
Solving Geometric Constraints
using

Multivariate Rational Spline Functions

Gershon Elber
Department of Computer Science

Technion, Israel Institute of Technology
Haifa 32000, Israel

E-mail: gershon@cs.technion.ac.il

Myung-Soo Kim
School of Computer Science and Engineering

Seoul National University
Seoul 151-742, Korea

E-mail: mskim@cse.snu.ac.kr

Abstract

We present a new approach to building a solver for a set of geomet-
ric constraints represented by multivariate rational functions. The
constraints are formulated using inequalities as well as equalities.
When the solution set has dimension larger than zero, we approx-
imate it by fitting a hypersurface to discrete solution points. We
also consider a variety of constraint solving problems common in
geometric modeling. These include computing ray-traps, bisectors,
sweep envelopes, and regions accessible during 5-axis machining.

1 Introduction

Computing the solution of a set of non-linear equations has been
considered a very difficult task. Even for the univariate case, the
root-finding procedure can be unstable and prone to errors. Lane
and Riesenfeld [Lane81] propose a subdivision-based approach,
using the Bernstein-Bézier basis function, for the computation of
roots of univariate polynomial functions. The numerical stabil-
ity of the Bernstein-Bézier basis functions [Farouki88] makes this
approach attractive and robust. Following this lead, many effi-
cient methods have been developed for a large variety of root-
finding problems in geometric modeling, including ray-surface,
curve-curve, and surface-surface intersections. The same approach
has also been applied to the more general B-spline representation.

Nishita et al. [Nish90] introduced a Bézier clipping technique
that can compute the roots of univariate Bézier functions very
efficiently. Looking at higher dimensions, Sherbrook and Pa-
trikalakis [Sher93] presented an approach to solving a set of mul-
tivariate polynomial equations given in the Bernstein-Bézier form.
When the problem has many roots, a large number of subdivision
steps are required at an early stage of the algorithm; thus, the cost of
each subdivision is an important factor in the overall performance.
At each subdivision, Sherbrook and Patrikalakis can reduce the do-

main to a much smaller subdomain; however, the cost of this do-
main clipping is high and there is a trade-off against the reduction
of domain size.

Although starting with many subdivisions is inevitable, we are
able to eliminate redundant subdivisions at the final stage if we can
guarantee that there is at most one root in each subdomain. Do-
main clipping has no explicit mechanism to guarantee such a con-
dition. Sederberg and his colleagues’ concepts [Sede88, Sede96]
of the normal cone and the surface bounding cone are more suit-
able to this purpose. In this paper, we generalize these tools to
higher dimensions for the intersection of multivariate implicit hy-
persurfaces. Note that normal cones and surface bounding cones are
easier to compute for implicit surfaces than for parametric surfaces;
this fact greatly simplifies our algorithm. When we have isolated all
the different roots using the surface bounding cones, we terminate
the subdivision procedure and switch to Newton-Raphson iterations
which approximate each separate root with quadratic convergence.

The test for this termination condition usually fails at the initial
stage of the algorithm. So, to start with we subdivide the domain
without checking the rather costly termination condition. More-
over, we speed up this procedure by employing a trivial subdivison
scheme that checks only the signs of control coefficients of each
multivariate function over a domain. When the signs of control
coefficients of a multivariate function are all positive (or all nega-
tive), by the convex hull property the function is also positive (or
negative) throughout the domain. Consequently, we can eliminate
such a domain since it contains no common root for a given set of
multivariate equations. Many subdomains are thus eliminated early
since many of them have at least one function strictly greater than,
or strictly less than, zero in the subdomain. This further justifies
our use of a simple subdivision scheme.

When the number of equality constraints is smaller than the num-
ber of variables, the solution set has dimension larger than zero.
We approximate the solution set by fitting a hypersurface to some
discrete points sampled from the solution set. These discrete solu-
tion points are also generated by recursive subdivision followed by
Newton-Raphson iteration with quadratic convergence. Although
we cannot separate roots (since they are continuous in this case),
the surface bounding cones are still useful to guarantee that the hy-
persurfaces intersect each other transversally in the domain and thus
to ensure that each domain contains a connected component of the
solution set. A simple subdivision scheme may also be used effi-
ciently to generate a dense distribution of discrete points across the
solution set.

In this paper, we also consider a variety of constraint-solving
problems common in geometric modeling. These include com-
puting ray-traps, bisectors, sweep envelopes, and accessible re-

Solving Geometric Constraints Elber and Kim 2

gions in 5-axis machining. (See also the authors’ other publica-
tions [Heo99, Kim00], which apply a similar approach to comput-
ing the intersection of two ruled surfaces, the intersection of two
ringed surfaces, and the Minkowski sum of two surfaces.) We show
how to convert each of these problems into the search for a solution
to a set of multivariate rational equations. To simplify the solution
procedure, we eliminate some variables such as ��������� from the
given equations and solve equations in the remaining input param-
eters. Since the geometric problem is originally given in Euclidean
space, the solution set must be computed in this space, and not in
the space of other input parameters. When the solution set has di-
mension larger than zero, we generate some discrete solution points
in Euclidean space and fit a curve or surface through these points.
Our implementation as well as all the examples shown in this paper
are based on the IRIT solid modeling system [Irit00] that has been
developed at the Technion, Israel Institute of Technology.

This paper is organized as follows. In Section 2, we present
the zero-set finding procedure, including the subdivision as well as
the numerical improvement stage. In Section 3, we present some
examples, and we conclude the paper in Section 4.

