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Offset curves have diverse engineering applica-
tions, which have consequently motivated extensive
research concerning various offset techniques. Offset
research in the early 1980s focused on approximation
techniques to solve immediate application problems
in practice. This trend continued until 1988, when
Hoschek [1, 2] applied non-linear optimization tech-
niques to the offset approximation problem. Since
then, it has become quite difficult to improve the
state-of-the-art of offset approximation.

Offset research in the 1990s has been more theoret-
ical. The foundational work of Farouki and Neff [3]
clarified the fundamental difficulty of exact offset
computation. Farouki and Sakkalis [4] suggested the
Pythagorean Hodograph curves which allow simple
rational representation of their exact offset curves.
Although many useful plane curves such as conics
do not belong to this class, the Pythagorean Hodo-
graph curves may have much potential in practice,
especially when they are used for offset approxima-
tion.

In a recent paper [5] on offset curve approxima-
tion, the authors suggested a new approach based
on approximating the offset circle, instead of ap-
proximating the offset curve itself. To demonstrate
the effectiveness of this approach, we have made ex-
tensive comparisons with previous methods. To our
surprise, the simple method of Tiller and Hanson
[6] outperforms all the other methods for offsetting
(plecewise) quadratic curves, even though its perfor-
mance is not as good for high degree curves.

The experimental results have revealed other in-

teresting facts, too. If these details had been re-
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ported several years ago, we believe, offset approx-
imation research might have developed somewhat
differently. This paper is intended to fill in an im-
portant gap in the literature. Qualitative as well
as quantitative comparisons are conducted employ-
ing a whole variety of contemporary offset approx-
imation methods for freeform curves in the plane.
The efficiency of the offset approximation is mea-
sured in terms of the number of control points gen-
erated while the approximations are made within a

prescribed tolerance.

Offset of Planar Curves

cit)y =
(x(t),y(t)), in the plane, its offset curve Cy(t) by

a constant radius d, is defined by:

Given a regular parametric curve,

Ca(t) = C(t) +d- N(t), (1)

where N(t) is the unit normal vector of C(t):
(y/(t)7_x/(t)) ) (2)
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The regularity condition of C{t) guarantees that

(2'(t),y'(t)) # (0,0) and N{(t) is well defined on the

curve C(t). Equation (2) has a square root term in

N(t) =

the denominator. Therefore, even if the given curve
C(t) is a polynomial curve, its offset is not a polyno-
mial or rational curve, in general. This fundamental
deficiency has motivated the development of various
polynomial and rational approximation techniques
of Cd(t).

tional parametric curve must be approximated, it is

While the offset to a polynomial or ra-

somewhat counter-intuitive that a close cousin of the
offset, the evolute, is indeed always representable as

a rational curve (see Sidebar on Evolute).



Evolute

The evolute of C(t) is defined as:
R0
w(t)
where k(¢) is the curvature of C(t) = (z(t), y(t)):
' (t)y"(t) — 2" (t)y'(t)
EIOEODEE

E(t) = C(t)

w(t) =

That is, E(t) is a variable radius offset with offset radius

dit) = L
dt) = 75

Quite surprisingly, F(¢) is a rational curve, provided C(t)
is a rational or polynomial curve:

Ficure 1 shows two examnles of evolute curveg
Flgure 1 Snows two exampies of evoiute curves.
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In contrast to the offset computation in Equation (1), there
is no square root term in the representation of F(t). In
Figure 1, the curves and their evolutes are both represented
as B-spline curves.
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Figure 1: In (a), a B-spline curve, C(t), in light curve,
is shown along with its evolute, E(t), in bold curve. In
(b), the evolute E(t) for a cubic polynomial approxi-
mation of a circle, C(t), is shown. E(t) is scaled up by
a factor of 20.

Most offset approximation techniques are based
on an iterative process of fitting an approximation
curve, measuring the accuracy, and subdividing the
problem into smaller problems if the approximation
error is larger than the tolerance. This divide and
conquer approach exploits the subdivision property
of the base curve C(t). Henceforth, we assume C(t)
is represented by a Bézier or NURBS curve.

