
Solving Piecewise Polynomial Constraint Systems
with Decomposition and a Subdivision-Based Solver

Boris van Sosin1,∗, Gershon Elber1

Abstract

Piecewise polynomial constraint systems are common in numerous problems in computational geometry, such as con-
straint programming, modeling, and kinematics. We propose a framework that is capable of decomposing, and efficiently
solving a wide variety of complex piecewise polynomial constraint systems, that include both zero constraints and in-
equality constraints, with zero-dimensional or univariate solution spaces. Our framework combines a subdivision-based
polynomial solver with a decomposition algorithm in order to handle large and complex systems. We demonstrate the
capabilities of our framework on several types of problems and show its performance improvement over a state-of-the-art
solver.

Keywords: Underconstrained problems, Inequality constraints, B-spline representation, Multivariate composition

1. Introduction

Geometric and algebraic constraint systems are ubiqui-
tous in all computational geometry and CAD systems, and
have probably been used in CAD systems as long as CAD
software has existed [1]. The power to design models by5

specifying the relations (or constraints) between geomet-
ric entities, rather than manually setting the location and
properties of all the geometric entities plays a crucial part
in the usability of the computational geometry system. In
many applications, geometric constraint systems can get10

very complicated. Virtually all computational geometry
systems have to support non-linear constraints, as even a
constraint as simple as a Euclidean distance between two
points is quadratic. Further, constraints on geometric en-
tities such as Bézier, B-spline and NURBs curves (and also15

surfaces and multivariates) can be high degree polynomial,
piecewise-polynomial and even piecewise-rational. In or-
der to handle such problems, most applications require nu-
merical solvers for constraint systems, and for such solvers,
solving large constraint systems, with many variables and20

constraints is a very time-consuming task. Therefore, find-
ing ways of speeding up the solution of constraint systems
is highly desirable. One way to speed up the solution is
by constraint system decomposition: instead of solving the
entire system at once, the solver decomposes the system25

into smaller sub-systems whenever possible, solves the sub-
systems, and finally reconstructs the solution of the orig-
inal system from the solutions of the sub-systems. Since
the time it takes most constraint system solvers to run
scales non-linearly, and often even exponentially, with the30

size of the problem, solving a series of sub-problems in se-
quence can be very effective at speeding up the solution
process.

∗Corresponding author. E-mail address: sosin@cs.technion.ac.il
(B. van Sosin)

1Computer Science Department, Technion - Israel Institute of
Technology, Haifa, Israel

Constraints can be expressed in algebraic form as equa-
tions, and, in the general case, have the form: f(x) = 0.35

Such constraints are called zero constraints. Additionally,
geometric problems can have inequality constraints, which
can usually be expressed in the form: f(x) ≥ 0.

Typically, constraint systems have variables, which de-
termine the number of degrees of freedom (DoF) the sys-40

tem has. Here are a few examples: a point which can move
without any restrictions in 2D Euclidean space is defined
by two independent variables, x and y, and therefore has
two DoFs. Similarly, in 3D Euclidean space a point has
three DoFs. A rigid body in 3D Euclidean space has six45

DoFs. A point that can move only along a parametric
curve (such as a Bézier or a B-spline curve) has only one
DoF. The total degree of freedom of the system is defined
as follows:

Definition 1.1. Let G be the set of all entities in the con-50

straint system S. Let #c be the number of independent
zero constraints in the system S. Then, the Total Degree
of Freedom of S is: (

∑
g∈G DoF (g))−#c.

Inequality (semi-algebraic) constraints do not affect the to-
tal degree of freedom of the system, while they restrict the55

domain of the solution search. Constraint systems can be
classified into three categories, by the number of degrees
of freedom: well-constrained, underconstrained and over-
constrained. Well-constrained systems have a total DoF of
zero. In the general case, well-constrained systems have a60

finite number of solutions. Underconstrained systems have
a positive total DoF, and typically have an infinite number
of solutions. In many types of underconstrained geomet-
ric problems (such as kinematic problems, which will be
discussed in Section 4) the solutions indicate a range of65

motion of one or more parts of the system. Finally, over-
constrained systems have a negative total DoF, and, in
general, have no solution.

Our goal in this work is to construct a framework for ef-
ficiently solving non-linear constraint systems, represented70

Preprint submitted to SPM2017 May 4, 2017

as Bézier or B-spline multivariate functions, with zero-
dimensional or one-dimensional solution space (i.e. total
DoF of zero or one), by using a subdivision-based polyno-
mial solver and a constraint system decomposition algo-
rithm. We will demonstrate the capabilities of our frame-75

work on a variety of geometric problems, including high-
order spline geometry, and show a significant improvement
in performance, in solving these problems. Additionally,
we aim to support inequality constraints in the decom-
position scheme of our framework. While many of the80

previously proposed decomposition treat underconstrained
problems as user errors, our proposed framework aims to
solve both well-constrained and underconstrained prob-
lems, as long as their solution space is (a set of) univari-
ate(s), and handle both cases in a similar way that is also85

extendable to higher dimensional solution spaces.
The rest of this document is organized as following.

In Section 2, we discuss previous work on the subject of
constraint system decomposition, and the differences be-
tween geometric and algebraic approaches. In Section 3,90

we describe our proposed solution, and detail its steps.
In Section 4, we present several problems that are decom-
posed with our algorithm and their solutions, and compare
the performance of the decomposition process to a similar
solver without decomposition. Finally, in Section 5, we95

conclude and discuss directions for future research.

2. Related work

A variety of schemes for the decomposition of constraint
systems have been proposed in the past to fit different
types of problems and different solution strategies. Many100

are described in the survey of [2], and we discuss here some
of the works most relevant to the problem we are solving.
We describe the two most common approaches to decom-
position of constraint systems: the geometric approach
(Section 2.1) and the algebraic approach (Section 2.2). We105

will cite several works which use these approaches, and dis-
cuss the differences between them. We also consider works
which discuss inequality constraints in Section 2.3.

2.1. Geometric approach to decomposition

The algorithms that take the geometric approach work110

directly on geometric entities and constraints. One exam-
ple of the group of geometric approach algorithms is some-
times called Recursive Division [2]. Recursive Division is
a top-down approach, which attempts to split a geometric
constraint system into rigid subsystems. A geometric con-115

straint system is considered rigid if none of its components
(points, lines, curves, etc.) can move independently of the
others without violating the constraints, and therefore the
solutions to such a constraint system, if any exist, form
a rigid body. Rigid geometric constraint systems can be120

either well-constrained or overconstrained. An implemen-
tation of Recursive Division called Owen’s Method (e.g.
in [2]), that works on rigid systems in 2D geometry is
described in [3]: it works by representing the constraint
system as a graph, in which geometric entities (such as125

points, lines, circles, etc.) are represented by vertices, and
the relation between them (a line going through a point,
the distance between points, the angle between lines, etc.)

as edges. Owen’s method breaks down the graph of ge-
ometric entities into smaller subgraphs, which represent130

rigid sub-components of the original system, and after ob-
taining solutions for the sub-components, it re-assembles
them to form the complete solution for the system. Ad-
ditionally, the Recursive Division scheme has also been
extended to handle underconstrained systems in [4], and135

for 3D systems in [5].
A different variant of the geometric approach is called

Recursive Assembly, and it works in an opposite (but in
a way, similar) way to Recursive Division. Recursive as-
sembly, which is described as a bottom-up approach in [2],140

works by finding rigid subsystems (preferably small ones)
in the constraint graph, and recursively merging them.
The order of the merge steps in the recursive assembly
process yields the order in which the subsystems need to
be solved. Once the partition into subsystems is obtained,145

the solution is constructed using an explicit geometric con-
struction process (such as ruler and compass steps). A
Recursive Assembly algorithm is described in [6]. Another
approach, that is related to the geometric approach, uses
combinatorial algorithm and is proposed in [7]. The combi-150

natorial algorithm is capable of efficiently solving systems
with a total DoF of one (i.e. univariate solution space)
in which all the constraints are Euclidean distances in 2D
space, but is not suited for more general problems.