2 Zero-Set Finding for Multivariate Func-
tions

We consider the problem of zero-set finding for a set of multivariate
functions. One can subdivide the multivariate function(s) until the
function values are bounded within a certain resolution. Section 2.1
discusses this subdivision stage, which ends up with a set of discrete
points approximating the zero-set. We then apply a numerical im-
provement to this set of points, which is explained in Section 2.2.
If the dimension of the solution set is greater than zero, then we can
fit a multivariate surface to the set of discrete solution points, which
produces an approximation to the solution set. This fitting stage is
discussed in Section 2.3. Finally, in Section 2.4 we consider the
case where the zero-set has dimension zero, thus forming a set of
discrete points. We investigate the conditions for which a subdo-
main of the problem contains a single solution to the multivariate
problem.

2.1 Subdivision for Zero-Set Finding

Consider � multivariate (piecewise) rational constraints,	�

�
��� � ��� ��������� ������������� , (� � � ��������� �), in IR
�����

, where�"!$#&% � . And let a point in the
� #&% ��� -dimensional parameter

space of
	�

be denoted by ' �(�
��� � ��� ��������� ��������� . Now let us
consider all simultaneous solution points, '�)+* IR

�����
, such that	�

� '�) �,��� , for all � �-� ��������� � .

We will assume that
	.

, � �/� ��������� � , are represented as B-
spline or Bézier multivariate scalar surfaces. Then, the domain of	�

� ' � contains zeros only if the control coefficients of

	0

have dif-

ferent signs; this is because the value of zero must be contained in
the convex hull of the control coefficients of

	0

. Using this con-

vex hull property, a subdivision-based approach, as described in
Algorithm 2.1, will generate a set of discrete points that robustly
converges to the simultaneous zero-set of

	0

, � �-� ��������� � .

Let 1 be a subdivision tolerance that determines the maximum
number of points to be generated in the subdivision stage. We may
assume

� ! ��
 ! � , � �&� ��������� � ; then the parameter domain is a
unit hypercube of dimension #2% � , which is sliced into 3 �4 seg-
ments in each coordinate direction. The result of this subdivision
will be a total of 5 �4�6 ����� cells. Each such cell may generate one
point (i.e. the center of each cell); thus, we will end up with at most5 �4 6 ����� approximate solution points to the zero-set at the end of

this subdivision stage. This upper bound is realized only when the
entire space is contained in the zero-set, which is unlikely to happen
in typical cases.

As we mentioned above, this approach can be easily extended to
support constraints represented by inequalities as well as equalities.
In Algorithm 2.1, we can handle inequalities properly by slightly
modifying line

�
78�
as follows:

if (9�� such that 5 : �;
 <
 : �;=�>
 ? � and
	�

is equality constraint 6 or9�� such that 5 : �;
 <
@? � and
	�

is negative constraint 6 or9�� such that
� : �;=�>
 A � and

	�

is positive constraint

�
) then

2.2 Numerical Improvement for Zero-Set Finding

This section discusses the numerical improvement of the approxi-
mated solutions. While this is essentially a Newton-Raphson pro-
cess, we take a more geometrically intuitive approach. Moreover,
only equality constraints are considered in this section, under the
assumption that the (strict) inequality constraints may always be
satisfied by taking a sufficient number of subdivisions if necessary.

Let ';B �/�
� B � � � B� ��������� � B ����� � be an approximate solution as
computed in Section 2.1. That is,

	.

� ' B � 3 � , for � �C� ��������� � .
The normal space of the multivariate graph surface

� ' � 	0

� ' ��� is a
line in IR

�
, and at

� ' B � 	�

� ' B ��� this line is parallel to

D

� ' B �,�FE;G 	�
G ��� � ' B � � G 	�
G ��� � ' B � ��������� G 	�
G ������� � ' B � � % ��H � (1)

where I�J�KI�L�M � ' B � denotes the partial derivative of each
	.

with

respect to
�ON

, evaluated at ' B . Complementing the normal’s
one-dimensional space at

� ' B � 	�

� ' B ��� yields the tangent to�
��� � ��� ��������� ������� � 	�

� ' ��� , an # -variate hyperplane with param-
eters ' �P�
��� � ��� ��������� ���0� , that is equal toQ ';R
 � ' �TS G 	�
G ��� � ' B �����,U-G 	�
G ��� � ' B �����;U �����UVG 	�
G ������� � ' B ��������� % ��� %�W D

� ' B � � ' B8X� W D
�� ' B � � ' X % W D

� ' B � � ' B X �$� �
where' B � �
� B � � � B� ��������� � B ����� � � B � � � �
� B � � � B� ���������� B ����� � 	�

� ' B ��� .

Using a first-order approximation, each function
	0

constrains
the solution to be on the hyperplane

Q ';R
 � ' � . The planes
Q '�R
 � ' �

also contain
�Y�

as a free variable and we recall that
	.
Z� ' �0�2� ,[� . So this requirement can be simply embedded as the additional

constraint
�����$�

. The final results are � U$� linear constraints.
Consider the case that # � � UP� , which leads to a fully con-

strained system of # linear equations formulated from the � tan-
gent planes

Q ';R
 � ' � of the functions
	.

