
Contouring 1- and 2-Manifolds
in Arbitrary Dimensions

Joon-Kyung Seong
School of Computer Science

Seoul National University, Korea
swallow@3map.snu.ac.kr

Gershon Elber
Computer Science Dept.

Technion, Israel
gershon@cs.technion.ac.il

Myung-Soo Kim
School of Computer Science

SNU, Korea
mskim@cse.snu.ac.kr

Abstract

We propose an algorithm for contouringk-manifolds
(k = 1, 2) embedded in an arbitraryn-dimensional space.
We assume (n−k) geometric constraints are represented as
polynomial equations inn variables. The common zero-set
of these (n−k) equations is computed as a1- or 2-manifold,
respectively, fork = 1 or k = 2. In the case of1-manifolds,
this framework is a generalization of techniques for con-
touring regular intersection curves between two implicitly-
defined surfaces of the formF (x, y, z) = G(x, y, z) = 0.
Moreover, in the case of2-manifolds, the algorithm is sim-
ilar to techniques for contouring iso-surfaces of the form
F (x, y, z) = 0, wheren = 3 and only one (= 3 − 2) con-
straint is provided. By extending the Dual Contouring tech-
nique to higher dimensions, we approximate the simultane-
ous zero-set as a piecewise linear1- or 2-manifold. There
are numerous applications for this technique in data visu-
alization and modeling, including the processing of various
geometric constraints for freeform objects, and the compu-
tation of convex hulls, bisectors, blendings and sweeps.

1. Introduction

Given a scalar fieldF (x, y, z) in a three-dimensional
space, the problem of constructing its iso-surfaces
F (x, y, z) = c has important applications in implicit sur-
face modeling as well as in volume visualization. The
Marching Cubes [15] algorithm and Dual Contouring tech-
niques [6, 11] have been used quite successfully in solving
this problem.

An iso-surface is essentially the zero-set of one equa-
tion in three variables. In computational science and engi-
neering, we often encounter a situation where one needs to
solve a set ofm polynomial equations inn variables:

Fi(x1, x2, · · · , xn) = 0, i = 1, · · · ,m.
Although solving a simultaneous system of equations is a
familiar problem, no sufficiently robust and efficient algo-

rithm has yet been developed for equations of a general
type.

For the special case wherem = 2 andn = 3, the prob-
lem is reduced to that of intersecting two implicit surfaces:

F1(x, y, z) = F2(x, y, z) = 0.

Computing a surface-surface intersection (SSI) is known to
be one of the most challenging problems in geometric com-
putation, especially when the two surfaces are both either
parametric or implicit [9]. Because of the difficulty in deal-
ing with the general situation, grid-based techniques such
as Marching Cubes or Dual Contouring are a reasonable ap-
proach to approximating the zero-set. The precision of the
solution is, however, limited by the grid size employed in
the computation.

In this paper, we consider the following more general
problem:

Fi(x1, x2, · · · , xn) = 0, i = 1, · · · , n− k, k = 1, 2,

where the zero-set of thesen − k simultaneous equations
generates a 1- or 2-manifold, respectively, fork = 1 or k =
2 in ann-dimensional space.

Each cubic cell in a three-dimensional grid (a3-cube)
has six face-adjacent neighborhoods. Dual Contouring tech-
niques utilize this connectivity. In the case of ann-cube (a
hyper-cube inn-dimensions), there are2n adjacent cells,
each of which shares an(n−1)-cube with the givenn-cube.
Although this may look quite complicated, the situation is
surprisingly similar to the three-dimensional case.

The key observation in this paper is that ann-cubic cell
containing a 1-manifold has only two neighborhood cells
connected on the 1-manifold, except for some degenerate
cases. Based on this simple observation, we can extend the
Dual Contouring approach from three dimensions to arbi-
traryn-dimensional spaces. A similar argument can be ap-
plied to a 2-manifold. Ann-cubic cell on a 2-manifold has
four such neighborhood cells.