2.2. Algebraic approach to decomposition155

The algebraic approach to constraint system decomposi-
tion works on the algebraic representation of the constraint
system (i.e. the equations), rather than on geometric en-
tities and relations. The constraint system can be repre-
sented as a bipartite graph in which one side of the vertices160

represents the variables, the other side represents the con-
straints, and an edge between a variable and a constraint
indicates that the variable appears in the constraint. The
goal of the algebraic decomposition algorithms is to find a
subsystem in the graph that can be solved independently165

of the rest of the problem, then to remove it from the
graph, and continue recursively until the remaining graph
can no longer be decomposed. This process yields a de-
composition of the problem into smaller sub-problems. A
notable work in the algebraic approach category is [8], and170

the decomposition phase of our framework is based on it.
A similar work to [8], used for debugging electrical circuits
is described in [9].

A very different, but noteworthy, algorithm in the alge-
braic category is called Quick Plan (described in [10]) and175

is aimed towards user interfaces. The interesting feature
in Quick Plan is that it allows the user to attach ’weight’
values to constraints, indicating how important it is to sat-
isfy them, if the algorithm can’t satisfy all the constraints
set by the user. This is very different from our goal, which180

is to satisfy all the constraints or determine that there is
no solution to the system.

The main advantage of the algebraic approach is that it
is not dependent on the geometry (2D, 3D, or even higher
dimensions), and can therefore be applied to a wide variety185

of general algebraic equation systems, including geometric
constraint problems. On the other hand, the geometric
approach is a more tailored solution to the geometric prob-
lems they are designed to solve. Geometric algorithms can

2

be more aware of the semantics of the geometric problem,190

and they use construction rules that can often be made
more efficient than the general solvers used by algebraic
algorithms (Section 7 in [2]). This applies, for example, to
solving kinematic problems and simulating mechanisms,
where, in [11], a subdivision based constraint solver (but195

without a decomposition step), has been used toward that
end. Contrast this with works such as [12, 13], which are
aimed specifically at theoretical analysis of mechanisms.

2.3. Inequality constraints

Inequality constraints have rarely been addressed in200

solvers of constraint systems. An interactive system for
constructing 3D hierarchical structures from 3D primi-
tives, which is presented in [14], allows the user to spec-
ify relations between structures through constraints, in-
cluding inequality constraints. However, the system does205

not use an automatic decomposition algorithm, and in-
stead it relies entirely on the user to define the hierar-
chy of the structures. In [15], inequality constraints are
mentioned as a useful tool for allowing the user to se-
lect a solution to a problem out of a set of multiple so-210

lutions. It is also suggested in [15] to convert inequal-
ity constraints into zero constraints by using the identity:
f(x) ≥ 0 ⇔ f(x) − a2 = 0. This, however, introduces an
extra variable a, which complicates the problem, so finding
a way to explicitly handle inequality constraints is highly215

advantageous.
In [16], a subdivision-based polynomial solver is pre-

sented, that is capable of solving systems of multivari-
ate rational spline constraints, including inequality con-
straints. The solver uses the inequality constraints both220

as a termination criterion during the subdivision process
of the domain, and as a filter on the results. It is capable of
solving a wide variety of problems, but does not include a
decomposition phase, and solves the entire constraint sys-
tem simultaneously. Consequently, the time required for225

this solver to solve a system scales exponentially with the
number of zero constraints.

3. Solution process

We start by formally describing the problem we are solv-
ing and the subdivision-based polynomial solver we are us-230

ing to solve it, in Section 3.1. In Section 3.2, we describe
the process of symbolic composition of Bézier and B-spline
multivariates, which is also required for our framework.
Then, the general outline of the algorithm is presented in
Section 3.3, the graph decomposition phase is described in235

Section 3.4, and the solution phase is described in Section
3.5.

3.1. Problem statement

Any polynomial function of degree n can be represented
as a Bézier function: M(t) =

∑n
i=0 PiB

n
i (t), where Bn

i (t)
are the Bézier basis functions. Similarly, B-spline func-
tions can represent piecewise polynomial functions, and
NURBs functions can represent piecewise rational func-
tions. Since Bézier functions can be considered a special
case of B-spline functions, from now on, we will assume
that all the constraints we are using are represented as

B-spline functions, unless stated otherwise. All these rep-
resentations can be extended to multivariates in a variety
of ways, most commonly as tensor product multivariates:
a polynomial (or piecewise polynomial) function in k vari-
ables can be expressed as:

M(t0, t1, ..., tk−1) = (1)

=

n0∑
i0=0

n1∑
i1=0

...

nk−1∑
ik−1=0

Pi0,i1,...,ik−1

k−1∏
j=0

B
qj
ij

(tj)

 ,

where B
qj
ij

(t) are the B-spline basis functions of order qj ,

(or degree qj − 1), and nj ≥ qj . As in the tensor prod-240

uct extension of the B-spline formula to B-spline surfaces
(bi-variates) and tri-variates, a B-spline multivariate of k

variables requires k knot vectors and has
∏k−1

i=0 ni coeffi-
cients (or control points). This representation of multi-
variate piecewise polynomial functions can express a wide245

range of geometric and algebraic constraint systems:

Definition 3.1. Let {Mzero
i (t)}m−1i=0 , {M ineq

j (t)}p−1j=0 be
two sets of m and p scalar B-spline multivariates, respec-
tively, each having k variables t = (t0, t1, ..., tk−1). Fur-
ther, assume that tj ∈ [tjmin , tjmax] for all j ∈ [0, k − 1],

in all the multivariates Mzero
i (t), M ineq

i (t). Then:

Mzero =


Mzero

0 (t) = 0,
Mzero

1 (t) = 0,
...
Mzero

m−1(t) = 0,

Mineq =


M ineq

0 (t) ≥ 0,

M ineq
1 (t) ≥ 0,

...

M ineq
p−1 (t) ≥ 0,

M =Mzero ∪Mineq,

is a constraint system with m > 0 zero constraints, p ≥ 0
inequality constraints, and k variables.

A few remarks on the constraint systems we are solving:

1. We require that there is at least one zero constraint,250

but we allow systems with no inequality constraints.
2. Only the number of zero constraints (m) affects the

total DoF of the system, and the decomposition of the
system into subsystems depends only on Mzero.

3. A constraint does not necessarily depend on all vari-255

ables. If, in Mi, the polynomial order of the variable
tj is one, then Mi is independent of tj . This applies
for both zero and inequality constraints.

4. Since we are finding the zero set of functions, if our
constraint system contains rational constraints of the260

form: Mzero
i (t) = M(t)

w(t) = 0, and if w(t) 6= 0 through-

out the domain of t (i.e. the function has no poles),
the rational constraint will have the same zero set as
M(t) = 0, and the denominator can be ignored. For

rational inequality constraints M ineq
i = M(t)

w(t) ≥ 0, if265

w(t) > 0 throughout the domain of t, then w(t) can
also be ignored. If w(t) < 0 throughout the domain,
then the sign of M(t) is flipped.