� ' � , and also one addi-

tional constraint formulated as
�Y�/�\�

, the zero being sought.
Therefore, we have # linear equations and # unknowns. Note that# planes, in general position in IR

�
, intersect at a single point,

which corresponds to the result of one iteration of a multidimen-
sional Newton-Raphson procedure in IR

�
, with a quadratic conver-

gence rate near simple roots [Luen84].
For example, consider the case of two scalar bivariate constraints

in IR] , written as
	�

� ����� �^�2� , � �(� ��_ ; additionally, let � �C�

and
Q;

� ��������� �`�P� , � �-� ��_ ; the whole amounting to three linear

constraints and three unknowns. Three planes in general position

Solving Geometric Constraints Elber and Kim 3

Algorithm 2.1
Input:	�

, � �P� ��������� � , � multivariate rational constraints;1 , tolerance of subdivision process;
Output:�

, a set of points in the parametric space of
	0

such that each point ');* � yields
an approximated simultaneous zero over all

	0

;

ZeroSetSubdiv(� 	.
�� <
 ��� , � �
� �;
 <N � � �;=�>N ���	� ������
N���� , 1)
begin
������ ���������� 5 � �;=�>N % � �;
 <N 6 ;

if (

������ � A 1) then begin

return ��� L � K ��! L ������� � L � K �"# L �����"� ��������� L � K ��%$ � L ������%$ �� &(' ;

end
else begin: �;
 <
 , : �;=�>
 �

minimal and maximal control coefficients of
	0

;
(*) if (9�� such that : �;
 <
 : �;=�>
 ? �) then

return) ;
else begin	 �
 � 	 �
 � 	�
 subdivided at L � K �M L �����M� , along the * th parametric direction,

where

������ �
has been detected, � �P� ��������� � ;

return ZeroSetSubdiv 5�� 	 �
 � <
 ��� ,� �
� �;
 <B � � �;=�>B � ������� � � �;
 <N � L
� K �M L �����M� & ������� �
� �;
 << � � �;=�>< � � ' � 1 &+

ZeroSetSubdiv 5�� 	 �
 � <
 ��� ,� �
� �;
 <B � � �;=�>B � ������� � L
� K �M L �����M� � � �;=�>N & ������� �
� �;
 << � � �;=�>< � � ' � 1 & ;

end
end

in IR] intersect at a single point, which is also the result of one
iteration of the Newton-Raphson procedure.

Now let # ? � U&� , and the linear system of equations will
be under-determined. Note that

� � UC��� planes intersect in an� # %-� % ��� -dimensional variety , . At this juncture, we may
need to find the solution in , that minimizes a certain additional
optimality criterion. For this purpose, we employ a linear system
solver that yields a least-squares solution in an - � -norm, in order
to find the closest solution to the current position ' B from the pos-
sible solution set , . Singular-value decomposition and QR fac-
torization [Golu96] are two options we can take for solving this
under-determined problem while producing a solution with a mini-
mal - � -norm, and thus minimizing the displacement from ' B .

A QR factorization procedure was used in preparing the exam-
ples in this paper. The tolerance employed in the numerical im-
provement stage is several magnitudes smaller than that of the sub-
division stage. In the case of a solution space of dimension greater
than zero, the vast majority of points were successfully improved
to that tolerance in very few iterations, becoming more than an or-
der of magnitude closer to the solution at each iteration. Thus, we
are not required to improve all points from the subdivision stage;
those few points that fail to improve can simply be purged away.
Examples are presented in Section 3.

2.3 Fitting a HyperSurface to the Solution Set

Once a set of discrete points that satisfy the simultaneous zeros has
been constructed (and assuming that the dimension of the solution
space is greater than zero), we fit a smooth hypersurface to it, thus
approximating the solution set.

In contrast to the problem of regular scattered data interpolation,
this problem permits a simple solution to the parameterization of
data points. In typical cases, we can easily parameterize the zero-
set using the parameterization of one of the given input constraints.
This approach has been taken in some examples presented in Sec-
tion 3.

2.4 Conditions for the Uniqueness of a Solution

One solution point is generated (or sampled) for each subdomain
we obtain at the final resolution of the subdivision procedure. If
a subdomain contains more than one connected component of the
solution set, generating only one sample point may not be suffi-
cient to construct a good continuous approximation. Conversely,
if a subdomain at some intermediate resolution contains only one
connected component, we may need to stop the subdivision process
and switch to a more efficient (numerical) procedure for generating
one or more solution points.

An efficient method for checking whether there is more than one
connected component in a subdomain is also important when the
solution space has dimension zero (thus forming a set of discrete
points). When it is known that only one solution exists in a sub-
domain, we can stop the subdivision and change to a numerical
procedure. In many cases, we can stop the subdivision at a higher
level (and thus at a lower resolution). Moreover, this capability can
be used in isolating different solution points no matter how close
together they are. That is, we can repeat the subdivision process
until each region contains at most one solution point.

Sederberg and Meyers [Sede88] use the hodograph as the ba-
sis of such a termination condition in the intersection of two pla-

Solving Geometric Constraints Elber and Kim 4

nar Bézier curves. Two sub-curves intersect at most once if their
hodographs share no common direction vector. Sederberg and
his colleagues [Sede88, Sede96] also develop a similar condition
for the intersection of two parametric surfaces, where the surface
bounding (or tangent) cone plays an important role. In this pa-
per, we generalize this approach to the higher-dimensional prob-
lem of intersecting #C% � implicit hypersurfaces

	0
Z� ' �0�2� , for� �/� ��������� # % � , in IR
�����

. The normal vector of an implicit
hypersurface is considerably easier to compute than that of a para-
metric hypersurface. This fact greatly simplifies our algorithm for
computing the normal and surface bounding cones.