Denote by C5(t) the approzimation of Cy(t). Tra-
ditionally, the offset approximation error has been
measured only at finite sample points along C(t),
C4(t;)|| — d. Elber and Co-

hen [7] proposed a symbolic method which computes

computing ¢; = ||C(t;) —

the global error between squared distances:

e(t) = Ic@) - GO - d*. (3)

The error function e(t) is obtained by symbolically
computing the difference and inner product of Bézier
or NURBS curves (see Sidebar on Symbolic Compu-
tation and Reference [8]). Therefore, it can be rep-

resented as a Bézier or NURBS scalar function. As

a scalar field, the largest coefficient of e(t) globally
bounds the maximal possible error due to the con-
vex hull property of Bézier or NURBS formulation.
In this article, we exploit the error functional e(t)
of Equation (3) to measure all the offset approxima-
tion errors. This provides not only a global bound
for each method, but also an equal basis for the com-

parison of different methods.

Qualitative Comparisons
Control Polygon Based Methods

Let C(t) be a B-spline curve with & control points
of order n and defined over a knot sequence 7 =
{t;}, 0 < i< n+ k. The i-th node parameter value

& of C(t) is defined as:

itn=1,
Disigt b

n—1

fi = ) (7)

for 0 < i < k. Hence, a node parameter value is an
average of n — 1 consecutive knots in 7. Each control

point, P;, of C(t), is associated with one node, &;.




.D

mbol

In this article, we have employed €(t) (in Equation (3))
and e, (t) (in Equation (11)) to estimate the offset ap-
proximation error. Furthermore, we also need to compute
the composition of U{s(t)) (in Equation (10}). The sym-
bolic computation of these equations involves the differ-
ence, product, and sum of (piecewise) scalar polynomial or
rational curves.

Let C1 (t) = Z:io PiBi,-,—(t) and CQ(t) = Z;‘L:O Pij,n(t)
be two (piecewise) polynomial regular parametric curves,
in the Bézier or NURBS representations. The computation
of Ci(t) = Cz(t) can be accomplished by elevating both
C1(t) and Cs(t) to a common function space. The order of
the common function space is equal to the maximal order of
C1(t) and Ca(t). If either C1(t) or C2(t) is a B-spline curve,
the common function space is defined by considering both
knot vectors 7 and n and preserving the lowest degree of
continuity at each knot. Once the common function space
is determined, both Ci(t) and C»(t) are elevated to this
space via degree raising and refinement. (See [8, 9] for
more details as well as the extension to rationals.)

The computation of Cy (¢£)C2(t) is somewhat more involved.
Here, we consider only the case of Bézier polynomial
curves. (See [8] for the more general cases of piecewise
polynomials and rationals.) The i-th Bernstein Bézier ba-
sis function of degree k is defined by:

(f)ti(l —)*

BE(t)

(4)

= =BT (). (5)
(z‘+J)
Therefore, we have:
CL(t)Ca(t) = Y PRBM(t)Y  PBj(t)
=0 3=0
= > > PPBr®B)
i=0 j=0
- \N"\"op (Z)(J) pmAT (4
2oL (m+n) Sikd Y
i=0 j=0 i+
m+n
= ) QBT (6)
k=0
where @y accumulates all the combinatorial terms
P,P; (m)Jr(n) for k = i+ 7. Hence, C1(t)C2(1) is represented

itJ
as a Bézier polynomial curve of degree m + n.

C(&;) is typically close to Py; however, it is not the
closest point of C(t) to P;, in general.

Cobb [10] translated each control point, P;, by
d - N(&;), whereas Tiller and Hanson [6] translated
each edge of the control polygon into the edge normal
direction by a distance d. Unfortunately, Cobb [10]
e(t) < 0, for

all . (For the proof and related issues, see Sidebar

always under-estimates the offset; i.e.,

on Under and Over-Estimation.)

Tiller and Hanson [6] do not under-estimate the
offset curve. In addition to computing the exact lin-
ear and circular offset curves, their method outper-
forms all the other methods for the case of offsetting
(plecewise) quadratic curves. However, for offsetting
high degree curves, this simple method has a similar
performance to that of Cobb [10].

Coquillart [11] solved the under-estimating prob-
lem. The distance between P; and C(&;), and the
curvature k(&;) of C(t) at & are taken into account.
Numerical approximation is also taken to compute
the closest point of C(¢) to the control point P;, while
using C'(&;) as an initial solution. With all these en-

hancements, Coquillart [11] was able to offset the

linear and circular segments exactly.