5. In this paper, when discussing the representation of
constraints as multivariates, we will use the notation270

of Mi. When discussing constraints in general, we will
denote them as ci.

3

6. We expect well-constrained systems to satisfy the
König-Hall condition: for all subsets M′ ⊆ Mzero

of the set of zero constraints, the number of neighbor-275

ing variable vertices needs to be at least |M′| [8]. For
underconstrained systems, we expect that the system
can be made well-constrained by fixing the value of
one variable.

The main tool we are using for solving polynomial con-280

straint systems is a subdivision-based polynomial solver
[16, 17, 18]. It is capable of finding all the real roots of
well-constrained constraint systems (in which m = k) and
underconstrained systems with a univariate solution space
(i.e. in which m = k−1), up to a prescribed tolerance. The285

solutions that the solver produces for well-constrained sys-
tems are finite sets of points. For problems with a univari-
ate solution space, the solver produces a piecewise linear
approximation of the real solution to the system. If there
are multiple disjoint solutions to a problem, the solver is290

capable of finding all of them, up to a prescribed tolerance.
One of the properties of most subdivision-based solvers, is
that they have an exponential dependency on the dimen-
sion of the problem (k in Definition 3.1 and Equation (1),

recalling
∏k−1

i=0 ni), hence solving large problems is a major295

challenge.
As stated earlier, our goal, in this work, is to construct

a framework for decomposing and solving polynomial con-
straint systems with zero dimensional or univariate solu-
tion space using a subdivision-based solver. Also, since300

the solver we are using is capable of solving both well-
constrained problems and problems with a univariate so-
lution space, we can propose a unified framework for de-
composing and solving both types of problems.

3.2. Symbolic Composition of B-spline multivariates305

Before we get into the main algorithm, we present an
important tool that will be used by our algorithm: mul-
tivariate functional composition for Bézier/B-spline func-
tions. Let M(t), t = (t0, t1, ..., tk−1) be a Bézier mul-
tivariate, and let τ (v) = (τ0(v), τ1(v), ..., τl−1(v)) be an
l-dimensional vector function of a parameter v, repre-
sented as a B-spline univariate. Additionally, assume that
l ≤ k. Then, the composition M(τ (v), tl, ..., tk−1), where
the variables τ0(v), ..., τl−1(v) are mapped to t0, ..., tl−1
(without loss of generality, as the indices of the variables
of M(t) can be re-ordered) can be expressed as:

= M((τ (v), tl, ..., tk−1)

= M(τ0(v), τ1(v), ..., τl−1(v), tl, ..., tk−1)

=

n0∑
i0=0

n1∑
i1=0

...

nk−1∑
ik−1=0

(Pi0,i1,...,ik−1

k−1∏
j=0

B
nj

ij
(rj))

= Mcomp(v, tl, ..., tk−1) (2)

where:

B
nj

ij
(rj) =

{ (
nj

ij

)
(1− τj(v))

ij (τj(v))
nj−ij , 0 ≤ j ≤ l − 1,(

nj

ij

)
(1− tj)ij tjnj−ij , l ≤ j ≤ k − 1.

(3)
In the first case of Equation (3), τj(v), assumed to be a
scalar B-spline function, is mapped to the variable tj , so

that tj becomes a function of v: tj = τj(v), and can be
expressed as a B-spline function through addition, subtrac-
tions, and multiplication of B-spline functions. Examples310

of works which discuss symbolic arithmetic computations
on B-spline functions are [19] and [20]. In the second case
of Equation (3), B

nj

ij
(tj) is a Bézier basis function, and

is trivially expressed as a B-spline function. The rest of
the computations of Equation (2) can also be performed315

through symbolic addition and multiplication of B-spline
multivariates. If M(t) is a B-spline multivariate, rather
than Bézier, M(t) is first subdivided at all its internal
knot values, to form Bézier patches. Further, τ (v) is also
to be subdivided at all the values of v at which τ (v) inter-320

sects a knot value of M(t), only to be merged back, after
the composition is computed. Subdividing τ (v) at the pa-
rameter values at which it intersects knot values of M(t)
is simple only if τ (v) is a univariate function, which is the
case herein.325

3.3. General outline of the decomposition-based algorithm

An outline of the process of solving a constraint system
with decomposition is described in Algorithm 1. The al-
gorithm first analyzes the problem, and a solution plan for
the problem is produced:330

Definition 3.2. Let M be a constraint system with m
zero constraints and k variables. A solution plan graph
for M is a graph HPlan = (VPlan, EPlan) with the follow-
ing properties:

1. HPlan is a directed acyclic graph (DAG).335

2. Each vertex vi ∈ VPlan has a set of constraints at-
tached to it (as constraints(vi) = {Mj}vi). Each
vertex vi ∈ VPlan represents a step in the solution
plan, and constraints(vi) is the set of constraints of
the subproblem solved in this step.340

3. For vi 6= vj, constraints(vi) ∩ constraints(vj) = ∅,
and

⋃
v∈VPlan

constraints(v) =M.

4. If the subproblem vj is dependent on the results com-
puted in subproblem vi, then there is a directed edge
vi → vj ∈ EPlan.345

When discussing inequality constraints, we denote a solu-
tion plan graph without inequality constraints as H̄Plan,
and the solution plan graph augmented with inequality
constraints as HPlan. In problems without inequality con-
straints, H̄Plan and HPlan are identical.350

Definition 3.3. Let G = (V,E) be a DAG. A topological
order of the vertices V is an order such that if there in a
directed edge v → u ∈ E, then v comes before u in the
ordering [21].
The act of finding a topological order in a graph is called355

topological sorting, but these two terms are sometimes
used interchangeably.

The process of decomposing the problem into a solution
plan graph is described in Section 3.4. In the second step,
the solution plan, HPlan, which is a DAG, is solved in360

a topological order. After each step (subproblem) of the
plan is solved, its results are propagated to the following
subproblems, until the entire plan is solved. The solution
process is described in Section 3.5.

4

Algorithm 1 General solution algorithm

Input:
M: a system of (piecewise) polynomial constraints, as in
Definition 3.1, and m = k or m = k − 1;

Output:
A set of points (zero dimensional solutions) or piecewise-
linear functions (univariate solutions), which solve the
constraint system;

Algorithm:

1: HPlan:=GraphDecomposition(M); // See Algorithm
2.

2: Sol:=∅;
3: while Subproblems remaining in HPlan do
4: Extract subproblem from HPlan;
5: Solve subproblem;
6: Add solution of subproblem to Sol;
7: Apply Sol to remaining subproblems; // See Algo-

rithm 6.
8: end while
9: return Sol;

3.4. Graph decomposition phase365

The decomposition phase of our proposed scheme fol-
lows the algorithm described in [8], and the key differences
in our algorithm are explained in detail. We now present
the decomposition algorithm and demonstrate how it is ap-
plied to a simple well-constrained problem shown in Figure370

1. In Figure 1, and throughout the rest of the paper, blue
dots indicate the points for which the problems are solved
(i.e. the unknowns of the problems), and black dots rep-
resent fixed points. The decomposition phase, outlined in
Algorithm 2, is divided into several steps. First, a variable-375

constraint graph G that represents the zero constraints of
problem is constructed (also demonstrated in Figure 1):

Definition 3.4. Let Mzero be a the set of zero con-
straints of a constraint system M (as described in Def-
inition 3.1) with m constraints and k variables. The380

variable-constraint graph for Mzero is a bipartite graph
G = (Vv ∪ VM , E) with the following properties:

1. Vv = {vti}k−1i=0 , a vertex for each variable ti in the
vector t in Mzero.

2. VM = {vMj
}m−1j=0 , a vertex for each constraint in385

Mzero.
3. There is an edge (vti , vMj) ∈ E if and only if con-

straint Mj is dependent on variable ti.