Let � ��� ��� � denote the cone with the axis in the direction of a
non-zero vector

�
and an opening angle � :

� ��� ��� �,� ��'����Z' � �
	 � !���'
� � � � � �
������� � ���
The normal space of an implicit hypersurface has dimension one.
For an implicit hypersurface

	.
Z� ' ���P� , we can define its normal
cone � <
 � � ��� <
 ��� <
 ��� IR

�����
as the set of all possible normal

vectors � 	�
Z� ' � and their scalar multiples. Clearly, we have

� 	�

� ' �� E G 	�
G ��� � ' � � G 	�
G ��� � ' � ��������� G 	�
G ������� � ' �
H���
 � �
 " ����� �
 �%$ � ��� L �
 ���
 "�� � � � �
 �%$ � � � L "
 ���
 "�� � � � �
 �%$ � ���������
� L �%$ �
 ���
 "�� � � � �
 �%$ � &��
 ��� K � �
��������
 "�� K " �
����� ����� ��
 �%$ ��� K �%$ � �
��������� � (2)

where the terms � L�M
 ���
 "�� � � � �
 �%$ � denote the coefficients
of the partial derivative of

	.

with respect to

� N
, ele-

vated to a common degree. Then, � <
 � � ��� <
 ��� <
 �
can be derived by letting

� <

be the average of the vec-

tors ���0L �
 ���
 "�� � � � �
 �%$ � � �0L "
 ���
 "�� � � � �
 �%$ � ��������� � L �%$ �
 ���
 "�� � � � �
 �%$ � & ,[� � � � � ��������� � ����� , and � <
 be the maximum angle between� <

and these vectors.

Given � <
 , we can define its complementary cone �"!
 , which con-
tains all vectors that are orthogonal to vectors in � <
 :

� !
 � �$#C* IR
����� ��9O'$*%� <
 such that �Z' � # 	`�$�	�
� (3)

� !
 is also called the tangent cone [Sede88] and it contains all pos-
sible tangent directions of the implicit hypersurface

	0

� ' �,��� . �&!

is of dimension #$% � and can easily be derived from � <
 as follows
(see Figure 1):

� !
 � � ��� !
 ��� !
 �� � ��� <
 ��' � % � <
 ��� (4)

In other words, �"!
 and � <
 share the same axis, but have comple-
mentary angles.

Finally, let �&!
 � ' B �(� IR
�����

denote the translation of �"!
 by' B . Then we have ��')� 	�

� ' �+�(� �*� �&!
 � ' B � , [' B such that	�

� ' B �0�&� . (Based on the mean value theorem, we can provide
a rigorous proof that is similar to Sederberg and Meyers’ [Sede88];
but we omit the details here.)

We are now ready to state the main result of this section:

Theorem 1 Given # % � implicit hypersurfaces	�

� ' � �C� � � �F� ��������� #C% � , in IR
�����

, there is at

most one common solution if�����+
 ��� � !
 � ��, � �
where , is the origin of the coordinate system.

Proof: Assume that ' B0* IR
�����

is a common solution of the # % �
equations

	�
Z� ' �`��� � � �&� ��������� #2% � . Consider �&!
 � ' B � . From
the relation ��'�� 	�

� ' �`�$� ��� � !
 � '`B � , we have�����+
 ��� ��'�� 	�
Z� ' �,��� ���

�����+
 ��� � !
 � ' B �`� ��' B ���
Thus, there is no other common solution except ' B .

The fact that one can detect subdomains with at most one root
is of great importance. Under this condition, Algorithm 2.1 can be
terminated early, and we can significantly improve the performance
of our solver.

3 Examples of Geometric Constraint
Solving

This section considers a variety of constraint-solving problems that
are common in geometric modeling and computation. These prob-
lems can greatly benefit from the multivariate rational solver in-
troduced in the previous section. In particular, we present some
interesting results from classical geometry (Sections 3.1 and 3.2),
from modern computational geometry (Section 3.3), from geomet-
ric modeling (Section 3.4), and from accessibility analysis used to
support multi-axis NC machining (Section 3.5).

3.1 Ray-Traps or Bouncing Billiard-Balls

Consider � curve segments -
��
��� � � �(� ��������� �"% � , in the ��� -
plane.

Definition 1 Given a set of � planar curves, its ray-trap
of length � is a set of � points ���
 � -
��
��
Z��� such
that a ray bouncing from �
 toward � �
 ��
��/.�0,< will
be reflected toward � �
 ��
��/.�0`< .

We consider how to compute all ray-traps of length � for a given
configuration of � freeform curves. In the context of piecewise lin-
ear curves, this problem is quite well-known under various differ-
ent names. In particular, Tabachnikov [Taba95] discussed the entire
topic of bouncing billiard-balls, which includes the case of (the in-
side of) polygonal objects. For example, every triangle has one such
ray-trap path of length three (a billiard ball bouncing off every edge
once). This path is the pedal triangle that is formed out of the feet
of the three altitudes, a fact also pointed out by Wells [Well91].