A naive extension of the Dual Contouring method, how-
ever, finds difficulty in handling degenerate cases, which



occur where the 1- or 2-manifold solution manifold passes
through vertices, edges, or(n − k)-cells, for somek > 1.
Since the Dual Contouring method is based on the con-
nectivity between face-adjacent solution points, we need to
devise a new scheme for handling degenerate cases. The
problem becomes even worse if one examines higher di-
mensional spaces given that there is a significantly higher
chance of getting degeneracies. In this paper, we propose a
tangent space-based scheme to resolve the degenerate cases.
Using the tangent space, we can locally approximate the so-
lution manifold. We first pre-classify all the abnormal solu-
tion cells degeneracies have a likelihood of occuring. The
tangent space at these cells gives the correct information for
a connection.

The presented algorithm is also based on a general ap-
proach for constructing the solution manifold. Elber and
Kim [5] approximated the solution set by fitting a 1- or 2-
manifold to a set of discrete points. Thus, the parameteriza-
tion of the solution manifold usually depends on the origi-
nal curve or surface in [5]. One needs to devise a problem-
specific way to parameterize the solution manifold if one
tries to fit the solution set using a set of discrete points. Bi-
sector surfaces, for instance, are fitted following the param-
eterization of one of the given freeform surfaces [4]. An ex-
treme case may require special treatment in the construction
of the solution manifold. In this paper, we devise a general
algorithm for contouring a 1- or 2-manifold that is indepen-
dent of both the specific problem and the particular case.

One may wonder whether this problem might also be
solved using a Marchingn-Cubes approach. In the case of
high dimensional spaces, the Marching Cubes approach be-
comes more complicated than Dual Contouring. Consider
the case of a 2-manifold contouring. Note that there are2n

vertices in ann-cube. Moreover, each vertex hasn edges
and each edge is shared by two vertices; thus, we also
haven2n−1 edges in ann-cube. In addition to that, we
have to deal with(n − 2) scalar fieldsFi(x1, · · · , xn), for
i = 1, · · · , n − 2. It is more difficult to extend the March-
ing Cubes approach to an arbitrary dimension because of its
exponential complexity growth. This also holds for a simi-
lar piecewise linear method in the area of numerical contin-
uation methods [1, 2].

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review previous results. In Section 3
we discuss five illustrative examples where each geomet-
ric constraint problem can be reduced to that of solving a
system of non-linear equations. In Section 4, we present the
Dual Contouring technique that generates the contouring of
a 1- or 2-manifold in ann-dimensional space. Experimen-
tal results are shown in Section 5. Finally, in Section 6, we
conclude.

2. Related Previous Work

The Marching Cubes algorithm [15] generates discrete
points on the iso-surface (i.e., where the edges of each cube
intersect the surface). The Extended Marching Cubes algo-
rithm [13] adds some additional cell-interior points that cap-
ture sharp features of the iso-surface. As already mentioned,
these methods are not applicable to higher-dimensional
spaces: as the number of dimensionsn increases, the num-
ber of vertices and edges of ann-cube increases exponen-
tially and the Marching Cubes approach becomes very com-
plex.

Dual Contouring methods [6, 11] are based on the con-
nectivity of adjacent cubes through common faces. The ‘du-
ality’ of this approach to Marching Cubes was originally ob-
served in the duality of their triangulations of an iso-surface.
In ann-dimensional setting, we can also observe a different
type of duality: as the number of constraints increases, the
dimension of the constraint manifold decreases. The March-
ing Cubes method deals with the constraints, whereas the
Dual Contouring method considers the constraint manifold
itself. Since we are considering low-dimensional manifolds,
the Dual Contouring approach is more appropriate for our
problem. The Marching Cubes approach might, however,
be useful in applications involving a small number of con-
straints, where each constraint is defined by a large number
of variables.

Lane and Riesenfeld [14] proposed a subdivision-based
approach for the computation of roots of univariate polyno-
mial functions, using the Bernstein-Bézier basis function.
Nishita et al. [17] introduced a B́ezier clipping technique
that can very efficiently compute the common roots of two
bivariate B́ezier functions. Looking at higher dimensions,
Sherbrooke and Patrikalakis [21] presented an approach to
solving a set of multivariate polynomial equations given
in Bernstein-B́ezier form. These techniques can be applied
where the number of equations is the same as the number of
variables (i.e., when the solution sets are discrete).

Sederberg and his colleagues [19, 20] introduced the
concept of a normal cone and a surface bounding cone,
which can guarantee that the intersection curve of two sur-
faces has only a single branch. By interpreting the zero-set
computation as the search for an intersection between mul-
tivariate implicit hyper-surfaces, Elber and Kim [5] adapted
these tools to higher dimensions.