After the variable-constraint graph G is constructed, it is
decomposed into subsystems.390

Decomposition is done by finding a maximum matching,
MM, in G (see [21]), and then building a new directed graph
G′ by copying the vertices of G, and converting each of
the matched (undirected) edges into a pair of anti-parallel
directed edges. All the unmatched edges are also copied395

to G′ as directed edges from the variable vertices to the
constraint vertices. The process of building G′ is formally

Algorithm 2 Graph decomposition algorithm

Input:
M: A system of (piecewise) polynomial constraints, as in
Definition 3.1, and m = k or m = k − 1;

Output:
HPlan: A solution plan graph;

Algorithm:

1: G = (V,E):=Construct a variable-constraint graph for
Mzero, according to Definition 3.4;

2: MM:=Find a maximum matching in G; // (MM ⊂ E).
3: G′:=A dependency graph, constructed from G accord-

ing to Algorithm 3;
4: H:=Condensed dependency graph of G′, according to

Algorithm 4;
5: H̄Plan:=SCC graph of H; // Each strongly connected

component (SCC) represents a subproblem, and the
edges between SCCs represent dependencies between
the subproblems.

6: HPlan :=Add inequality constraints to H̄Plan; // See
Algorithm 5.

7: return HPlan;

described in Algorithm 3, and demonstrated on our simple
example in Figure 2.

Algorithm 3 Dependency Graph Construction

Input:
G = (V,E): A variable-constraint graph;
MM ⊆ E: a maximum matching in G;

Output:
G′ = (V ′, E′): A dependency graph;

Algorithm:

1: V ′:=V ; // G′ has the same set of vertices as G.
2: For all matched edges (vt, vM) ∈ MM, add edges vM →
vt, and vt → vM to E′;

3: For all unmatched edges (vt, vM) ∈ E −MM, add an
edge directed from the variable to the constraint, vt →
vM , to E′;

4: return G′ = (V ′, E′);

Definition 3.5. Let G′ = (V ′, E′) be a directed graph.400

The strongly connected components [21] (SCCs) of G′

are a partition of V ′ into disjoint subsets {Si}, such that⋃
Si = V ′, and for i 6= j, Si ∩ Sj = ∅, with the following

property: for any two vertices vi, vj ∈ V ′, vi and vj are in
the same SCC if and only if there are directed paths from405

vi to vj and from vj to vi, in G′.

The directed graph G′ represents the flow of information
in the proposed solution sequence of the problem, and the
decomposition will be decided based on G′. For example, a
directed edge from a variable vertex to a constraint vertex410

5

(a) MM in G

Ax Ay Bx By

c0 c1 c2 c3

(b) G′

Ax Ay Bx By

c0 c1 c2 c3

(c) H

c0 c1 c2 c3

(d) SCCs of H

c0 c1 c2 c3

Figure 2: The decomposition process of the graph G (Figure 1). (a) A maximum matching, MM, in G, in red-green dashed lines. (b) The
directed dependency graph G′ that results from MM. (c) The condensed dependency graph H of G′. (d) The SCCs of H, showing the two
subproblems and the flow of information from the first subproblem to the second. Note that even though the maximum matching in this
graph is non-unique, all maximum matchings result in the same graph decomposition. Proof of this can be found in [8].

A B

c0 c1

c2

c3

P0 P1

(a)

Ax Ay Bx By

c0 c1 c2 c3

(b) G.

Vv

VM

Figure 1: (a) A simple, well-constrained 2D point-and-bar prob-
lem. The black dots indicate fixed points (therefore they are not
assigned variables). The blue dots indicate the unknowns of the
problem, and each is assign variables for its x and y coordinates
(hence, Ax, Ay , Bx, By). The bars c0, c1, c2, c3 are assumed to be
rigid, and are therefore represented as distance constraints. (b) The
variable-constraint graph, G, for the system in (a), as described in
Definition 3.4.

(vt → vM) indicates that constraint M depends on the
variable t. A directed edge vM → vt indicates that variable
t depends on constraintM . Furthermore, a cycle, or a SCC
in G′ indicates a set of variables and constraints that all
depend on each other, and therefore must be solved as a415

subproblem.
Since in any maximum matching MM, a constraint vertex

vM can be matched to at most one variable vertex vt, in
G′, vM can have at most one outgoing edge vM → vt.
Additionally, due to the properties of G′, there must also420

be an edge in reverse direction: vt → vM . Therefore, if vM
is matched with vt in MM, they must both be in the same
SCC. Unmatched vertices must be in an SCC of their own,
because they either have no incoming edges (if they are
variables), or no outgoing edges (if they are constraints).425

Therefore, any SCC in G′ that has at least one variable
vertex and one constraint vertex contains an equal number
of constraint vertices and variable vertices.

Consider an SCC, S ⊆ V ′ in G′. If we have a solu-
tion for all the variable vertices outside S that have edges430

leading into S, then we can plug the values of these vari-
ables into the constraints of S, and solve the subsystem S.
This process describes solving a single subsystem in the de-
composed constraint systemM. IfM is well-constrained,
then MM is a perfect matching (see proof in [8]), and there435

will be no unmatched variable vertices. Therefore, there
will be at least one SCC with no incoming edges. SCCs
with no incoming edges represent subsystems that can be
solved first, and their solutions will be propagated to the
subsystems that follow.440

For underconstrained problems, there will be at least
one unmatched variable vertex (such variables are called

input variables in [10]). An unmatched variable vertex
will be in an SCC of its own, as it can’t have any incom-
ing directed edge in G′. In [8], input variables are treated445

as parameters that can be set externally to make the sys-
tem well-constrained. However, our goal is to build a uni-
fied framework for solving problems with zero-dimensional
and univariate solution spaces, while ensuring the topol-
ogy. Since our polynomial solver is capable of producing450

solutions for problems with univariate solution spaces, we
merge the input variables into the first subsystem that
uses them by condensing the graph G′ into a graph that
contains only the constraint vertices. Condensing the de-
pendency graph was proposed in [22], but with a different455

goal in mind.
A condensed graph H is constructed by taking the set

of all constraint vertices of G′ and connecting a pair of
vertices vMi , vMj by a directed edge vMi → vMj if and
only if in G′ there is a directed path from vMi to vMj460

going through a single variable vertex. The construction
of H is formally described in Algorithm 4.

Algorithm 4 Condensing The Dependency Graph

Input:
G′ = (V ′, E′): A dependency graph;

Output:
H = (VH , EH): A condensed dependency graph;

Algorithm:

1: VH :={vM |vM ∈ V ′}; // The vertices of H are the
constraint vertices of G′.

2: For all pairs of vertices vMi
6= vMj

in G′, if there is
a variable vertex vt such that vMi → vt ∈ E′ and
vt → vMj ∈ E′, add an edge vMi → vMj to EH ;

3: return H = (VH , EH)

The graph H allows us to find SCCs which contain only
constraint vertices, and correspond to SCCs in G′ that
contain at least one constraint vertex. This allows us to465

eliminate SCCs that contain a single variable vertex, and
consider only constraints in the solution phase. For exam-
ple, see the graphs G′, H,HPlan in Figure 2: in G′, there is
a directed path c0 → Ay → c1, indicating that c1 depends
directly on c0. Therefore, we see in H an edge c0 → c1.470

Similarly, there is a path c1 → Ax → c0 in G′, and there-
fore there is an edge c1 → c0 in H, and so on for the rest
of G′. We use the SCC graph of H, denote H̄Plan, as the

6

DAG for the solution plan, and employ any topological
order on H̄Plan as the order in which the subsystems will475

be solved. The zero constraints in each subsystem are the
constraints corresponding to the vertices in the SCCs of
H.