We now consider the problem of ray-traps in the world of
freeform rational curves. The incoming ray from �
 ��� and the
outgoing ray toward �
 � should form an identical angle with the
normal of -
 at �
 . This angular equality can be written as

�1�
 ��� %*�
 ��2
3	���
 ��� %(�
 � � ���
 � %*�
 ��2
�	���
 � %(�
 � � (5)

or, in terms of the original curves, as follows:

�1-
 �����
��
 ����� %(-
��
��
Z� ��2

�
��
Z��	��-
 �����
��
 ����� %(-
��
��
Z� �� �1-
 ���
��
 ��� %(-
��
��
Z� ��2

�
��
Z��	��-
 ���
��
 ��� %(-
��
��
Z� � �
(6)

Solving Geometric Constraints Elber and Kim 5

(a) (b)

Figure 1: (a) The normal cone, � <
 (in gray) and (b) the complementary tangent cone, �
!
 (in gray) of a freeform surface.

Equation (6) is non-rational; however, its square is rational.
Now, let -

�
��
Z�"�/� �

�
��
Z� �0�

�
��

��� . Because the normal field2

�
��
Z� appears in both sides of Equation (6), it need not be nor-
malized, and may be formulated as:2

�
��
Z�`�P� % �

�
��
Z� �,�

�
��
Z�����

The � curves have � degrees of freedom, represented by the
��

parameters. The ray-trap problem imposes � rational constraints on
the � curves, each in the form of the square of Equation (6). Hence,
we have � degrees of freedom and � constraints, and the solution
set is finite. Nevertheless, the solution set of these squared rational
constraints may contain some extraneous solutions. For example, if
the incoming ray and the outgoing ray lie on the same line (but not
on each other’s reflected lines), they will satisfy Equation (6), since
it is squared. Therefore, once a finite solution set is computed, one
must examine and eliminate all extraneous solutions.

Figure 2 shows all ray-traps of length three among three circles.
This solution was computed in several seconds on a modern work-
station within a tolerance of

��� ���
.

3.2 Singular Skeleton Points in IR
�

Consider three curves - ���
��� , - �8���O� , -] ����� in the ��� -plane. We
consider how to compute all locations � on the plane from which
the distances to the three curves are the same. These locations are,
for example, topologically crucial to the formation of the skeleton
of the configuration discussed by de Berg et al. [deBerg98].

Point � must satisfy the following five rational constraints:

�1�$%(- ���
��� � �$%*- ���
����	 � �1��%(- �O���O� � �$%(- �O���O��	 � (7)

�1�$%(- ���
��� � �$%*- ���
����	 � �1��%(-] ����� � ��%(-] �����1	 �(8)�
��%(- ���
��� ��� - ���
���� �
	 � � � (9)�
�$%(- �O���O� ��� - �O���O�� � 	 � � � (10)�
��%(-] ����� � � -] ������ � 	 � �$� (11)

Equations (7) and (8) ensure that the point � is at an equal dis-
tance from the three curve points - ���
��� , - �8���O� , -] ����� . Equa-
tions (9)–(11) guarantee that the distance to the curves is indeed

Figure 2: Ray-traps of length three of bouncing bouncing among
three circles.

measured along the curves’ normals. This problem is also exactly
constrained, having five degrees of freedom, one parameter from
each curve and the other two as the coordinates of � �P� ����� � .

The first two constraints of distance equality (Equations (7)
and (8)) can be reduced to linear equations in � as follows:_ �1- �O���O� %*- ���
��� � � 	`� - �� ���O� %(- �� �
��� � (12)_ ��-] ����� %(- ���
��� � � 	`� - �] ����� %*- �� �
����� (13)

The point � can be obtained as a rational function of the three pa-
rameters

�
,
�
, and

�
, which we denote as � � � �
� � � � ���"�� � �
� � � � ��� ��� �
� � � � ����� .

Given three points in general position on the three curves,- ���
� B � , - �O��� B � , -] ��� B � , � provides the point in the plane that
is at an equal distance from them. That is, � is the center of the
circle passing through - ���
� B � , - �O��� B � , and -] ��� B � . Clearly, the
three radii are not normals to the curves: Equations (9)–(11) have

Solving Geometric Constraints Elber and Kim 6

Figure 3: The classical Apollonius problem of finding the circle
tangent to three given circles (in gray) is identical to the problem of
finding the singular points of the planar skeleton, and the solution
of the latter yields the eight circles in the solution set.

not been considered yet.
However, it is now possible to substitute � � � �
� � � � ��� , which

already satisfies Equations (7) and (8), into the orthogonality con-
straints of Equations (9)–(11), yielding three rational (orthogonal-
ity) constraints in

�
,
�
, and

�
as follows:�

� �
� � � � ��� %*- ���
��� ��� - ���
���� � 	 �$� � (14)�
� �
� � � � ��� %*- �O���O� � � - �O���O�� � 	 �$� � (15)�
� �
� � � � ��� %(-] ����� � � -] ������ � 	 ���$� (16)

We can solve the above system of three constraint equations using
the rational constraints solver introduced in Section 2. The resulting
solutions provide all locations in the plane that are at equal distance
from the three curves.

Figure 3 shows the eight solutions corresponding to all such sin-
gular points among three circles. These results are identical to the
solution of the classical Apollonius problem of finding a circle that
is tangent to given three circles. All eight solutions are computed
in a dozen seconds on a modern workstation within a tolerance of��� ���

.

3.3 Surface-Surface Bisectors

The bisector surface in IR] between two rational space curves, or
between a point and a rational surface is itself rational [Elbe98b,

Elbe99]. Nevertheless, in general the bisector surface between two
rational surfaces in IR] is not rational.

