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Abstract

Given an explicit trivariate hyper-surface defined over a three dimensional
image data set, D, and an iso-surface 51 of D at some iso-value v, we present
an algorithm to extract a new iso-surface 55 at iso-value v, with vy sufficiently
close to v;. Off-line continuous reconstruction of D as a high order Bspline
trivariate is employed, yielding a linear time complexity for the extraction of
S5 in the size of the data of iso-surface S;. The end result allows real-time
incremental modification of the iso-value. Hence, users can potentially mod-
ify and refine an extracted iso-surface to a precise iso-value, in an interactive
manner.

1. Introduction

For the last decade, volumetric data have been widely exploited by medical imag-
ing based applications. Volumetric data have been coined to denote a three dimen-
sional data set, D, that is generated in discrete form, for example with the aid of CT
or other medical imaging scanner. Numerous techniques were developed to extract
surfaces of constant scalar value out of D, also known as iso-surfaces. The most
widespread method, the Marching Cubes (MC) algorithm, was originally presented
in [1, 2]. The MC algorithm processes voxels in D and isolates the ones that inter-
fere with the desired iso-surface level. Then, each isolated voxel is further processed
to extract a polygonal approximation of the intersection of the voxel with the iso-
surface, using a table driven mechanism. The complete set of polygons that results,
approximates the desired iso-surface.

Many variation such as [3, 4] were sought to improve upon the efficiency of the MC
algorithm as well as to eliminate the ambiguity problems introduced in the original
MC algorithm. Hierarchical data structures, such as octrees [5], multi-resolution
approaches [6] and space partitioning methods [7] have been proposed to reduce the
complexity of the processing of the enormous amount of information that is involved.
Nevertheless, all of these techniques treat D as a discrete data set. Such an approach is
resolution dependent and almost render impossible the exploitation of mathematical
methods to extract the surface in a continuous space.



In recent years, some methods have been proposed to represent D as a continuous
hyper-surface in four dimensional Euclidean space, R*. Early approach describing a
trivariate in terms of Bernstein polynomial fitting was made for the purpose of Free-
Form Deformation (FFD) [8]. Tuohy et al. suggests the use of Bspline trivariate-based
implicit surfaces to partition the domain and detect all the critical points of the hyper-
surface yielding a more robust (iso-surface) analysis [9]. Trilinear approximation by
Bspline basis functions was developed in [10] to build hierarchical data structures from
volumetric data set to speed up MC. Higher order trivariates are also used in [10] to
estimate normals for the purpose of Gouraud and/or Phong shading the extracted
iso-surface. Herein, we employ similar a approach and exploit higher order trivariate
functions fitted to the volumetric data for fast iso-surface incremental reconstruction.

In the presented work, complexity considerations served as a major motivation.
The naive extraction of an iso-surface, Sy, with a constant scalar iso-value vy, out
of the data set, D, requires the processing of the entire data set. If D is of size N
by N by NV, then O(N?) cells are to be processed. Some algorithms were developed
to reduce the computation time, using proper preprocessing, such as in [7] down to

O(\/J\W + k), where k is the number of voxels intersecting Sy. Let Sy be another
iso-surface with a corresponding iso-value of vy, where vy is sufficiently close to v;.
Even though S7 and S5 are similar to each other and both have only local differences
in their geometry, one needs the same amount of computation to construct S as
was for Si. It is reasonable to assume that the coherence in the geometry of the
iso-surfaces 57 and Sy can be exploited to reduce the complexity of computing 5.

We present an algorithm, called Marching Gradients (MG), that allows the effi-
cient extraction of a new iso-surface, Sy, out of D and S; in time O(k), where £k is
the number of vertices in 5. In section 2, we present the Bspline trivariate based
approximation of three dimensional data set D. In section 3, we introduce the algo-
rithm itself. In section 4, several results are presented and demonstrated. Finally, in
section 5, we conclude.

All the figures are a result of an implementation that is based on the IRIT solid
modeling system [11], developed at the Technion.

2. Bspline Trivariate Based Representation

Assume D is equal in size in all three directions, that is D is a volumetric data
set of size N' by A by N. For each discrete location 0 < 4,7,k < N —1, on the three
dimensional grid of D, a single scalar value is provided as p;;;. Moreover, the original
data set, D, can be employed to define an explicit parametric Bspline trivariate
function in IR* over the three dimensional parametric space of (u,v,w) C R”:
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where n,m, [ are the orders of the trivariate f(u,v,w). Herein, the Bspline basis
functions are defined over uniform knot vectors:
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7 = 0,1, 0, N+m —1,
Tw = 0,1, . 0 N+1-1, (2)

andn—1<u<N, m—1<v<N,[—-1<w<N. Hence after, the knot sequences
will be omitted for the purpose of clarity.

Trilinear Bspline approximations are employed in [10]. Trilinear Bsplines are also
the only order that interpolate the given data set, D, if D is employed as the control
mesh of the trivariate. Higher order trivariates no longer interpolate D while they
are close to it. One can consider solving an interpolatory problem over the Bspline
trivariate, forcing the interpolation of D. While feasible, the result will most likely
undulate. Hence, in this work we select to employ the trivariate as an approximation
scheme, using D as the control mesh of the trivariate.