Algorithm 5 Adding inequality constraints to the
solution plan

Input:
M: A system of (piecewise) polynomial constraints, as in
Definition 3.1, and m = k or m = k − 1;
H̄Plan = (V̄Plan, ĒPlan): The solution plan graph for M
without inequality constraints;

Output:
HPlan = (VPlan, EPlan): A solution plan graph aug-
mented with inequality constraints; // See Definition 3.2.

Algorithm:

1: (VPlan, EPlan):=(V̄Plan, ĒPlan);
2: for all v ∈ VPlan do
3: for all M ineq

i ∈Mineq do

4: if at least one of the variables on which M ineq
i

depends is being solved for in subsystem v, and all
the other variables which are not being solved for
in the subsystem v already have solutions then

5: constraints(v):=constraints(v) ∪ {M ineq
i };

6: end if
7: end for
8: end for
9: return HPlan = (VPlan, EPlan);

Once H̄Plan is computed, the inequality constraints are
added to the subsystems in which they can be solved. Each480

inequality constraint M ineq
i is added to the subsystem in

which at least one of the variable on which M ineq
i depends

is being solved for, in the subsystem, and all the variables
which are not being solved for in the current subsystem,
already have solutions (see Algorithm 5). We assume that485

the vertices of H̄Plan contain the information of which con-
straints are solved, and the solutions for which variables
are computed in each subsystem. Algorithm 5 only adds
inequality constraints to the existing subsystems in H̄Plan,
and does not change the set of vertices, or the connectivity490

of H̄Plan.
The decomposition for well constrained problems is

unique, even for different perfect matchings in G (again,
see proof in [8], and in more detail in [23]), but for under-
constrained problems, different maximum matchings can495

result in different decompositions. For example, in Figure
3, three different decompositions of the same undercon-
strained problem are shown, and the sizes of the subprob-
lems in the different decompositions are different. The
time it takes to solve a subsystem in the subdivision-based500

solver [17, 18] scales exponentially with the number of con-
straints in the subsystem. Hence, we aim to minimize the
size of the largest subsystem in the decomposition. For
the purpose of solving systems with a univariate solution
space, we propose an exhaustive search on the maximum505

matchings by iterating over the variable vertices, and for
each vertex finding a maximum matching that does not
include it. This is done in O(k) · O(MM), where k is the
number of variables and O(MM) is the complexity of the
maximum matching algorithm, for example, the Hopcroft-510

Karp algorithm has a time complexity of O(E
√
V) [21].

The exhaustive search adds negligible running time com-
pared to the numerical solution time of the subsystems.

3.5. The solution phase

With the solution plan graph, HPlan, the subsystems515

in HPlan are solved in a topological order (see Algorithm
6). Solving the subsystems in a topological order assur-
ing that when a subsystem needs to be solved, there are
already values assigned to all the variables which are re-
quired to solve it. When the first subsystem is solved,520

we assign values to the variables computed in the subsys-
tem. Zero dimensional solutions (as a finite set of points)
as well as univariate solutions (as a finite set of piecewise-
linear solutions) can be assigned as a solution to a variable.
Univariate solutions need to be parameterized in order to525

have the same representation as the constraints for further
processing. The parametrization of univariate solutions
is done either by parameterizing the piecewise-linear solu-
tions directly, or by fitting a parametric curve (represented
as a B-spline curve, in our case) which approximates the530

piecewise-linear solution (using least squares approxima-
tion). One should note that the exact parametrization of
the solution is not important. For example, the zero set of
a scalar surface is, in the general case, a (set of) univariate
curves, but different regular parametrizations of the solu-535

tion curves are all valid solutions to the problem. When

Algorithm 6 Plan solution algorithm

Input:
HPlan: A solution plan;

Output:
A set of point (zero-dimensional) solutions or piecewise-
linear univariate solutions, which solve the constraint
system;

Algorithm:

1: Sol:=∅;
2: {Mi}j := get next subsystem in the topological order

of HPlan, or stop if there are no more subsystems;
3: for all Mi ∈ {Mi}j do

4: M̂i:=Compose solved variables into Mi;
5: end for
6: CurrSol:=Solve({M̂i});
7: for all tsolved(u) ∈ CurrSol do
8: Sol:=MergeAndReparameterize(Sol, tsolved(u));

// Reparameterize previously solved variables only
if needed

9: Recursively call steps 2-9
10: end for

subsequent subsystems are solved, several steps need to be
performed:

7

A B

C

c0

c1 c2

c3 c4

P0 P1

(a1)

Ax Ay Cx Cy Bx By

c0 c1 c2 c3 c4

(a2) G.

Ax Ay Cx Cy Bx By

c0 c1 c2 c3 c4

(b1) G with a maximum matching.

Ax Ay Cx Cy Bx By

c0 c1 c2 c3 c4

(b2) G′.

c0 c1 c2 c3 c4

(b3) H and its SCCs.

Ax Ay Cx Cy Bx By

c0 c1 c2 c3 c4

(c1) G with a maximum matching.

Ax Ay Cx Cy Bx By

c0 c1 c2 c3 c4

(c2) G′.

c0 c1 c2 c3 c4

(c3) H and its SCCs.

Ax Ay Cx Cy Bx By

c0 c1 c2 c3 c4

(d1) G with a maximum matching.

Ax Ay Cx Cy Bx By

c0 c1 c2 c3 c4

(d2) G′.

c0 c1 c2 c3 c4

(d3) H and its SCCs.

Figure 3: A demonstration of the decomposition algorithm on an underconstrained problem (a wedge attached to one of the bars in a four-bar
linkage). Row (a): (a1) The 2D point-and-bar diagram of the system. (a2) The variable-constraint graph G of the system. All ci constraints
are distance constraints between points. Rows (b), (c), (d): (b1), (c1), (d1) Three different maximum matchings in G. (b2), (c2), (d2) The
dependency graphs G′ that result from the maximum matching (b1), (c1), (d1) respectively. (b3), (c3), (d3) The condensed dependency graph,
H, of the graphs in (b2), (c2), (d2), respectively, and the SCCs of H, marked by dashed green blocks. Note that different maximum matchings
of the variable-constraint graph, (b1), (c1), (d1) result in different decompositions of the problem which don’t necessarily have the same number
of SCCs. The decomposition in (d3) has a single SCC containing the entire system, which is highly undesirable.

1. Before a subsystem can be solved, all the variables in
the system for which there already are solutions, must540

be applied to the constraints in the subsystem. Re-
call that the constraints are represented as B-spline
multivariates. Before the subsystem is solved, the B-
spline multivariates are still dependent on variables
for which we have solutions. For zero dimensional so-545

lutions, the constraint multivariates are reduced to
isoparametric sub-multivariates by fixing the value
of the variables for which we have a solution to the
value of the solution, while preserving the topology
of the solution. For univariate solutions, the preser-550

vation of the topology is achieved by the symbolic
composition of the univariate solution B-spline into
the constraint multivariates (as described in Section
3.2). This allows univariate solutions for one or more
variables to be propagated into the constraints that555

need them, in order to be solved. If the variable vec-
tor of the problem is t = (t0, t1, ..., tk−1), and we
have a univariate solution for t0, ..., tl−1, parameter-
ized as τ (v) = (t0(v), ..., tl−1(v)), the constraint Mi

undergoes the composition: Mi(τ (v), tl, ..., tk−1) =560

Micomp
(v, tl, ..., tk−1) and the new constraints become

Micomp
(v, tl, ..., tk−1) = 0, for all constraints Mi in the

current subsystem.
2. Once a subsystem is solved, if the new result is

a univariate (this can happen regardless of the in-565

put to the current subsystem), it is again pa-
rameterized. The solver produces the solution
to {Micomp

(v, tl, ..., tk−1)}, as (v(u), tl(u), ..., tk−1(u)).
Therefore, the new parametrization, v(u), needs to be
applied to the previously solved variables, τ (v). This570

is done, again, through function composition by com-
puting: τ (v(u)).