Let � ���
� � �O� and � �8��� ��� � be two regular rational surfaces in IR] .
The points � �-� ��������� � on the bisector surface of � � and � � must
satisfy the following constraints (see also [Elbe00]):

� � �
�T%�� ���
� � �O� � G � ���
� � �O�G � 	 � (17)

� � �
�T%�� ���
� � �O� � G � ���
� � �O�G � 	 � (18)

� � �
�T%�� �O��� ��� � � G � �O��� ��� �G � 	 � (19)

� � �
�T%�� �O��� ��� � � G � �O��� ��� �G � 	 � (20)� � ���T%�� ���
� � �O� � �T%�� ���
� � �O��	 %

���T%�� �8��� ��� � � �T%�� �O��� ��� ��	 � (21)

Equations (17)–(20) mean that the distance is measured along the
orthogonal lines at the bisector’s foot points. Equation (21) guar-
antees that the distances to � � and � � are the same. The problem
is formulated using seven variables

�
,
�
,
�
, � , ��������� , and five con-

straints. Hence, the solution space forms a bivariate surface.
Let � ���
� � �O�`� I 	 � � L �

I�L � I 	 � � L �

I
 be the unnormalized normal

field of � ���
� � �O� . Then, if the solution to the bisector surface is of
the form � � � ���
� � �O��U � � ���
� � �O� , (� is a real-valued function),
Equations (17) and (18) are automatically satisfied. By substituting
this proposed bisector surface point into Equation (21), we have,� � � � � ���
� � �O� ��� � ���
� � �O��	% ��� ���
� � �O��U � � ���
� � �O� %�� �O��� ��� �

� ���
� � �O��U � � ���
� � �O� %�� �O��� ��� ��	 �
or equivalently,

� �
� � � � � ��� �`� ��� ���
� � �O� %�� �O��� ��� � � � ���
� � �O� %�� �O��� ��� �1	% _ �
� ���
� � �O� � � ���
� � �O� %�� �O��� ��� ��	 �
(22)

Finally, we substitute � �
� � � � � ��� � into � � � ���
� � �O��U � � ���
� � �O� ,
and update Equations (19) and (20) with this new representation of
� . Let

 �
� � � � � ��� � be defined as follows
 �
� � � � � ��� �� % _ � � ���
� � �O� %�� �O��� ��� ��� �
� ���
� � �O� � � ���
� � �O� %�� �O��� ��� ��	U � ���
� � �O� ��� ���
� � �O� %�� �8��� ��� � � � ���
� � �O� %�� �8��� ��� ��	 �
Then, Equations (19)–(20) are reduced to

�^� �
 �
� � � � � ��� � � G � �O��� ��� �G � 	 � (23)

�^� �
 �
� � � � � ��� � � G � ����� ��� �G � 	 � (24)

The common zero-set of Equations (23) and (24) satisfies all five
constraints of Equations (17)–(21). Therefore, we have reduced the
surface-surface bisector problem of IR] into the problem of find-
ing the common zero-set of the two four-variate functions of Equa-
tions (23) and (24).

Figure 4 shows a surface that bisects a plane and a biquadratic
surface. The points on this bisector surface were computed from
the zero-set of Equations (23) and (24). This is an underconstrained

Solving Geometric Constraints Elber and Kim 7

Figure 4: The bisector surface (in gray) between a plane and a
quadratic surface. The points on the bisector were derived by a
simultaneous solution of Equations (23) and (24).

problem, and so we can fit a bivariate surface to discrete points sam-
pled on the bivariate solution space, which is the bisector. Either the
parameterization of � ���
� � �O� or that of � �O�
� � �O� can be employed to
define the parameterization of the sampled points. See the authors’
previous paper [Elbe00] for more details, including a discussion of
curve-surface bisectors in IR] .
3.4 Boundary Determination of Trivariate Solids

Consider a freeform surface � �
� � �O� swept through an affine trans-
formation so as to generate a trivariate function � S IR]�� IR] ,
which may be written:

� �
� � � ��� �,���^� � ��� � �
� � �O����U - � � � �
where

�^� � �,�P��	�
 NO� � ���]�
8] represents a linear transformation (e.g. a
rotation or shearing) and - � � � �/��� >�� � � � ��
8� � � � ���8� � ��� denotes a
translation of the coordinate system.

The extraction of the boundary of the sweep is an important
problem in geometric modeling and computation with many inter-
esting applications, for example, in computing the swept volume of
an NC cutter path in 3- or 5-axis machining.

Assuming
	 ! � !�� , the boundary surface of the swept

volume consists of the surface patches of � �
� � � � 	�� , � �
� � � � � � ,
and the envelope surface, which is the set of points � �
� � � ��� � �� � >��
� � � ��� � � �
O�
� � � ��� � � � �8�
� � � ��� ��� that satisfies the following
condition [Abdel97, Joy99, Martin90]:

��������

I�� �I�L I��
�
I
 I�� �I��I����I�L I����I
 I����I��I����I�L I����I
 I����I��

��������

���$�
That is, the Jacobian of � �
� � � � � � must vanish on the envelope sur-
face.

Having a single constraint and three degrees of freedom, the so-
lution space has a dimension of two. Figure 5 shows the envelope
surface for a scaled ellipsoid moving along a linear and a circular

trajectory. Here, the solution is approximated using an approach
similar to the Marching Cubes scheme [Lore87]. Both solutions in
Figures 5(a) and 5(b) were computed in few seconds on a modern
workstation.