Hyper-surface bounding cones guarantee that the im-
plicit hyper-surfaces intersect each other transversally in the
domain and thus ensure that each domain contains only one
connected component of the solution set. Once this condi-
tion is met, a simple subdivision scheme provides an effi-
cient way to generate a dense distribution of discrete points
across the solution set. Elber and Kim [5] approximated
the solution set by fitting a hyper-curve or hyper-surface to



these points. In this paper, we consider a complete solution
where we connect the solution points in a correct topology.
This connectivity information is useful in progressively im-
proving the precision of the solution by local refinements
(i.e., without repeating the global curve or surface fitting).

3. Solving Geometric Constraints

A large variety of geometric problems can be reduced to
the solution of a system of multivariate polynomial equa-
tions. Kim and Elber [12] surveyed the general paradigm of
reducing geometric constraints to a set of non-linear equa-
tions. In this section, we present a few examples to illustrate
our motivation for this work.

3.1. Computing Convex Hulls

Given a concave freeform surface or a set of freeform sur-
faces, we consider the problem of computing their convex
hulls. A pointS(u, v) on a rational surface is contained in
the boundary of the convex hull if and only if the surface
S is completely contained on one side of the tangent plane
T (u, v). Thus, by computing bi-tangent planes of the given
surfaces, we can determine developable surfaces that con-
tribute to the boundary of the convex hull [22]. Computing
a bi-tangent plane can be resolved by solving the follow-
ing three equations in four variablesu, v, s, t:

F (u, v, s, t) = 〈S(u, v)− S(s, t), N(u, v)〉 = 0, (1)
G(u, v, s, t) = Fs(u, v, s, t) = 0, (2)
H(u, v, s, t) = Ft(u, v, s, t) = 0, (3)

whereFs andFt represent thes- andt-partial derivates of
F (u, v, s, t), respectively. Having three polynomial equa-
tions in four variables, we get a 1-manifold as the common
zero-set. Two examples of computing bi-tangent planes are
shown in Figure 6.

3.2. Computing Perspective Silhouettes of a Gen-
eral Swept Volume

Consider the silhouette curves of a general swept volume.
LetO be a three-dimensional object bounded by a freeform
surfaceS(u, v), and letA(t) denote an affine transforma-
tion represented by a4×4 matrix. Each instance of the mov-
ing objectOt under the affine transformationA(t) touches
the envelope surface of the swept volume along a charac-
teristic curveKt, the curveK at time t. The characteris-
tic curveK is a curve that contributes to the envelope sur-
face. Moreover, the same instance of the moving object has
its silhouette curve,St, from a viewing position~P , on the
boundary of the moving object. The intersectionKt ∩ St
contributes to the silhouette of the general swept volume.

We formulate the problem as the following system of two
polynomial equations in three variables [23][16]:

F (u, v, t)

=
∣∣∣∣A′(t)[S(u, v)] A(t)

[
∂S

∂u
(u, v)

]
A(t)

[
∂S

∂v
(u, v)

]∣∣∣∣
= 0, (4)

G(u, v, t)

=
〈
A(t)[S(u, v)]− ~P ,A(t)[N(u, v)]

〉
= 0. (5)

Having two polynomial equations in three variables, the
common zero-set generates 1-manifolds. Figure 7 shows
two examples of computing the silhouette curves of a gen-
eral swept volume.

3.3. Computing Bisectors

Consider the bisector surface of two rational surfaces
S1(u, v) and S2(s, t). Each point (x, y, z) on the bi-
sector surface is at an equal (orthogonal) distance from
S1(u, v) andS2(s, t); Elber and Kim [4] reduced the prob-
lem of computing the bisector surface into that of solving
two polynomial equations in four variables:

F1(u, v, s, t) = 0,
F2(u, v, s, t) = 0. (6)

Figure 1 shows an example of a bisector surface between
two freeform surfaces. Elber and Kim [4] approximated the
solution set by fitting a hyper-surface to a set of discrete so-
lution points. However, near the self-intersecting region, the
fitted surface is not sufficiently accurate. Figure 8 shows ex-
amples of surface-surface bisectors that are generated by ap-
plying the contouring algorithm presented in this paper.