3. Once all the solved variables are represented as a func-
tion of u, they can be combined into a single vector
function with a single parameter, u.575

The steps of composing the previously solved variables
into the constraints of the current subsystem, solving the
current subsystem, and reparameterizing the previously
solved variables are repeated for all the subsystems, in a
topological order, until the entire system is solved.580

Since non-linear systems often have more than one solu-
tion, whenever a subsystem is solved all its solutions need

8

to be considered. Therefore, for every solution of a subsys-
tem, the vector of previously solved variables is duplicated,
and the current subsystem’s solution is merged into its own585

copy of the solution vector (including the reparametriza-
tion mentioned above). The solution process therefore has
a recursive branching form. At the end of the recursion,
when the last subsystem is solved, the set of full solutions
from all the computation branches need to be collected to590

form the complete solution of the entire system.
The inequality constraints also have an effect on the re-

cursive branching of the solution process. Our framework
is designed to add the inequality constraints to the first
subsystem in which all the variables required to check the595

inequalities are either being solved, or already have solu-
tions. Therefore, as soon as the algorithm has enough in-
formation to determine that a partial solution completely
fails one or more of the inequality constraints, the partial
solution, along with all the recursive computation that fol-600

lows from it, is pruned from the recursive branching pro-
cess.

4. Results and examples

We start by demonstrating the advantages of inequality
constraint on two simple examples, one well-constrained
and one underconstrained. First, let us revisit the prob-
lem in Figure 1, a parallelogram with a diagonal, but this
time we will assign values to the constants. The algebraic
representation of the problem is:

|A− P0|2 − c20 = 0, c0 = 0.9,

|A− P1|2 − c21 = 0, c1 = 2.5,

|A−B|2 − c22 = 0, c2 = 2,

|B − P1|2 − c23 = 0, c3 = 0.9,

for P0 = (−1, 0), P1 = (1, 0).

As demonstrated in Figure 2, the algorithm first finds A by
solving the subsystem {c0, c1}, resulting in the solutions:

{(Ax = −1.36, Ay = 0.825), (Ax = −1.36, Ay = −0.825)}.

Then, each of these solutions is used to set the values of
Ax and Ay in constraint c2, and together with c3 it is used
to find the values of B. There are two such solutions for
each. The resulting solutions are (see Figure 4):

(Ax, Ay, Bx, By) = {(−1.36, 0.825, 0.205,−0.421),

(−1.36, 0.825, 0.64, 0.825), (−1.36,−0.825, 0.205, 0.421),

(−1.36,−0.825, 0.64,−0.825)}.

In one of the solutions (Figure 4 (b)), the entire structure
is under the x-axis line, and in two of the other solutions605

(Figures 4 (a), and 4 (c)), the AB line intersects the x-
axis line, forming two partially overlapping triangles with
a common base instead of a parallelogram. Out of all these
solutions, the user has to choose the solution (or solutions)
which correctly satisfies for user’s requirements.610

Alternatively, we can add inequality constraints to effi-
ciently filter out the solutions we a-priori decide are incor-
rect. We can add two constraints: Ay ≥ 0, which makes

(a)

P0 P1

A

B

(b)

P0 P1

A B

(c) P0

P1

A

B
(d)P0 P1

A B

Figure 4: All the solutions to the parallelogram with a diagonal
problem. See also Figure 1.

(a) (b)

(c) (d)

Figure 5: (a) A single frame from the the motion range of the 4-
bar linkage without inequality constraints, and (b) with inequality
constraints. (c) Samples from the motion range without inequality
constraints, and (d) with inequality constraints .

sure that A is above the x-axis line, and z((B−P1)× (A−
P1)) ≥ 0, where z(q) denotes the z element of the vec-615

tor expression q, which makes sure the triangle ABP1 is
constructed above the AB line. In the decomposition pro-
cess, the constraint Ay ≥ 0 is added to the first subsystem
(because it only depends on Ay), and therefore the only
solution to the subsystem is Ax = −1.36, Ay = 0.825. The620

inequality constraint z((B − P1)× (A− P1)) ≥ 0 depends
on all the variables, and must therefore be added to the
second subsystem. These two inequality constraints make
sure that only the solution in Figure 4 (d) is returned.

By removing the diagonal constraint c1, from Figure 1,625

we get the 4-bar linkage underconstrained problem. As ex-
pected, there are two possible solution plans: solving for
A first, and solving for B first, out of which our frame-
work chooses, arbitrarily, since they are symmetrical, to
solve for B first. However, our framework returns two630

solutions, out of which in one of them, the AB line inter-
sects the x-axis (see Figure 5 (a), (c)), like in the previous
problem. If we add the same two inequality constraints
as before: Ay ≥ 0, z((B − P1) × (A − P1)) ≥ 0, we ob-
serve two changes: first, we get only the part of the motion635

range in which A is above the x-axis, and second, the AB
line does not intersect the x-axis (see Figure 5 (b), (d)).
This shows that in problems with univariate solutions, in-
equality constraints can not only filter entire solutions, as
in zero-dimensional solutions, but also limit the range of640

univariate solutions.
Next, we look at a more complex and realistic kinematic

problem: the Jansen’s linkage [24, 25]. Jansen’s linkage
(see Figure 6) is a mechanism for the legs of walker robots
designed by Theo Jansen which transforms circular mo-
tion at the axis of the leg into nearly linear motion at
the ’foot’. We used our framework to define a Jansen’s
linkage leg through its constraints and produce a simula-
tion of its walking motion. Our framework decomposed

9

m

j

k

b

e

d

c

f

g

h i

P1
P0

A

B

C

D
E

F (a) (b)

Figure 6: (a) The definition of Jansen’s linkage by the distance con-
straints of its bars [25]. (b) The motion range of Jansen’s linkage.

and problem into 6 subsystems, and found 38 solutions to
the constraint system, most of them having intersections
between the various bars of the mechanism. In order to
get the correct solution, we added the following inequality
constraints: 

(P0 −B)× (A−B) ≥ 0,
(A−D)× (P0 −D) ≥ 0,
(C −B)× (P0 −B) ≥ 0,
(E −D)× (F −D) ≥ 0,
(D − E)× (C − E) ≥ 0.

The univariate solution can be seen in Figure 6 (b).
The next problem we present is another kinematic prob-

lem with Euclidean distance constraints, however, this
time the distance constraints are between B-spline curves
and surfaces in 3D. As a consequence of this, all the con-
straints are high-degree piecewise polynomial functions.
The problem is presented in Figure 7. The problem has
a fixed point P0, two curves c1, c2, and a surface S.
The variables of the problem are a point A = c1(tA),
a point B = (Bx, By), that is free to move on the XY
plane, two points C = c2(tC), D = c2(tD), and a point
E = S(uE , vE). Its six constraints in seven unknowns
(tA, tC , tD, Bx, By, uE , vE . Li are constants) are:

|B − P0|2 − L2
1 = 0,

|c1(tA)−B|2 − L2
2 = 0,

|c2(tC)−B|2 − L2
3 = 0,

|c2(tD)−B|2 − L2
4 = 0,

|c2(tC)− S(uE , vE)|2 − L2
5 = 0,

|c2(tD)− S(uE , vE)|2 − L2
6 = 0.

