimmed away.

Global Self-

Intersections

Local Self-intersection

Fig.1. A general curve (in gray) and its accurate offset. Both local and global self-
intersecting could occur in the offset curve, and should be trimmed away.

The self-intersections in offsets are typically classified into two types. Let
k be the curvature of curve C(t). Local self-intersections in offset curves are
intersections that are due to regions in C(¢) that present a radius of curvature,
1/k, that is smaller than d, the offset distance.

Additionally, two unrelated points in C(t), C(tg) and C(t1), that are close,
could intersect in the offset curve. If

C4(tg) = C(to) + N(tg)d = C(t1) + N(t1)d = C3(t1),

CY(to) and C9(t1) are at the same location and a global self-intersection will
result.

Trimming Self-intersections in Offset Curves 3

The detection and trimming of local, and more so, global self-intersections in
offset curves are considered to be difficult problems. A monotone curve cannot
self-intersect, which leads to a conceptually simple, yet computationally complex
approach. We can subdivide C9(t) into monotone regions, and then intersect each
of the regions against all other regions, in order to detect all the self-intersection
locations. A somewhat simplified approach, taken in [10], converts the curves to a
piecewise linear approximation and processes all the (monotone) linear segments
using a plane sweep [1] scheme.

Solutions to eliminate the self intersecting regions in closed curves that are
piecewise-lines and -arcs were also proposed in the past, by computing the
Voronoi map of the curves, [13,2,8]. The bisectors forming the Voronoi dia-
gram directly hint on the distance from the boundary (the closed curve). As one
moves along the bisectors starting from the boundary, the distance to the bound-
ary increases monotonically. Together, all the bisectors’ arrangment that form
the Voronoi diagram, could be viewed as a distance map (proximity map in [8]).
Then, the proper offset could be extracted as the iso-surface of the Voronoi di-
agram seen as height field with the distance mapped to height. The extension
of this approach for freeform shapes is difficult. The bisectors between points,
lines and arc are all conics. Unfortunately, the bisectors of rational planar curves
are not rational, in general [6], and forming the complete Voronoi diagram of
freeform planar shape is still an open question.

Let T'(t) and T3(t) be the tangent fields of C'(t) and C§(t), respectively. For
a self-intersection-free offset curve, T'(t) and T (¢t) are parallel, for all . In [3],
the mutual characteristic of the tangent fields of C(t) and C(t) is used to detect
local self-intersections. Consider,

6(t) = (T(t), TZ(t)) - (2)
0(t) is negative only at the neighborhood of a local self-intersection as the tangent
field of C(t) flips its direction, for 1/ that is smaller than d.

Global self-intersections are more difficult to detect. Nevertheless, the need
to robustly detect and eliminate self-intersections stems from the simple fact
that a failure in the detection and/or the elimination process would take the
robot into a collision path or will gouge into the part on the CNC machine.

In this paper, we present a simple yet robust scheme to detect and eliminate
self-intersections in offsets of freeform planar curves. While we do employ the
concept of a distance maps, we do attempt to build the complete Voronoi dia-
gram for the given curve. Instead, the distance function is computed only for a
small neighborhood of the computed offsets. The rest of this paper is organized
as follows. In Section 2, the proposed offset trimming approach is discussed, an
approach that is based on an analytic distance function computation. In Sec-
tion 3, some examples are presented and finally, we conclude in Section 4.

2 The Offset Trimming Approach

Consider the rational offset approximation of rational curve C(t) by amount d,
Cg (t), where € € R" denotes the accuracy of the approximation. That is, the

4 Gershon Elber

offset distance is bound to be between d + €. The presented trimming process of
self-intersections is independent of the offset approximation scheme. Henceafter
and unless otherwise stated, we assume Cg (t) is parameterized independently
of C(t) as Cg (r). Consider the new distance square function of,

A(r,t) = (C(t) = Cq.(r), C(t) = Cg.(r)). 3)

If no self-intersection occurs in CJ (r), then A3(r,t) > (d—e€)?. In contrast, if
Cg. (r) is self-intersecting, there exist points in Cg (r) that are closer than d—e to
C(t). Therefore, any pair of points C§ (r) and C(t) such that A3(r,t) < (d—e)?
hints at a self-intersection. Moreover, any point Cg (r) for which there exists a
point C(t) such that C(t) — Cf (r) < d — ¢, for some ¢, must be trimmed away.