3.4. General Sweep Computation

The swept volume of a three-dimensional objectO un-
der an affine transformationA(t) is given by∪tA(t)[O].
Assuming a ≤ t ≤ b, the boundary surface of the
swept volume consists of some patches ofA(a)[S(u, v)]
and A(b)[S(u, v)], together with the envelope surface,
which is the set of pointsA(t)[S(u, v)] that satisfy Equa-
tion (4). Figures 9 shows two examples of a general
sweep. Joy and Duchaineau [10] computed the bound-
ary of a swept volume using a Marching Cube algorithm in
xyz-space. The envelope surface is usually more compli-
cated inxyz-space than its counterpart in theuvt-space;
thus it is much easier to deal with the problem in the pa-
rameter space.

3.5. Blending of Two Freeform Surfaces

Given two freeform surfacesS1(u, v) andS2(s, t), we
consider the construction of a smooth blending surface be-



Figure 1. Bisectors between two freeform sur-
faces. The bisector surface is approximated
by fitting a surface to a set of discrete so-
lution points, the result of solving a set of
Equations (6). Thus, the bisector is not suffi-
ciently accurate near the self-intersecting re-
gions. Compare this result with Figure 8(b).

tween the two surfaces. The potential method of Hoffmann
and Hopcroft [8] computes a smooth blending surface be-
tween two implicit surfaces. We apply a similar technique
to the blending of two parametric surfaces, where a blend-
ing surface is determined by the following system of four
equations in six variables,u, v, s, t, α1, andα2:

S1(u, v) + α1N1(u, v) = S2(s, t) + α2N2(s, t), (7)
α2

1 + α2
2 + 1− 2α1 − 2α2 = 0, (8)

whereNi is the normal of a surfaceSi, for i = 1, 2, and
Equation (7) represents three scalar constraints. Having4
constraints, the resulting zero-set generates a 2-manifold in
a 6-dimensional space. Figure 10 shows two examples of
constructing a smooth blending surfaces.

4. Contouring Methods

Given a set of multivariate polynomial or rational equa-
tions represented as B-spline functions, Elber and Kim [5]
isolated then-cubic cells that contain the zero-set of these
equations by recursively subdividing the B-spline functions,
in all dimensions. The subdivision process continues until
reaching a given maximum depth of subdivision. At the end
of this subdivision step, we bound a 1- or 2-manifold us-
ing a set ofn-cubic grid cells of the same size. Figure 2
shows one simple example of the result of this subdivision
stage, where the solution space is a 2-manifold.

The centroid of eachn-cubic grid cell that results
from the subdivision stage is projected onto the 1- or
2-dimensional solution manifold using a numeric step,

Figure 2. The result of the subdivision stage
of the solver is a set of n-cubes that inter-
sects the 2-manifold solution set.

where the Newton-Raphson is applied inn-dimensional
space. The projected points are laid on the 1-manifold so-
lution curve or on the 2-manifold solution surface with
high precision. After the projection, the points are con-
nected to other solution points in adjacent cells. In this
section, we present a new algorithm for connecting the so-
lution points in the 1- and 2-manifolds. Note that a
discrete solution point only has a list of face-adjacent so-
lution points. Basically, we extend the Dual Contouring
method from three dimensions to arbitraryn-dimensional
spaces.

4.1. 1-Manifold Solution

If a solution cell has only two face-adjacent cells, it
is straightforward to connect the solution points to form
a union of1-manifold polylines. However, there are also
cases where the original 1-manifold solution curve nearly
passes through vertices, edges, or (n − k)-cells, for some
k > 1. Figure 3 shows an analogy of this situation in the
2-dimensional case. In Figure 3(b), the solution pointsp
andq can be connected through an adjacent cell, eitherr
or s. We call these cubesr ands abnormalsince their pro-
jected solution points lie outside the cube. This degenerate
case occurs since the B-spline subdivision maintains the set
of valid n-cubic domains conservatively. In this case, the
solution pointsp andq have more than two face-adjacent
cells. Thus, the union of the remainingn-cubic cells may
generate a thick volume surrounding the 1-manifold solu-
tion set. We need to eliminate some redundant cells so that
the solution set can be properly represented as a union of
1-manifold polylines.