Due to the irregularity of the freeforms in the problem,
our framework finds multiple (four, in this case) disjoint
solutions.645

A slightly different type of problem we have solved with
our framework is the inverse kinematic problem, again,
over freeform shapes. Instead of defining a mechanism
only by its constraints and using our framework to find
its motion paths, we define a path along which one of the
parts of the mechanism must move, and solve for the rest of
the mechanism. Specifically, we embedded the letter ”C”
in the body of the Utah teapot, and computed the motion

A

B

C

D

E P0

c1c2

S

Figure 7: The kinematics over splines problem. The positions of the
points are sampled from one of the solutions to the problem.

A
B

P0

Figure 8: A frame from the motion range of the teapot engraving
inverse kinematic problem, from two viewing angles.

path of a 5-DoF robotic arm that is needed to engrave the
letter ”C” on the teapot (see Figure 8). We represented
the surface of the body of the teapot as S(u, v), the letter
”C” as c(t) (a planar curve), and the two middle joints
of the robotic arm as A = (Ax, Ay, Az), B = (Bx, By, Bz).
We embedded c(t) in S(u, v) by functional composition:
cS(t) = S(c(t)). Hence, The six constraints in seven un-
knowns (t, Ax, Ay, Az, Bx, By, Bz) are as follows:

|cS(t)−B|2 = L2
3,

〈Su(c(t)), B − cS(t)〉 = 0,
〈Sv(c(t)), B − cS(t)〉 = 0,
|B −A|2 = L2

2,
|A− P0|2 = L2

1,
z((B −A)× (P0 −A)) = 0,

(4)

where Li are some constants, and Su =
∂S

∂u
,Sv =

∂S

∂v
.

The first constraint in Equation (4) requires that the dis-
tance of the start of the engraving head maintains a con-
stant distance from the text it engraves. The next two
constraints require the engraving head to be perpendicu-
lar to S at the point of contact with the surface of the650

teapot. The next two constraints set the lengths of the
arm segments of the robot, i.e. the distances between the
joints. Finally, the last constraint makes sure that the
plane containing the points A,B, P0 is vertical, i.e. its
normal’s z element is zero. This constraint is required655

because the base joint of the robotic arm can rotate and
tilt up and down, but can’t roll. Since the planar letter
”C” is a quadratic curve, and the body of the teapot is
a bi-cubic surface, the maximal polynomial orders of the
first three constraints are somewhat high: 25, 23, and 23660

(respectively).
The last problem we examine is the computation of flec-

nodal curves of a surface. A flecnodal curve is defined as a

10

Figure 9: A surface, and its flecnodal curves.

locus of all the points at which the surface has a third-order
contact with a ray [26]. Let S(u, v) be a C3-continuous sur-
face, and n(u, v), the unnormalized normal to the surface
at u, v. Then, the flecnodal curves of the surface are the
solutions to the following system [27], of three constraints
and four unknowns (u, v, a, b):
〈
a2Suu(u, v) + 2abSuv(u, v) + b2Svv(u, v),n(u, v)

〉
= 0,〈

a3Suuu(u, v) + 3a2bSuuv(u, v)+
3ab2Suvv(u, v) + b3Svvv(u, v),n(u, v)

〉
= 0,

a2 + b2 − 1 = 0.
(5)

Decomposing constraint system (5), our framework first
solved the constraint a2+b2−1 = 0, replacing the variables
a, b with a unit circle. Then, it propagated the solution
into the first two constraints, allowing them to be solved665

more efficiently. An example of a surface with its flecnodal
curves, computed by our framework, is presented in Figure
9.

4.1. Performance

The decomposition of complex constraint systems into670

smaller, simpler, subsystems allows our framework to solve
problems significantly faster than the solver would have,
without decomposition. As mentioned earlier, the run-
ning time of many subdivision-based solvers, including the
solver we used, scales exponentially with the number of675

variables in the problem (k in Definition 3.1). Qualita-
tively, the order of magnitude of the total number of sub-
division operations in the solution process without decom-
position can be approximated by ck, where c is the aver-
age number of subdivisions done on each variable. Due680

to the decomposition step which we have introduced, and
assuming a uniform size decomposition into d subsystems,
the order of magnitude of the number of operations is re-

duced to dc
k
d . In Table 1, we present the running times for

the problems discussed in this paper, on a Windows 7 PC685

with a 3.7GHz CPU, on a single thread, and the speedup
achieved by our decomposition algorithm. Problems with
inequality constraints are marked with ineq.

Problem Time (seconds) Speedup
No Decom-
position

With Decom-
position

Factor

Figure 4 0.000474 0.000449 1.05
Figure 4,
with ineq.

0.00034 0.0003 1.13

Figure 5 0.27 0.21 1.32
Figure 5,
with ineq.

0.09 0.074 1.21

Figure 6 19730 61.2 322.3
Figure 6,
with ineq.

9690.4 2.7 3530.2

Figure 7 4544.2 7.6 599.3
Figure 8 84.9 3.5 24.5
Figure 9 0.70 0.36 1.96

Table 1: The performance of the framework with decomposition,
compared to the subdivision-based solver without decomposition.

5. Future work and conclusion

One of the main advantages of the presented work is690

the increase of the scalability of subdivision-based solvers.
As shown in Section 4.1, our framework is capable of ef-
ficiently solving problems which are prohibitively time-
consuming for the subdivision-based solver without de-
composition, while also improving performance for small-695

scale problems. One potential limit to the scalability of our
framework is the repeated reparametrization of the partial
univariate solution (see Algorithm 6, step 8). In large sys-
tems which are decomposed into many subsystems, this
will quickly increase the polynomial order and complexity700

(length of the control mesh) of the univariate solutions.
A possible solution for this limitation is simplifying the
partial univariate solutions when they get too complex,
for example by least-squares approximation. This, how-
ever, may introduce errors, so a numerical improvement705

step should probably follow. Alternatively, it may be pos-
sible to optimize the size of the subproblems so that the
decomposition doesn’t contain subproblems that are too
large, but also doesn’t contain too many subproblems.

The obvious next step for future research is extending710

the capability of our framework to problems with a bivari-
ate solution space. This presents several challenges:

1. A subdivision-based solver capable of solving prob-
lems with a bivariate solution space is needed. One
such solver is presented in [28].715

2. The subdivision-based solver presented in [28] repre-
sents its results as triangle meshes in Rn. For prop-
agating the results of one subsystem to the next, the
results need to be parameterized and converted into
a bivariate B-spline. This is a difficult problem, but720

it has been recently addressed in [29], among others.

3. In Section 3.2, we described functional composition
for B-spline univariates into B-spline multivariates,
M(τ (v)). This can be easily expanded for compo-
sition of B-spline bivariates into Bézier multivariates,725

M2(M1(u, v)), but if M2 is a B-spline, then M1 needs
to be subdivided at the knot values of M2. This is

11

a non-trivial task, as it doesn’t necessarily result in
rectangular tensor-product patches.