Elber and Cohen [12] took a different approach
that exactly computes the offsets of linear and cir-
Using the values of ¢(t) (in Equa-
tion (3)) at t = &,...
borhood of each control point, P;, is estimated and

cular elements.

,&n, the error in the neigh-

used to adjust the translational distance applied to
P;. This perturbation based approach is an iter-
ative method that converges to the exact circular
offset segment.

sult of Cobb [10

perturbation process typically reduces the offset ap-

For general curves, when the re-

| is used as an initial solution, the

proximation error of [10] by an order of magnitude.
In principle, this method can be applied to any off-
set approximation method that produces piecewise

polynomial curves.

Most traditional techniques subdivide C(t) at the
middle of the parametric domain; however, a bet-
ter candidate is the parameter of the location with
the maximum error. Since e(t) represents the exact
squared error function, one can find the parameter
location of the maximal error and subdivide C(t)

there. Alternatively, instead of subdividing C(t),




Under and Over-Estimation
The offset approximation of Cobb [10] is formally defined
as follows:

n

> (P +dN(&)) Bi(t)

=0

= Z PiB;(t) + dz N(&)B:(t)
=0

=0

Cit) =

= CH)+dV(t).

where [|N(&)[| = 1, for i =0,...,n. The vector field curve
V(t) = > ., N(&)Bi(t) has all its control points N(&;) on
the unit circle §'. By the convex hull property, we have

V)l <1 and
IC() = Ca@® = laV D)l = dV D) < d.

Figure 2: In (a), an offset approximation C(t) com-
puted by translating the control points of the original
curve C(t) (dashed lines) by an amount equal to the
offset distance will always under-estimate the real off-
set. In (b), D(t) = C(t) — C5(¢) is found to be fully
contained in a circle of the offset radius size, d.

Figure 3: In (a), an offset approximation C5(t) of a
quartic Bézier curve C(t) (dashed lines) is computed
by forcing C4(t) to over-estimate the error. D(t) =
C(t) — C%(t) is shown in (b). Compare with Figure 2.

If N(&) # N(&), for some 0 < 4,5 < n, we have
min |V (¢)|| < 1, and this results in an error in the offset ap-
proximation. Hence, this method always under-estimates
the exact offset. Figure 2(a) shows a quartic Bézier curve
C(t) and its offset approximation C§%(t). In Figure 2(b),
the difference vector field D(t) = C(t)—C§(¢) is completely
contained in a disk of radius d. All the control points of
D(t) are on the circumference of the disk.
Under-estimation of offsets may lead to undesirable results.
For example, in NC machining, the under-estimation leads
to gouging. Assume the under-estimation of the offset is
bounded from below by:

dwin = min([[dV (2)]]).

When we translate control point P; in the direction of
N (&), by a distance d%, the resulting curve completely

over-estimates the exact offset (see Figure 3):

low - il = [ar=v]| = HdLvu)

=d.

One can reduce the relative error in the offset approxima-
tion by alternating the under and over-estimations. This
can be done by adjusting the offset distance at each con-
trol point appropriately. Figure 4 shows an example of
this approach. We use the same quartic Bézier curve as in
Figures 2 and 3. The quartic Bézier offset approximation
curve interpolates the exact offset at five discrete locations,
corrcsponding to the node valucs, 7, 0<1¢ <4,

~~
s}
e

Figure 4: In (a), an offset approximation C§(¢) of a
quartic Bézier curve C(t) (dashed lines) is computed
by enforcing C§(t) to interpolate at five locations on
the exact offset curve computed at the node values on
C4(t). D(t) = C(t) — C3(t) is shown in (b). Compare
with Figures 2 and 3.




one can insert new knots into C(t) at the param-
eter locations with error larger than the allowed tol-
erance. Elber and Cohen [7] took this refinement

approach.

Interpolation Methods

Klass [13] used a cubic Hermite curve to approxi-
mate the offset curve. The cubic Hermite curve is
determined by interpolating the position and veloc-
ity of the exact offset curve at both endpoints. The
numerical approximation procedure of Klass [13] is
quite unstable when the offset curve becomes almost
flat.

rithm [13], we compute the first derivative of the off-

Therefore, instead of using the original algo-

set curve based on the following simple closed form

equation (see also [3]):

Co(t) = (1+d - w(t))C'(2), ®)

where k(t) is the curvature of C(t).