3.5 Accessibility in 5-Axis Machining

Consider a surface � �
� � �O� , and let � �
� � �O� be the specification of
an orientation vector field which will allow an NC machine tool to
cut the surface � �
� � �O� in a 5-axis configuration. In other words, at
� �
� B � � B � the cutter must be positioned so that its axis is parallel
to � �
� B � � B � . For example, if the cutter is to be aligned with the
surface normal, then � �
� � �O�0� � �
� � �O� , where � �
� � �O�^� I 	I�L �I 	I
 .

Let � ��� ��� � be a check surface above � �
� � �O� . We consider how
to compute the regions of � �
� � �O� where one can machine the sur-
face � from the direction � without gouging into the check surface
� [Elbe98a]. By offsetting � by the radius of the cutter, we can
transform the cutter into a line and the check surface � ��� ��� � into
an offset surface �

. ��� ��� � . Hence, we must compute all solutions�
� B � � B � for which a ray from � �
� B � � B � in the direction � �
� B � � B �
is tangent to �

. ��� ��� � .
Assume that the direction vector � �
� � �O� is not parallel to the

tangent plane of � �
� � �O� . Then, � �
� � �O� � I 	 � L �

I�L ����
and we can

define

� ���
� � �O� � � �
� � �O� � G � �
� � �O�G � �
� �8�
� � �O� � � �
� � �O� � � ���
� � �O� � (25)

as two vector fields that span the plane orthogonal to � �
� � �O� in
IR] . If � �
� � �O�+� � �
� � �O� , then we can simply choose � ���
� � �O�
and � �8�
� � �O� to be the partial derivatives of � , namely I 	I�L and I 	I
 .

The necessary and sufficient conditions for isolating the bound-
ary of the accessible regions of � �
� � �O� in the direction � �
� � �O�
while tangent to � ��� ��� � can be formulated as follows [Elbe98a]:� � ��� ���
� � �O� � � �
� � �O� %�� . ��� ��� ��	 � (26)� � ��� �8�
� � �O� � � �
� � �O� %�� . ��� ��� ��	 � (27)� � �
��� ��� ��� � � � �
� � �O� %�� . ��� ��� ��	 � (28)

where ��� is the normal field of surface � (and also that of �
.
).

Equations (26) and (27) guarantee that � �
� � �O� %�� ��� ��� � is in the
direction of � �
� � �O� . Equation (28) means that the axis of the cutter
(in the direction of � �
� � �O�) is also orthogonal to the normal field of
� , namely ��� ; equivalently, the axis of the cutter is indeed tangent
to the offset surface �

.
.

In the case of � �
� � �O�;� � �
� � �O� , we can use the partial deriva-
tives of � �
� � �O� instead of � ���
� � �O� and � �O�
� � �O� . Thus we have

� � � G � �
� � �O�G � � � �
� � �O� %�� . ��� ��� � 	 �� � � G � �
� � �O�G � � � �
� � �O� %�� . ��� ��� � 	 �� � �
��� ��� ��� � � � �
� � �O� %�� . ��� ��� ��	 �
Figure 6 shows regions where Equations (26)–(28) are simul-

taneously satisfied in the case of a cuboid component to be ac-
cessed and a spherical check surface. There are four degrees of
freedom and three rational constraints, and thus we get a univariate
solution manifold. In Figure 6, these univariate curves are shown
as the boundary curves of the accessible region. In a recent pa-
per [Elbe98a], the authors presented an example similar to, but

Solving Geometric Constraints Elber and Kim 8

�����

�����

Figure 5: The envelope of a scaled ellipsoid along (a) a linear and (b) a circular trajectory.

somewhat simpler than, that of Figure 6. This previous example
required a couple of hours of computation time, whereas the new
example shown in Figure 6 took about a minute and a half on a
modern workstation. Even if we allow a speed-up of three or four
times in computation over the last few years, our new approach
provides an improvement that is significantly more than an order of
magnitude.

In Figure 7, additional inequality constraints are introduced. Ac-
cess to the surface is limited to a hemisphere of directions centered
along a prescribed vector.

4 Conclusions

In this paper, we have presented a scheme that can robustly solve
a set of multivariate rational constraints. The effectiveness of this
approach has also been demonstrated through practical examples
and we believe that our method has considerable potential as a basic
component in geometric modeling systems. Nevertheless, there is
also plenty of room for further improvement. In particular, when
dealing with geometric problems in higher dimensions, we need
to improve the computational efficiency with which the zero-set is
found.

Feasible computation of simultaneous solutions of sets of non-
linear constraints has largely been restricted to lower-dimensional
cases—where it has been attempted at all. Here, as the number of
constraints, � , increases, the complexity of the solution rises ex-
ponentially with � . Problems with four or five constraints could
be practically solved in minutes, but clearly it would be difficult to

scale up the method to larger size and higher dimension. We foresee
two ways of attacking this scalability problem:
� Decompose a problem of size � into smaller subproblems.

Such a decomposition is feasible if one can detect indepen-
dence among different constraints. An example could be
found in the singular skeleton example of Section 3.2, where
the first two equations were solved independently of the last
three equations.

� Reduce a constraint space into a lower-dimensional uncon-
strained space. In some cases, we may start with certain par-
tial solutions that satisfy

	.