4. Finally, a better way for selecting the optimal decom-730

position, out of all the possible ones, would be ben-
eficial. Using our exhaustive search approach from
problems with a bivariate solution space can be ineffi-
cient. A heuristic for choosing the decomposition for
such problems is needed.735

Another issue, which can occur in mechanisms, is sys-
tems which have a degree, or multiple degrees, of motion,
despite being well-constrained. This is caused by singular-
ities in the constraint system which defines them. Such a
case is presented in [30]. We aim to address the issue of740

singularities in the future. Handling mechanisms with con-
tacts and motion across multiple surfaces, possibly with
C1 discontinuities is another interesting venue to explore.

5.1. Conclusion

In this paper, we proposed a framework for solving745

highly complex polynomial constraint systems, by adding
a decomposition algorithm to a subdivision-based solver.
The presented framework is capable of solving problems
with either zero-dimensional or univariate solution spaces.
Additionally, the framework can handle inequality con-750

straints, which are rarely supported in other solvers with
decomposition algorithms. We have demonstrated the ca-
pabilities of our system on a variety of problem, from
simple ”point-and-bar” static structures, through complex
kinematic and inverse kinematic problems, to purely al-755

gebraic problems, and shown the improvement in perfor-
mance and scalability over the regular subdivision-based
solver. Finally, we outlined the steps that need to be taken
to extend our framework to problems with a bivariate so-
lution space.760

6. Acknowledgments

This work was supported in part by DARPA, under
contract HR0011-17-2-0028. All opinions, findings, con-
clusions or recommendations expressed in this document
are those of the authors and do not necessarily reflect the765

views of the sponsoring agencies, nor should any endorse-
ment be inferred.

References

[1] I. E. Sutherland, Sketch pad a man-machine graphical commu-
nication system, in: Proceedings of the SHARE design automa-770

tion workshop, ACM, 1964, pp. 6–329.
[2] C. Jermann, G. Trombettoni, B. Neveu, P. Mathis, Decompo-

sition of geometric constraint systems: a survey, International
Journal of Computational Geometry & Applications 16 (05n06)
(2006) 379–414.775

[3] J. C. Owen, Algebraic solution for geometry from dimensional
constraints, in: Proceedings of the first ACM symposium on
Solid modeling foundations and CAD/CAM applications, ACM,
1991, pp. 397–407.

[4] I. Fudos, C. M. Hoffmann, A graph-constructive approach to780

solving systems of geometric constraints, ACM Transactions on
Graphics (TOG) 16 (2) (1997) 179–216.

[5] X.-S. Gao, G.-F. Zhang, Geometric constraint solving based on
connectivity of graph, MM Research Prepringts (2003) 148–162.

[6] C. M. Hoffmann, A. Lomonosov, M. Sitharam, Finding solvable785

subsets of constraint graphs, in: International Conference on
Principles and Practice of Constraint Programming, Springer,
1997, pp. 463–477.

[7] H. Gao, M. Sitharam, Characterizing 1-dof henneberg-i graphs
with efficient configuration spaces, in: Proceedings of the 2009790

ACM symposium on Applied Computing, ACM, 2009, pp.
1122–1126.

[8] S. Ait-Aoudia, R. Jegou, D. Michelucci, Reduction of constraint
systems, in: COMPUGRAPHICS’93, 1993, pp. 331–340.

[9] P. Bunus, P. Fritzson, Methods for structural analysis and de-795

bugging of modelica models, in: Proceedings of the 2nd Inter-
national Modelica Conference, Vol. 10, 2002, pp. 157–165.

[10] B. Vander Zanden, An incremental algorithm for satisfying hier-
archies of multiway dataflow constraints, ACM Transactions on
Programming Languages and Systems (TOPLAS) 18 (1) (1996)800

30–72.
[11] M. Barton, N. Shragai, G. Elber, Kinematic simulation of planar

and spatial mechanisms using a polynomial constraints solver,
Computer-Aided Design and Applications 6 (1) (2009) 115–123.

[12] G. Hegedüs, J. Schicho, H.-P. Schröcker, The theory of bonds:805

A new method for the analysis of linkages, Mechanism and Ma-
chine Theory 70 (2013) 407–424.

[13] J. M. Rico, B. Ravani, On mobillity analysis of linkages using
group theory, in: ASME 2002 International Design Engineering
Technical Conferences and Computers and Information in Engi-810

neering Conference, American Society of Mechanical Engineers,
2002, pp. 429–446.

[14] M. J. Van Emmerik, Interactive design of 3d models with geo-
metric constraints, The Visual Computer 7 (5) (1991) 309–325.

[15] H. Lamure, D. Michelucci, Solving geometric constraints by ho-815

motopy, in: Proceedings of the third ACM symposium on Solid
modeling and applications, ACM, 1995, pp. 263–269.

[16] G. Elber, M.-S. Kim, Geometric constraint solver using multi-
variate rational spline functions, in: Proceedings of the sixth
ACM symposium on Solid modeling and applications, ACM,820

2001, pp. 1–10.
[17] I. Hanniel, G. Elber, Subdivision termination criteria in subdivi-

sion multivariate solvers using dual hyperplanes representations,
Computer-Aided Design 39 (5) (2007) 369–378.

[18] M. Bartoň, G. Elber, I. Hanniel, Topologically guaranteed uni-825

variate solutions of underconstrained polynomial systems via
no-loop and single-component tests, Computer-Aided Design
43 (8) (2011) 1035–1044.

[19] X. Chen, R. F. Riesenfeld, E. Cohen, An algorithm for direct
multiplication of b-splines, IEEE transactions on automation830

science and engineering 6 (3) (2009) 433–442.
[20] G. Elber, Free form surface analysis using a hybrid of symbolic

and numeric computation, Ph.D. thesis, The University of Utah
(1992).

[21] T. H. Cormen, Introduction to Algorithms., 3rd Edition, The835

MIT Press, 2009.
[22] M. Gangnet, B. Rosenberg, Constraint programming and graph

algorithms, Annals of Mathematics and Artificial Intelligence
8 (3-4) (1993) 271–284.

[23] J. J. Koelewijn, Graph-theoretical aspects of constraint solving840

in the sst project, Master’s thesis, University of Twente (2011).
[24] E. A. M. Garćıa, Numerical Modelling in Robotics, Omnia-

Science, 2015, Ch. 15.2, pp. 385–396.
[25] T. Jansen, Strandbeest website (2014).

URL http://www.strandbeest.com845

[26] J. J. Koenderink, Solid Shape, MIT Press, 1990, Ch. 6, pp.
281–283.

[27] G. Elber, X. Chen, E. Cohen, Mold accessibility via gauss map
analysis, Journal of Computing and Information Science in En-
gineering 5 (2) (2005) 79–85.850

[28] J. Mizrahi, G. Elber, Topologically guaranteed bivariate so-
lutions of under-constrained multivariate piecewise polynomial
systems, Computer-Aided Design 58 (2015) 210–219.

[29] Y. Zhang, J. Cao, Z. Chen, X. Li, X.-M. Zeng, B-spline surface
fitting with knot position optimization, Computers & Graphics855

12

http://www.strandbeest.com
http://www.strandbeest.com

58 (2016) 73–83.
[30] A. Karger, M. Husty, Classification of all self-motions of the

original stewart-gough platform, Computer-aided design 30 (3)
(1998) 205–215.

13

	Introduction
	Related work
	Geometric approach to decomposition
	Algebraic approach to decomposition
	Inequality constraints

	Solution process
	Problem statement
	Symbolic Composition of B-spline multivariates
	General outline of the decomposition-based algorithm
	Graph decomposition phase
	The solution phase

	Results and examples
	Performance

	Future work and conclusion
	Conclusion

	Acknowledgments