Hoschek [1] suggested a least squares solution for
the determination of C/(t) at the curve endpoints.
That is, at each endpoint of Cy(t), the direction of
C’,(t) is maintained to be parallel to C’(t); however,
instead of using Equation (8), their lengths are de-
termined so that the cubic Hermite curve best fits
Cy(t) in the least squares sense. For computational
efficiency, only finite samples of Cy(t) are used in the
optimization.

Hoschek and Wissel [2] used a general non-linear
optimization technique to approximate a high degree
They

applied the same technique to approximate an exact

spline curve with low degree spline curves.

offset curve with low degree spline curves.

The least squares based methods [1, 2] are ex-
pected to perform better than other methods. How-
ever, there still remains a question about whether
the least squares solution is optimal when searching
for the smallest number of (say cubic) curve seg-
The

answer is negative, in general. In the special case

ments to approximate an exact offset curve.

of offsetting quadratic curves, the simple method of
Tiller and Hanson [6] performs much better than the
least squares methods [1, 2].

It is important to question how this unexpected re-

sult could be obtained. The answer might be quite

useful in improving the accuracy of offset approxi-
mation. The least squares solution optimizes the in-
tegrated summation of the least squares errors in the
approximation. Therefore, even if a small portion of
the approximation curve has a large error, as long
as the rest of the curve tightly approximates the ex-
act curve, the overall least squares error can be very
small. That is, the least squares solution provides an
optimal solution with respect to an Lo norm. When
this Lo optimal solution is further evaluated with re-
spect to the L, norm (of Equation (3)), the optimal-
ity is no longer guaranteed. This is an important ob-
servation which suggests possible improvements over
the nearly optimal solutions [1, 2].

Pham [14] suggested a simple B-spline interpola-
Fi-

nite sample points are generated on the exact off-

tion method to approximate the offset curve.

set curve, and they are interpolated by a piecewise
cubic B-spline curve. It is also interesting to note
that this simple method also performs pretty well.
In many examples, its performance is only slightly
worse than and sometimes even better than the local

least squares methods [1, 2].

Circle Approximation Methods

Assume the base curve C(t), to <t < t1, is a poly-
nomial curve with no inflection point, and a unit
circular arc U(s), sp < s < 1, is parameterized so
that:

C'(to) || U'(so) and C'(t1) || U'(s1).

If one can compute a reparameterization s(t) so that:

(&) 1 U"(s(1)),
the offset curve is then computable as:

Ca(t) = Ot) + d - U(s(t)). 9)

The

not a n momial
10t a

offcet curve 1e olx
ClInCy CUlve Is PoLyiioiina:s Ol

nal curve; therefore, we have to approximate U(s)
and/or s(t) by a polynomial or rational.

Lee et al. [5] approximated the unit circle U(s)
with piecewise quadratic polynomial curve segments
Qj(s), j=0,...

piecewise linear; therefore, the parallel constraint:

C'(t) || Q'(s(t))

,n. The Hodograph curve Q}(s) is



provides the reparameterization of s(t) as a rational
polynomial of degree d — 1, where d is the degree
of C(¢).

the resulting offset approximation (computed as in

For a polynomial curve C(t) of degree d,

Equation (9)) is a rational curve of degree 3d — 2.
(For a rational curve C(t} of degree d, the offset
approximation curve is of degree 5d — 4.)

For a quadratic polynomial curve C(t), this tech-
nique also provides a simple method to represent the
exact offset curve Cy(t) as a rational curve of degree
six. Assume that the exact circle, Q(s), 0 < s < 1,
is represented by a rational quadratic curve. Then,

the parallel constraint:

C'(t(s) || Q(s)

provides the reparameterization of t(s) as a rational
polynomial of degree two. Therefore, the exact offset
curve Cy(t) is a rational curve of degree six. Even
with the high degree of six, the exact offset capabil-
ity suggests this method as the method of choice for
offsetting (piecewise) quadratic polynomial curves,
especially for high precision offset approximation.
However, this exact offset capability does not extend
to rational quadratic curves. (There are some ratio-
nal quadratic curves which have no exact rational
parametrization of their offset curves.)

One can attempt to globally approximate s(t) by

maximizing the constraint energy:

5, U (s(1))
max / conoeons 10

This approach was taken in Lee et al. [15], in which
the composition of U(s(t)) = (U o s)(t) is carried
out symbolically [8] (see also Sidebar on Symbolic

Computation).