Let p € R be another small positive real value and let D(r,t) = A7 (r,t) —
(d — € — p)?. Any point in the zero set of D(ro,ty) represents two points, C(tg)
and Cj (7o), that are (d —e— p) apart. Every such point Cg (7o) must be purged
away as a self-intersecting point. We denote this trimming process of p below the
offset approximation, a p-accurate trimming or p-trimming, for short. Hence, we
now offer the following algorithm to detect and eliminate the self-intersection
regions:

Algorithm 1
Input:
C(t), A rational curve;
Cg (r), A rational approzimation offset of C(t) by distance d
and tolerance €;
p, a trimming tolerance for the self-intersections.

Output:
626 (r), A rational approzimation offset of C(t) by distance d,
tolerance €, and p-trimming;

Begin

A3(r,t) < (C(1) — €3, (1), C(t) — C5.(1):

D(r,t) < A3(r,t) — (d — € — p)?;

Z < the zero set of D(r,t);

Z, < the projection of Z onto the r axis;

626 (r) <= the r domain(s) of Cg (t) not included in Z,;
End.

AZ%(r,t) and D(r,t) are clearly piecewise rational, provided C(t) and C§ (t)
are, and that they are the result of products and differences of piecewise rational
functions. See, for example, [4].

With D(r,t) as a piecewise rational, the zero set, Z, could be derived by
exploiting the convex hull and subdivision properties, yielding a highly robust
divide and concur zero set computation that is reasonably efficient. Nevertheless,
we are not really interested in the zero set of D(r, t), but merely in all r such that

Trimming Self-intersections in Offset Curves 5

6;((r) is closer to C(t) more than (d — e — p), for some ¢. Hence, Z is projected
onto the r axis, as Z,. The domain of r covered by this projection prescribes the
regions of Cg. (r) that must be purged away.

At this point, it is crucial to emphasize the total separation between the two
stages: the offset approximation step and the self-intersection trimming stage.
The result of the offset approximation step, C'g. (r), can be an arbitrary offset
curve approximation of C(t) that is accurate to within e. Furthermore, Cg (r)
can assume any regular parameterization. Algorithm 1 assumes nothing of the
parameterization of the curve and its offset, in contrast, for example, to the local
self-intersection detection and elimination method proposed in [3].

The outcome of Algorithm 1 is a subset of Cg (r). The latter comprises of
curve segments that have no point closer than (d — e — p) to C(t). Clearly,
the offset path should be computed conservatively, to be a bit more than d. €
and p could be added to d, computing an offset approximation to a distance of
(d + €+ p), only to ensure a minimal distance constraint of d.

A point on Cf (ro) is said to be a match to point C(to) if it matches location
C(to) + N(to)d. Denote by A%(t) the distance square between the matched point
on Cg (r) to C(t) and C(t). The need to exploit a positive p value stems from the
fact that d + e > AZ%(t) > d — e. For numerical stability, p should be as large as
possible, reducing the chance of detecting matched points as self-intersections.
In contrast, the larger p is, the bigger the likelihood that we will miss small
self-intersections. In practice, p was selected to be between 95% and 99% of d.

By selecting p > 0, the curve segments that result from Algorithm 1 are
not exactly connected. Instead, a sequence of curve segments is output with end
points that are very close to each other. Numeric Newton Raphson marching
steps at each such close pair of end points could very quickly converge to the
exact self-intersection location. Very few steps are required to converge to the
highly precise self-intersection location. In Section 3, we present several examples
that demonstrate this entire procedure, including the aforementioned numerical
marching stage.

3 Examples and Extensions

We now present several examples of trimming of both local and global self-
intersections in offset curves, via the (square of the) distance map, AZ(r,t).
In Figure 2, the example from Figure 1 is presented again. In Figure 2 (a), the
original curve and its offset are presented. In Figure 2 (b), the result of trimming
the curve using the A?(r,t) functions is shown while Figure 2 (c) presents the
same trimmed offset curve after the numerical marching stage.