� ' �`�$� , for some values of � . An
example of such a case can be found in the surface-surface
bisector of Section 3.3. In this example, we employed an ini-
tial solution of � � � ���
� � �O�`U � � ���
� � �O� , which automat-
ically satisfies the first two equations, and greatly simplified
the overall computation.

5 Acknowledgment

The authors are grateful to Tony Woo who introduced them the
problem of ray-traps.

References

[Abdel97] K. Abdel-Malek and H.-J. Yeh. Geometric repre-
sentation of the swept volume using Jacobian rank-

Solving Geometric Constraints Elber and Kim 9

Figure 6: A cuboid surface and a spherical check surface (in gray). The cuboid surface is trimmed using the locus of points that simultaneously
satisfy Equations (26)–(28). These 26 trimmed regions are the locations where the normals of the cuboid surface are tangent to the spherical
check surface.

(a) (b)

Figure 7: An inequality constraint is added to the accessibility constraints of the configuration in Figure 6. In (a), the access is limited to
direction �

�
such that W �

� � ��� � � � �O� X ? � whereas in (b), the access is limited to direction �
�

such that W �
� � ��� � � � ��� X ? � .

Solving Geometric Constraints Elber and Kim 10

deficiency conditions. Computer-Aided Design, Vol 29,
pp 457–468, 1997.

[deBerg98] M. de Berg, M. van Kreveld, M. Overmars and
O. Schwarzkopf. Computational Geometry, Algorithms
and Applications. Springer, New York, Second Edition,
1998.

[Elbe98a] G. Elber and E. Cohen. A unified approach to
verification in 5-axis freeform milling environments.
Computer-Aided Design, Vol 31, No 13, pp 795–804,
November 1999.

[Elbe98b] G. Elber and M.-S. Kim. The bisector surface of
freeform rational space curves. ACM Transactions on
Graphics, Vol 17, No 1, pp 32–50, January 1998.

[Elbe99] G. Elber and M.-S. Kim. Computing rational bisec-
tors. IEEE Computer Graphics & Applications, Vol 19,
No 6, pp 76–81, November-December 1999.

[Elbe00] G. Elber and M.-S. Kim. A computational model
for nonrational bisector surfaces: curve-surface and
surface-surfacebisectors. Proc. of Geometric Modeling
and Processing 2000, Hong Kong, pp 364–372, April
10-12, 2000.

[Faux85] I. D. Faux and M. J. Pratt. Computational Geometry
for Design and Manufacture. Halsted Press, New York,
1985.

[Farouki88] R. Farouki and V. Rajan. On the numerical condition
of polynomials in Bernstein form. Computer Aided Ge-
ometric Design, Vol 4, No 3, pp 191–216, 1987.

[Golu96] G. H. Golub and C. F. Van Loan. Matrix Computa-
tion. The Johns Hopkins University Press, Baltimore
and London, Third Edition, 1996.

[Heo99] H.-S. Heo, M.-S. Kim, and G. Elber. The intersection
of two ruled surfaces. Computer-Aided Design, Vol 31,
No 1, pp 33–50, January 1999.

[Kim00] M.-S. Kim and G. Elber. Problem reduction to param-
eter space. The Mathematics of Surfaces IX, R. Cipolla
and R. Martin (Eds), Springer, London, 2000, pp 82–
98.

[Irit00] IRIT 8.0 User’s Manual, September 2000, Technion.
www.cs.technion.ac.il/ � irit.

[Joy99] K. Joy and M. Duchaineau. Boundary determination
for trivariate solid. Proc. of Pacific Graphics 99, Seoul,
Korea, October 5–7 1999, pp 82–91.

[Lane81] J. Lane and R. Riesenfeld. Bounds on a polynomial.
BIT, Vol 21, pp 112–117, 1981.

[Lore87] W.E. Lorensen and H.E. Cline. Marching Cubes:
a high resolution 3D surface construction algorithm.
Computer Graphics, Vol 21, No 4 (Proc. ACM Sig-
graph 87), pp 163–169, July 1987.

[Luen84] D. G. Luenberger. Linear and Nonlinear Program-
ming. Second Edition, Addison-Wesley, Menlo Park,
California, 1984.

[Martin90] R. Martin and P. Stephenson. Sweeping of three-
dimensional objects. Computer-Aided Design, Vol 22,
pp 223–234, 1990.

[Nish90] T. Nishita, T. W. Sederberg and M. Kakimoto. Ray
tracing trimmed rational surface patches. Computer
Graphics, Vol 24, No 4 (Proc. ACM Siggraph 90),
pp 337–345, August 1990.

[Taba95] S. Tabachnikov. Billiards. Paris: Societe Mathema-
tique de France, 1995.

[Sede88] T. W. Sederberg and R. J. Meyers. Loop detection in
surface patch intersections. Computer Aided Geomet-
ric Design, Vol 5, No 2, pp 161–171, 1988.

[Sede96] T. W. Sederberg and A. K. Zundel. Pyramids that
bound purface patches. Graphical Models and Image
Processing, Vol 58, No 1, pp 75–81, 1996.

[Sher93] E. C. Sherbrooke and N. M. Patrikalakis. Computation
of the solutions of nonlinear polynomial systems. Com-
puter Aided Geometric Design, Vol 10, No 5, pp 379–
405, October 1993.

[Well91] D. Wells. The Penguin Dictionary of Curious and In-
teresting Geometry Penguin Books, New York, 1991.