The offset approximation in [5] depends on the
method used for the piecewise quadratic approxi-
mation to the circle. The error in the offset ap-
proximation stems only from the quadratic polyno-
mial approximation of the circular arc, scaled by
the offset radius d. Lee et al. [5] used five differ-
ent, circle approximation methods. Two of the five
methods generate G'-continuous circle approxima-
tions with quadratic Bézier curve segments. In the
first method, the unit circle U(s) is totally contained

in the closed convex region bounded by the quadratic

curve segments. The corresponding offset curve ap-
proximation completely over-estimates the exact off-
set curve. In the second method, the quadratic curve
segments pass through both the interior and exte-
Therefore, the offset

approximation curve both over and under-estimates

rior of the unit circle U(s).

the exact offset curve, while the approximation er-
ror is reduced by half from the over-estimating first
method. We use this second method, referred to as
Lee in the next section, for comparison with other
methods.

In contrast, Lee et al. [15] approximated the
reparametrization s(t), while representing the cir-
cle U(s) exactly by a rational quadratic curve. In
this method, the error stems only from the inac-
curate reparameterization function s(t), which re-
sults in a mismatch in the parallel constraint of
C'(t) || U'(s(t)). To the authors’ knowledge, this is
the only offset approximation method for which the
use of e(t) is completely ineffective in the global error
bound. The term ¢(t) is always equal to zero. Lee
et al. [15] measured the angular deviation of U(s(t))
from the exact offset direction N(t) by using the fol-

lowing error function:

(Ct) = Ca1),C')?
a2 ||cr ()|

em(t) = (11)
The error is equal to zero if orthogonality is pre-
served. Otherwise, it is equal to cos? 8, where 6 is
the angle between U(s(t)} and C(¢).

Quantitative Comparisons

We consider how efficiently each method approxi-
mates the offset curve, given a prescribed tolerance.
Several exam i nd B-spline curves are
given, both in polynomial and rational forms. All
the methods (compared in this article) are imple-
mented using the IRIT [16] solid modeling system
that has been developed at the Technion, Israel,
with some of the offset approximation methods im-

plemented at POSTECH, Korea.

Methods under Comparison

We quantitatively compare the following methods:



e (Cob: The simple method of Cobb [10] in which
the control points are translated by the offset
distance. This method always creates under-
estimated offsets. (See Sidebar on Under and

Over-Estimation.)

Elb: An adaptive offset refinement approach
that was suggested in Elber and Cohen [7]. In-
stead of subdividing the base curve, whenever
the error is too large, the offset curve is refined
to yield a better approximation (by using more
control points). The error analysis of €(t) is ex-
ploited to find better candidate locations for re-
finement. This method also under-estimates the

offset curves.

Coq: The enhancement suggested by Coquil-
lart [11] that allows the exact offset represen-

tation of linear as well as circular segments.

Til: The method of Tiller and Hanson [6] in
which the edges of the control polygon, rather
than the control points, are translated.

Klass: The method of Klass [13] that fits a cu-
bic Bézier curve to each offset curve segment to
interpolate the boundary points and velocities

of the exact offset curve.

Pham: The method of Pham [14] that interpo-
lates a sequence of finite sample points on the
exact offset curve by a non-uniform piecewise
cubic B-spline curve. (The original method of
Pham [14] uses a uniform B-spline curve; how-
ever, we have modified the method.} Whenever
the offset approximation error is larger than the
prescribed tolerance, more sample offset points

are used for a better fit.

Lst: The global least squares approximation
that fits a uniform piecewise cubic B-spline
Whenever the off-

set approximation error is larger than the pre-

curve to the offset curve.

scribed tolerance, more control points are used
for a better fit.

Hos: The least squares method of Hoschek [1, 2]
that fits a cubic Bézier curve to each offset curve

segment. Whenever the error is larger than the

tolerance, the base curve is subdivided into two
subsegments and the offset approximation is re-

peated recursively.

e Lee: The approach suggested by Lee et al. [5]
that approximates the curve of the convolution
between C(t) and the offset circle d - U(s) of

radius d.

Traditionally, the offset approximation error has
been measured only at finite sample points of C(t)
and CJ(¢). As previously mentioned, we adopt the
There-

fore, we can provide an L., global upper bound on

symbolic approach of error estimation [7].

the offset approximation error for each of the meth-
ods under comparison. The global error bound is
derived by symbolically computing the error func-
tion €(t} (in Equation (3)).
hull property of the Bézier or NURBS representation

Because of the convex

of the scalar function e(t), we can easily determine
its upper bound as the maximum coefficient of the
Bézier or NURBS basis functions.