In Figure 3, the log of the distance (square) function, A2(r,), is presented
for the curve in Figure 2. The minimal distance is in the order of the offset
distance itself whereas the maximal distance is in the order of the diameter of
the curve and hence, the figure is shown in a logarithmic scale. Also presented
in Figure 3 are the zero set, Z, of A%(r,t) — (d — € — p)? and its projection, Z,,
on the t = 0 axis. In this case, the r axis is divided into four valid domains by

6 Gershon Elber

</

(a) (b) ()

Fig. 2. A simple curve and its offset, from Figure 1. The curve and its offset are
presented in (a). (b) is the result of p-trimming the curve using AZ%(r,t) whereas, in
(c), the result is improved using numerical marching.

three sub-regions that are self-intersecting. The first and third black sub-regions
along the r axis are due to the global self-intersection of the curve in Figure 2,
whereas the middle large black sub-region is due to the local self-intersection
in the curve. Extracting the four valid sub-regions, we see the resulting curve
segments in Figure 2 (b). A numerical marching step completes the computation
in Figure 2 (c).

Figure 4 presents another example of a curve with several offsets to both
directions. In Figure 4 (a), the original curve is shown (in gray) with the offsets.
With the aid of the distance function square, AZ(T, t), the self-intersections are
p-trimmed in (b), whereas the result of applying the numerical marching stage
is presented in Figure 4 (c).

Figures 5 and 6 present two more complex examples. Here (a) is the original
curve (in gray) and its offsets, and (b) is the result of p-trimming, p = 95%, of
the self-intersections with the aid of the A%(r,t) function. In all the examples
presented in this work, the trimming distance p was from 95% to 99% of the offset
distance, with an offset tolerance about ten times better (i.e. offset accuracy of
99% to 99.9% of the offset distance). (c¢) and (d) in Figures 5 and 6 present the
result of trimming at p = 95% and p = 99% of the offset distance, respectively.
Small local self-intersections escape the p-trimming step at p = 95% but are
properly trimmed at p = 99%.

These small local self-intersections could clearly appear at any percentage
of the p-trimming distance, below 100%. In many applications, such as robotics
and CNC machining, local and arbitrary small self-intersections will enforce
large accelerations along the derived path, and hence are highly undesired. One
could employ the local self-intersection test presented in Equation (2) as another
filtering step that should completely resolve such small local events.

The computation of the offset curves as well as the trimming of the curves
in Figures 5 and 6 took about one minute on a modern PC workstation.

Trimming Self-intersections in Offset Curves 7

Fig. 3. The distance function, Aﬁ(r, t), of the curve in Figure 2, on a logarithmic scale.
Also shown, in thick lines, are the zeros, Z, of AZ(r,t) — (d — ¢ — p)? as well as the
projection of Z on the t = 0 axis.

4 Conclusions and Future Work

We have presented a robust and reasonably efficient scheme to trim both local
and global self-intersections in offsets of freeform planar curves. No complete
distance map was defined for the plane, which is highly complex computationally.
Instead, the distance function was examined only for the neighborhood of the
computed offset curve.

The presented scheme is robust in the sense that the trimmed offset curve
that result is at least trimming distance apart, (d — € — p), from the original
curve. Nevertheless, since the trimming distance must be some finite distance
smaller than the offset approximation, small loops such as those from local self-
intersections might still exist and a combined scheme that employs an approach

8 Gershon Elber

11

Fig. 4. Another example of a curve (in gray) and its offsets is shown in (a). is
the result of p-trimming the curve using A3(r,t) and (c) is the result of applymg the
numerical marching stage.

Fig.5. (a) presents the original curve (in gray) and its offsets, while (b) is the result
of p-trimming, p = 95%, of the offset with the aid of AZ(r,t). (c) and (d) present
two different p-trimming percentages of 95% and 99%, respectively, after a numerical
marching stage.

similar to that of [3] to detect and eliminate local self-intersection, using Equa-
tion (2), could provide the complete solution.