The problem becomes more difficult when we con-
sider higher dimensional spaces since the extra di-



(a) (b)

Figure 3. (a) The zero-set typically passes
through the faces of cubic cells; but (b) it can
also pass through a vertex to produce two re-
dundant solutions r and s.

mension introduces a higher probability of yielding
degeneracies. Figure 4 compares the problem of trac-
ing a curve in 2-dimensional and 3-dimensional grids.
In the case of Figure 4(a), two solution cells are con-
nected through one face-adjacentabnormalcell. However,
in the 3-dimensional case, a pair of face-adjacentabnor-
mal cells connects two solution cells (see Figure 4(b)).
It is thus much more difficult to deal with the degener-
ate cases in higher dimensions than in lower dimensions. In
Section 5, we compare the probability of getting degenera-
cies according to the dimensionality of the problem. Since
we are considering a 1-manifold solution in arbitrary di-
mensions, we need to devise an algorithm for handling
these complex degeneracies.

To resolve the degenerate cases, we apply differ-
ent schemes ton-cubic solution cells depending on their
classification. We classify a cube as anormal one if a nu-
merically improved solution point lies inside the cube.
Otherwise, we treat a cube as anabnormal one. In Fig-
ure 3(b), two solution pointsp andq arenormalcubes, and
r ands are classified asabnormalones. When anormalcu-
bic cell has a face-adjacentnormalcube, we connect them
by an edge.

When we finish contouring along face-adjacentnormal
cubes, we may end up with 1-manifold polylines with dan-
gling normal cubes at their ends, each with only one face-
adjacent normal cube. Two such nearby polylines are con-
nected through a cluster ofabnormalcells, which forms
a thick volume connecting the two polylines. Recall that
abnormal cubic solution cells are produced when the1-
manifold solution curve passes through vertices, edges, or
(n − k)-cells, for somek > 1. The abnormalcubes are

(a) (b)

Figure 4. The connecting problem becomes
considerably more complex as one examines
higher dimensions.

redundant solutions. We need to eliminate most of them,
while using the cluster information to connect two nearby
polylines smoothly. For this purpose, we construct a tan-
gent line to the1-manifold solution curve inRn at eachab-
normalsolution point. Then, we take an average of the tan-
gent lines and locally approximate the solution manifold.
We then parameterize the danglingnormal solution points
using the tangent line to connect them.

In Figure 4(b), we have a cluster of sixabnormalsolu-
tion cells near thenormalsolutionse andd. These two so-
lution pointse andd are dangling after we finish contour-
ing along face-adjacentnormalcubes. We compute the cen-
troid of six abnormalsolution points and project it into the
1-manifold curve to get an optimal solution point. We then
compute a tangent line at the solution point to connect two
danglingnormalsolutions through the intermediate solution
point (See Figure 5). In summary, a cluster ofabnormalso-
lution cells gives topological information on how to connect
the danglingnormalsolution points and make a bridge be-
tween the two danglingnormalsolutions. In the case of 1-
manifolds, the connection for two dangling solution points
is trivial. Furthermore, a similar approach using an appro-
priate tangent space works for 2-manifolds or higher dimen-
sional manifolds.

The tangent line to the 1-manifold solution curve inRn
is spanned by a single vector denotedv1. This vector should
be orthogonal to the normal space of the 1-manifold solu-
tion set. This normal space is spanned by the gradients of
all the constraints,

G = {∇Fi(u) | i = 1, · · · , n− 1},
whereu = (x1, · · · , xn) is a point projected onto the 1-
manifold. Let{ϕi | i = 1, · · · ,m}, (m ≤ n − 1), denote a
set of linearly independent unit vectors generated from the
setG by applying the Gram-Schmidt orthogonalization pro-
cess [7]. Now, from a standard basis{ei} of Rn, we con-



struct a set of vectors

ēi = ei − ei(ϕT1 ϕ1 + · · ·+ ϕTmϕm), i = 1, · · · , n,
each of which is the projection ofei to the space orthogo-
nal toG. We select(n −m) independent vectors̄ei of the
largest magnitude asv1, · · · , vn−m, which span the space
orthogonal toG. In contouring a 1-manifold solution, we
select a single vector̄ei of the largest magnitude and de-
note it asv1. The overall procedure is summarized inAlgo-
rithm1 .

(a) (b)

Figure 5. (a) Abnormal solution cells make
a cluster near the dangling normal solution
cell. (b) A tangent line provides connection
information for two dangling solution points.