Comparison Results and Remarks

Figures 56 show the results of offsetting (piecewise)
quadratic curves. We compare the number of control
points with respect to the accuracy of offset approxi-
mation. In these examples, the method of Tiller and
Hanson [6] outperforms all the other methods even
if the base curve has sharp corners with high cur-
vature (Figure 6). This surprising result has never
been reported in the literature. In fact, we have as-
sumed that the least squares methods provide near
optimal solutions to the offset approximation prob-
lem. However, the superior performance of Tiller
and Hanson [6] tells us that this is not true, in gen-
eral. At this moment, we have no clear explanation
of the underlying geometric properties of this un-
usual phenomenon. Nevertheless, it is not difficult
to point out at least two possible sources of the non-

optimality in the current least squares methods:

e As discussed above, the least squares methods
provide the optimal solutions in an L, norm,
which may be quite different from the optimal

solutions in an L., norm.



e The least squares optimization procedure solves
an over-constrained problem, the solution of
which depends on the distribution of finite sam-
ple points on the offset curve. In some degen-
erate cases, the least squares solution may have
large variation depending on the distribution of

data points.

Further investigations are required to eliminate these
limitations, and this may advance the state-of-the-
art of offset curve approximation.

Figures 7, 9, and 10 show other examples of offset-
ting (piecewise) cubic B-spline curves. Throughout
the conducted tests, we have observed the following

consistent results:

e The under-estimating offset approximation

method, Cob, is doing quite poorly.

e The adaptive offset refinement approach, Flb, is
better than Cob, especially when high precision

is desired.

e In the case of offsetting (piecewise) quadratic
curve segments, the simple method of Tiller and
Hanson [6] outperforms all the other methods,

especially when high precision is required.

e In the case of offsetting (piecewise) cubic curve
segments, the least squares methods, Lst and
Hos, perform much better than all the other
methods, especially when high precision is re-

quired.

e In many examples, the local cubic B-spline in-
terpolation method, Pham, has similar — and
sometimes even better — performance to Hos.
However, its performance deteriorates when the
base curve has a radius of curvature similar to

the offset radius.

e The only geometrical method that approaches
the efficiency of the least squares methods is Lee
followed not so closely by FElb.

For the case of offsetting (piecewise) cubic curves,
the global least squares method, Lst, outperforms
all the other methods, while it is closely followed
by the local least squares method, Hos, and also by

7\

€ Cob Elb Coq Til Kla | Phin Lst Hos Lee
10— 0 8 8 8 8 30 8 8 8 33
1071 15 8 19 11 93 10 11 15 33
1072 41 29 37 21 | 132 22 39 35 45
1073 | 115 92 119 | 39 | 185 52 79 63 73
10-4 | 863 | 313 | as7 | 71 | 267 | 130 | 161 | 131 | o7
1075 | 1101 | 948 | 1018 | 127 | 451 | 270 | 332 | 277 | 157

04 b
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0.0001

1e-05

10 100 1000
Number of control points
Figure 5: An offset approximation (light curve} for a
quadratic polynomial B-spline curve with eight con-

trol points.

the local cubic B-spline interpolation method, Pham.
Many practical situations require the production of
local optimal solutions based only on the local data
that is available. For example, for data storage sav-
ing, we can store only the subdivision locations of
the curve, instead of all the control points that are
generated. We then use the local methods to gen-
erate the control points (on the fly} by considering
only local data. In this case, Hos and Pham are the

methods of choice.

As discussed in the above observation, the perfor-
mance of Pham is closely related to the radius of cur-
vature of the base curve. When the radius of curva-
ture is similar to the offset radius, the sample offset
points are clustered together. The B-spline interpo-
lation of these clustered points generates undulation,

which is the main source of large approximation er-



€ Cob Elb Coq Til Kla Phrn Lst Hos | Lee
10— 0 4 4 4 7 4 4 4 4 15
10-1 | 10 9 10 10 | 13 13 8 10 | 15
10-2 31 22 25 22 22 19 17 22 36
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Figure 6: An offset approximation (light curve) for
a quadratic polynomial with sharp corners.

ror. In this casc, it is better to use a smaller number
of data points for the interpolation. Figures 11-12
exemplify this phenomenon by comparing the rel-
ative performances of different offset approximation
methods. Given a fixed base curve, by increasing the
offset radius gradually, we can observe that Pham’s
method has the worst relative performance near the
offset distance which starts to develop cusps in the
offset curve.