The potential of extending this trimming offset approach to surfaces is an
immediate issue that needs to be considered, in this context. While trimming
of self-intersection of curves is considered a difficult problem, the question of
trimming self-intersections in offsets surfaces is far more complex. An even more
challenging question is the issue of trimming self-intersections in related appli-
cations such as the computation of bisector sheets. The topology of the self-

Trimming Self-intersections in Offset Curves 9

Fig. 6. (a) presents the original curve (in gray) and its offsets, while (b) is the result
of p-trimming, p = 95%, of the offset with the aid of AZ(r,t). (c) and (d) present
two different trimming percentages of 95% and 99%, respectively, with a numerical
marching stage.

intersections in offsets of surfaces is exceptionally complex, which makes this
problem extremely difficult to handle. Yet, we are hopeful that the distance map
could aid simplifying this problem by globally examining the distance function.
Let S(u,v) and Sj (u,v) be a freeform rational surface and its rational offset
approximation with tolerance ¢, and let

Ai(u,v,r, t) = <S(u,v) - Sq. (r,t),S(u,v) — Sa. (r, t)> . (4)

The zero set of A%(u,v,r,t) — (d— € — p)?, projected onto the (u,v) domain,
will prescribe the domains of S(u, v), which need to be purged. Trimming curves
could then be constructed in the parametric domain of S(u,v), representing the
resulting p-trimmed offset as a trimmed tensor product surface. The question of
numerically improving the p-trimming for offset surfaces is more difficult, and
while probably feasible, will have to be dealt with more cautiously.

10

Gershon Elber

This same approach could also be employed to handle the trimming of self-

intersections in wariable distance offsets of curves and surfaces where we now
seek the zero set of A2(r,t) — (d(t) —e—p)? and AZ(u,v,r,t) — (d(u,v) —e—p)?,
with the distance being a function of the parametric location.

5

Acknowledgment

The implementation of the presented algorithm was conducted with the aid of
the IRIT [9] modeling environment.

References

1.

2.

10.

11.

12.

13.

M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf. “Computational Ge-
ometry, Algorithms, and Applications (2nd ed.)”, Springer-Verlag, Berlin, 2000.
J. J. Chou. “NC Milling Machine Toolpath Generation for Regions Bounded by
Free Form Curves and Surfaces.” PhD thesis, Department of Computer Science,
University of Utah, April 1989.

G. Elber and E. Cohen. “Error Bounded Variable Distance Offset Operator for Free
Form Curves and Surfaces.” International Journal of Computational Geometry &
Applications, Vol 1, No 1, pp 67-78, March 1991.

G. Elber and E. Cohen. “Second Order Surface Analysis Using Hybrid Symbolic
and Numeric Operators.” Transactions on Graphics, Vol 12, No 2, pp 160-178,
April 1993.

G. Elber, I. K. Lee, and M. S. Kim. “Comparing Offset Curve Approximation
Methods.” CG&A, Vol 17, No 3, pp 62-71, May-June 1997.

G. Elber and M. S. Kim. “Bisector Curves of Planar Rational Curves.” Computer
Aided Design, Vol 30, No 14, pp 1089-1096, December 1998.

R. T. Farouki and Y. F. Tsai and G. F. Yuan. “Contour machining of free-form
surfaces with real-time PH curve CNC interpolators”, Computer Aided Geometric
Design, No 1, Vol 16, pp 61-76, 1999.

“Pocket Machining Based on Countour-Parallel Tool Paths Generated by Means
of Proximity Maps.” Computer Aided Design. Vol 26, No 3, pp 189-203. 1994.
IRIT 8.0 User’s Manual. The Technion—IIT, Haifa, Israel, 2000. Available at
http://www.cs.technion.ac.il/"irit.

I. K. Lee, and M. S. Kim, and G. Elber. “Planar Curve Offset Based on Circle
Approximation.” Computer Aided Design, Vol 28, No 8, pp 617-630, August 1996.
Y. M. Li and V. Y. Hsu. “Curve offsetting based on Legendre series.” Computer
Aided Geometric Design, Vol 15, No 7, pp 711-720, 1998.

M. Peternell and H. Pottmann. “A Laguerre geometric approach to rational off-
sets.” Computer Aided Geometric Design, Vol 15, No 3, pp 223-249, 1998.

H. Persson. “NC machining of arbitrary shaped pockets”. Computer Aided Design.
Vol 10, No 3, pp 169-174. 1978.