4.2. 2-Manifold Solution

The algorithm for contouring a 1-manifold solution can
easily be extended to the tessellation of a 2-manifold in ar-
bitrary dimensions. If a solution cell has only four adjacent
cells, the connection of solution cells into a2-manifold is
straightforward. When anormal cubic cell has four face-
adjacentnormalcubes, we construct four triangles by con-
necting them. We do not take into accountabnormalcubes
when we are dealing with thenormalcube. Then, similarly
to Section 4.1, we get polygons with danglingnormalcubes
at their ends, which have less than four face-adjacentnor-
mal cubes. These danglingnormal cubes must have a set
of face-adjacentabnormalcubes. A cluster of theabnor-
malsolution cells will fill the gap between two disconnected
polygons in a similar way to the cluster ofabnormalcubes
as discussed in Section 4.1.

In the contouring of a 2-manifold surface, we construct
a tangent plane to the2-manifold inRn and locally approx-
imate the solution set. Using the tangent plane we connect
a set of danglingnormalcubes with a triangular mesh that
fills the gap in-between them. That is, we reduce the prob-
lem of tessellating the 2-manifold inRn to that of triangu-
lating on a hyper-plane in the degenerate case.

The tangent plane in the 2-manifold solution inRn is
spanned by two independent vectors denotedv1 and v2.
These vectors can be computed in a similar way to the
case of 1-manifolds. Here, we select two independent vec-
tors,v1 andv2, of the largest magnitude among the vectors
v1, · · · , vn−m, which span the space orthogonal toG. Algo-
rithm1 also summarizes this overall procedure.

When the normal vectors span a vector space of a di-
mension lower than (n − 2), the constraint manifold thick-
ens and may become a 3-manifold or have an even higher
dimensionality. It is very difficult to deal with this degen-
erate case reliably. An analogy can be found in trying to
intersect two almost overlapping freeform surfaces, a situ-
ation that is problematic for many SSI algorithms. Even in
this difficult case, the Dual Contouring approach would pro-
vide a reliable solution to the extraction of ak-dimensional
constraint manifold, fork > 2. Thek-dimensional tangent
spaces play a role similar to the one the tangent planes in
the 2-manifold case play.

5. Experimental Results

Figure 6 shows two examples of freeform surfaces and
their convex hull, each of which was computed by solving
a system of Equations (1) – (3). In these figures,1-manifold
curves that determine the boundary curves of the convex
hull patches are shown in bold lines and the convex hull
patch is shown in light lines. Recall that we have to solve
three polynomial equations in four variables for this prob-
lem. The perspective silhouette curves of a general swept
volume can also be computed by using the contouring algo-
rithm proposed in this paper. Figure 7 shows two examples
of computing the1-manifold silhouette curves of an enve-
lope surface, which is the result of solving Equations (4)
and (5).

Figure 6. Two examples of convex hulls of
freeform surfaces, the results of solving a
system of Equations (1) – (3).



Algorithm 1
Input:

Fi, i = 1, ..., n− k, k = 1, 2 , having(n− k) multivariate rational constraints inn variables;
τ , tolerlance of subdivision process;

Output:
M , ak-manifold approximation in the parameteric space ofFi;

Begin
(1) S ⇐ ZeroSetSubdiv(Fi, τ );

for eachn-cubec ∈ S do
Apply the Newton-Raphson method to project the solution point inc into the solution manifold;
Classify whetherc is normalor abnormal;

end
for eachn-cubec ∈ S do

if c is normal then
Search for all face-adjacent connections;
for every connectednormalcubes, generate a line/triangle;
if c has face-adjacentabnormalcell then

(2) D ⇐ D∪ {c};
end

end
for each danglingnormalcubed ∈ D do
N ⇐ face-adjacentnormalcubes atd;
N̄ ⇐ face-adjacentabnormalcubes atd;
for all abnormalconnectionsdo
N ⇐ N∪ {face-adjacentnormalcubes};
N̄ ⇐ N̄∪ {face-adjacentabnormalcubes};
Recursive upto depth of(n− 1) layers;

end
Compute a centroid of a set̄N ;
V ⇐ basis vector(s) which span the tangent space at the centroid;
Parameterize all thenormalcubesn ∈ N , over the tangent space spanned byV ;
Construct a polyline/triangles from the setN ∪ {centroid};
for all normalcubes inn ∈ N do

Deleten fromD;
end

end
return a set of polylines/triangles;

End.