There is another source of undulation we have to
consider in Pham’s method. That is, the mismatch
in speeds between the two curves, i.e., the base curve
and the offset curve, also cause deterioration in the
quality of the offset approximation. For the imple-

mentation of Pham, we use a non-uniform cubic B-
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Offset Error

0.0001

1e-05 ¢

1e-06 : :
10 100
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Figure 7: An offset approximation (light curve) for
a polynomial cubic Bézier curve.

spline curve, in which the data points of the offset in-
herit the knot values of the base curve points. When
the offset data points are clustered, their knot val-
ues are much sparser compared with the offset curve
length. This unnatural assignment of knot values
generates undulation. Therefore, for a better offset
approximation, it is also important to rearrange the

knot values of the offset data points.

The superior performance (in the quadratic case)
of the simple method, Til, suggests the possibility
of improvement over the current least squares meth-
ods. This improvement may be achieved by resolv-
ing the limitations of least squares methods as dis-
cussed above. The limitation resulting from the Lo
norm seems more serious. To resolve this problem,
we need to develop an efficient algorithm to compute

and optimize the L., norm of the offset approxima-
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Figure 8: An offset approximation (light curve) for
a rational quadratic B-spline circle with nine control

points.

10

tion error; that is, the maximum of the error function
e(t) (in Equation (3)):

max {|C() - CHOI* -}, (12)

or a more precise geometric distance measure based

on the following Hausdorff metric:

max (rntax min {||C’(s) —ca))? - d2} . (13)

max min {[C() ~ CHOI° - *})

where s is assumed to be a local perturbation of the
parameter t.

Note that the method of Cobb [10] essentially
models the L, norm of Equation (12) in terms of the
maximum and minimum magnitudes of the distance
curve, D(t) = C(t) — C4(t), in Figures 2-4. Let’s

consider a variant of Cobb [10] which uses the least

squares technique to optimize the offset distance at

10
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Figure 9: An offset approximation (light curve) for
a cubic polynomial B-spline curve with 13 control

points.

each control point so that the distance curve D(%) is
a best, fit to the offset circle of radius d. This method
measures the offset error in the L., sense of Equa-
tion (12). (Note that the approximation of D(t) to
an offset circle still has the limitation of Lo norm.)
Although we have not provided all the details of Lee
in this article, the method of Lee et al. [5] actually
measures the offset approximation error under the
L norm of Equation (13), which is more precise
than the Ly norm of Equation (12). We expect
that future offset approximation techniques (while
incorporating these L., norms into their optimiza-
tion procedures) may provide more accurate results

than the current least squares methods.

Conclusion

We have compared several contemporary offset ap-
proximation techniques for freeform curves in the

plane. In general, the least squares methods per-



€ Cob Elb Coq Til Kla | Phm | Lst | Hos | Lee
10~0 7 7 7 7 i3 7 7 7 50
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Figure 10: An offset approximation (light curve) for
a cubic polynomial periodic B-spline curve with four
control points.

form very well. However, for the case of offsetting
quadratic curves, the simple method of Tiller and
Hanson [6] is the method of choice. Therefore, the
least squares methods need further improvement to
produce near-optimal solutions in all cases. Some of
the current methods [5, 7, 10] have geometric repre-
sentations of the offset approximation error (in cer-
tain L., norms), whereas none of the current least
squares methods have such geometric interpretation
of their respective error bounds. We also pointed out
two limitations of the current least squares meth-
ods: (i) the Lo norm employed in these methods
and (ii) the dependency on the finite sample points
used in the optimization. The B-spline interpola-
tion method also needs further investigation to elim-
inate the curve undulation resulting from the curve

speed mismatch between the base curve and the off-
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Figure 11: Pham’s method has the worst relative

performance for the offset distances between 0.4 and
0.6. Base curve is a cubic B-spline curve. Tolerance
of 0.0001 is used for offset approximation error.

set curve. In this respect, there are still many ways
to improve the current state-of-the-art of offset curve
approximation. We hope that the experimental re-
sults reported in this article and the related remarks

will serve as useful guidelines for future research.
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