Note.
(1) A function,ZeroSetSubdiv, in step (1) ofAlgorithm1 computes a set of discrete solution points satisfying all the con-
straintsFi, i = 1, · · · , n− k.
(2)D represents a set of danglingnormalcells.

the set of Equations (6). The bisector surface may have self-
intersections in regions of high curvature. Figure 8(b) shows
such a case. Compare the result with Figure 1. In this prob-
lem of computing bisectors, we are dealing with two equa-
tions in four variables.

The 2-manifold boundary of a swept volume can also
be computed using the technique proposed in this paper. A
sweep envelope boundary surface can be extracted by solv-

ing Equation (4). Figure 9(a) shows the flying motion of a
boomerang and Figure 9(b) shows its corresponding enve-
lope surface of the swept volume. A more complicated ex-
ample is shown in Figure 9(c) and Figure 9(d).

A smooth blending surface between two parametric sur-
faces can be computed by solving Equations (7) and (8).
Figure 10 shows two parametric surfaces and their smooth
blending surfaces. This problem is 6-dimensional.



As mentioned in Section 4, the probability of getting de-
generacies becomes considerably higher as one examines
higher dimensions. Table 1 compares the number ofnor-
mal andabnormalsolutions according to the dimension of
the problem. Since the problem of computing blending sur-
faces has dimension six, it has a higher chance of producing
abnormalsolution points than that of computing bisector
surfaces or sweep surfaces. The complexity of the solution
manifold also affects the probability of getting degenera-
cies. Bisectors in Figure 8(b) have self-intersections at high
curvature regions of the surfaces. Thus, they have a signif-
icantly higher rate of havingabnormalsolutions than other
examples of computing bisector surfaces.

Figure 7. Perspective silhouette of a general
swept volume, the result of solving Equa-
tions (4) and (5).

6. Conclusions and Future Work

We have shown that the Dual Contouring technique can
be effectively adapted to representing1- and2-dimensional
solution manifolds embedded in an arbitraryn-dimensional
space. The extension to then-dimensional space is simple
for regular cases. Nevertheless, degenerate cases may pro-
duce thick volumes in the approximation. The problem be-
comes more serious in higher dimensions. Even in these
cases, we can properly approximate the curves and surfaces

Normal Abnormal %
solution solution %

Bisector
Fig 8(a) 444 306 40.8%
Fig 8(b) 484 1088 69.2%
Fig 8(c) 735 281 27.6%

Sweep
Fig 9(b) 570 182 24.2%

Blending
Fig 10(a) 1054 1530 59.2%
Fig 10(b) 918 1465 61.4%

Table 1. The number of solution points in the
experimental results.

by classifying the solution cubes into two groups and con-
structing a tangent space to the solution manifold at the
degenerate solution point. We have also demonstrated this
technique in solving practical problems arising from geo-
metric modeling and constraint solving.

In the current work, we do not consider an adaptive gen-
eration of polylines or triangles according to the shape of
the 1- or 2-manifold. By directly analyzing the curvature
of the manifold, we may generate a better quality of ap-
proximation to the solution. In future work, we also plan to
investigate a similar approach for generalk-manifolds, for
k ≥ 3. The general solution is useful, for example, in deal-
ing with degenerate cases that arise from tangential inter-
sections among high-dimensional hyper-surfaces.

Acknowledgements

This work was partially supported by European FP6 NoE
grant 506766 (AIM@SHAPE) and partially by the Israeli
Ministry of Science Grant No. 01-01-01509.

References

[1] E.L. Allgower and S. Gnutzmann. An algorithm for piecewise
linear approximation of implicitly defined two-dimensional
surfaces.SIAM J. Numer. Anal., Vol. 24, pp. 452–469, 1987.

[2] E.L. Allgower and K. Georg. Numerical Continuation Meth-
ods: An Introduction. Springer Verlag, Berlin, Heidelberg,
1990.

[3] G. Elber and M.-S. Kim. Bisector Curves of Planar Rational
Curves. Computer-Aided Design, Vol. 30, No. 14, pp. 1089–
1096, 1998.

[4] G. Elber and M.-S. Kim. A Computational Model for Non-
rational Bisector Surfaces: Curve-Surface and Surface-Surface
Bisectors.Proc. of Geometric Modeling and Processing 2000,
Hong Kong, pp. 364–372, April 10-12, 2000.



[5] G. Elber and M.-S. Kim. Geometric Constraint Solver Using
Multivariate Rational Spline Functions.Proc. of ACM Sympo-
sium on Solid Modeling and Applications, Ann Arbor, MI, pp.
1–10, June 4–8, 2001.

[6] S. Gibson. Constrained Elastic SurfaceNets: Generating
Smooth Surfaces from Binary Segmented Data. In: MICCAI.
Springer-Verlag, Berlin, 1998.

[7] G. H. Golub and C. F. Van Loan. Matrix Computation. The
John Hopkins University Press, Baltimore and London, Third
Edition, 1996.

[8] C. Hoffmann and J. Hopcroft. The Potential Method for
Blending Surfraces and Corners. Geometric Modeling, in Ger-
ald Farin (ed.), Philadelphia, SIAM Publications, 1987.

[9] J. Hoschek and D. Lasser.Fundamentals of Computer Aided
Geometric Design. A K Peters, 1993.

[10] K. Joy and M. Duchaineau. Boundary Determination for
Trivariate Solid. Proc. of Pacific Graphics 99, Seoul, Korea,
pp. 82–91, October 5-7 1999.

[11] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual Con-
touring of Hermite Data. InProceedings of SIGGRAPH 2002,
pp. 339–346, 2002.

[12] M.-S. Kim and G. Elber. Problem Reduction to Parameter
Space.The Mathematics of Surfaces IX (Proc. of the Ninth IMA
Conference), R. Cipolla and R. Martin (eds), Springer, London,
pp. 82–98, 2000.

[13] L. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel.
Feature-sensitive Surface Extraction from Volume Data. In
Proceedings of SIGGRAPH 2001, pp. 57–66, 2001.

[14] J. Lane and R. Riesenfeld. Bounds on a Polynomial.BIT,
Vol. 21, pp. 112–117, 1981.

[15] W. Lorensen and H. Cline. Marching Cubes: A High Reso-
lution 3D Surface Construction Algorithm. InProceedings of
SIGGRAPH 1987, pp 163–169, 1987.

[16] R. Martin and P. Stephenson. Sweeping of Three-
Dimensional Objects. Computer-Aided Design, Vol. 22,
pp. 223–234, 1990.

[17] T. Nishita, T. Sederberg, and M. Kakimoto. Ray Trac-
ing Trimmed Rational Surface Patches.Computer Graphics,
Vol. 24, No. 4 (Proc. of ACM SIGGRAPH 90), pp. 337–345,
August 1990.

[18] H. Pottmann and J. Wallner.Computational Line Geometry.
Springer-Verlag, Berlin, 2001.

[19] T. Sederberg and R. Meyers. Loop Detection in Surface
Patch Intersections.Computer Aided Geometric Design, Vol. 5,
No. 2, pp. 161–171, 1988.

[20] T. Sederberg and A. Zundel. Pyramids that Bound Surface
Patches. Graphical Models and Image Processing, Vol. 58,
No. 1, pp. 75–81, 1996.

[21] E. C. Sherbrooke and N. M. Patrikalakis. Computation of the
Solutions of Nonlinear Polynomial Systems.Computer Aided
Geometric Design, Vol. 10, No. 5, pp. 379–405, 1993.

[22] J.-K. Seong, G. Elber, J.K. Johnstone, and M.-S. Kim . The
Convex Hull of Freeform Surfaces.Computing, Vol. 72, No. 1,
pp. 171–183, 2004.

[23] J.-K. Seong, K.-J. Kim, M.-S. Kim, and G. Elber. Perspective
Silhouette of A General Swept Volume.The 5th Korea-Israel
Bi-National Conference on Geometric Modeling and Computer
Graphics, Seoul, Korea, pp. 97–101, October 2004.

(a)

(b)

(c)

Figure 8. A few examples of bisectors be-
tween two freeform surfaces in R3, result
of solving a set of Equations (6). Compare
(b) with Figure 1, especially near the self-
intersecting region.



(a) (b)

(a) (b)

Figure 9. (a) Flying motion of a plane and (b) the corresponding sweep envelope surface, the result
of solving Equation (4).

(a) (b)

Figure 10. Smooth blending surface between two parametric surfaces, the result of solving Equa-
tions (7) and (8).