Because D is, in general, uniformly ordered in three space, uniform knot sequences
were selected to all three axes, as seen in Equation (2) . Several possible approaches
can handle the boundaries of the defined trivariate over D. One can simply purge the
first and last order rows, columns, and planes as less than order basis functions are
defined there. Alternatively one can duplicate the boundaries order-1 times, forcing
the interpolation of the boundary. A possibly more proper boundary interpolation
can be achieved via open end uniform knot sequence, at the lose of uniformity near
the boundary. With all these methods, it should be recalled that the boundary is
rarely a relevant domain in the medical data and whatever boundary treatment is
selected has minor importance in the forecoming analysis.

3. The Marching Gradients Algorithm

In this section, the trivariate function f defined over D is exploited to solve the
following problem: let S; be an iso-surface of constant scalar iso-value vy extracted
out of D; extract a new iso-surface Sy out of D with iso-value vy, such that vy is
sufficiently close to vy.

Once the trivariate function f is defined, one can treat f as an explicit continuous
function in IR*. A cubic Bspline trivariate with uniform knot vectors guarantee ('
continuity. Herein, we proposed an approach to the computation of S5 that exploits
the coherence between S, and an already computed iso-surface S;. Given a point
P € Sy, we are interesting in finding the position of a nearby point P € S;. Move
from P € S; in the direction of the gradient of f an amount that is estimated from
vy — vy and a first or second order trivariate Taylor expansion around P € S;.

The gradient vector, V f can be easily computed from Equation (1) as follows:
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and the gradient V f = (fu, fu, fu)-

To find a set of points P € S5, one needs to solve for fu,v,w0) = ve. Alternatively,
by exploiting 57, one can traverse the entire set of points P € S; and march in the
gradient direction, forming iso-surface S;. For each point, one calculates a gradient
vector (fu, fo, fu) using Equation (3). With the gradient direction, the amount of
offset can be obtained from a first order approximation to f, using the modified
Newton’s formula of,

vi v+ (6 VN, V) =vo+6|VS, (4)

where ||V f|| =/f?+ f2+ f2, Vfn is the normalized gradient: V fy = %, 6 VN
is the actual step in (u,v,w) C IR®, and (-,-) denotes the inner product.
The point P can now be obtained from,

P =P+ 6Vfn, (5)

or, coordinatewise:

In extreme cases when the value of the function changes rapidly along the gradi-
ent’s direction, the first order approximation might be insufficient. Then, a Taylor’s
expansion up to the second order can be employed,

1
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where H is the Hessian matrix of second partial derivatives:
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6 is computed using the quadratic Equation (6). The root with the same sign as
the offset value from Equation (4) should be selected.

In the proposed algorithm, we ignore the possible topological changes during the
transition. That is, f has no points of local minimum/maximum between the v; and
the vy iso-values. While we cannot guarantee the convergence of the MG method
at all times, for local regions and for small iso-value steps the proposed method can
yield adequate results. Moreover, interactive modification of the iso-value is now a



feasible option than ever with the introduced linear time complexity, using the MG
algorithm. The MG algorithm is adequate for the task of fine tuning the iso-surface’s
iso-value when changes occur in very small steps.

The computation of Equations (3), (5), and (6) seems intensive for each and every
point P € 5. Yet, proper preprocessing can alleviate most of the overhead. Given a
Bspline trivariate f, its gradient vector can be computed symbolically. That is, the
three functions of Vf = (f., fu, fu) can all be precomputed as three Bspline trivari-
ates, a-priori. Moreover, the second order derivatives of f, in H, can similarly be
computed before hand. Then, at interaction time, only trivariate evaluation opera-
tions are conducted, of f and its first and second order derivative functions. It should
be recalled that the derivative of a (piecewise) polynomial function is a (piecewise)
polynomial function of lower order. Finally, and because uniform knot sequences are
employed, the Bspline basis functions of f as well as the basis functions of f’s first
and second order derivatives can all be precomputed into tables, further reducing the
total evaluation times in actual interaction.

One can compute Sy by successively applying Equations (4) or (6) to the entire set
of points P € S;. However, increasing the number of iterations, while improving the
accuracy of approximation of Sy, affects the interactivity of the algorithm. In practice,
a single iteration yields sufficient accuracy in most instances. The dependencies
between the computation error, the computation time, and the number of iterations
will all be considered in the next section, Section .

4. Applications and Examples

Given an iso-surface S, one needs to extract a new iso-surface, S, where iso-
value vy is sufficiently close to vy, by successively applying the MG algorithm and
obtaining the desired iso-surface. Such operations are sometimes necessary for the re-
finement and fine-tuning of an iso-surface for different, closely related iso-values. Two
sequences of the successive transformations for increasing iso-values are presented in
the Figures 1 and 2 of a femoral head model resulting from a medical scan and the
cuboid implicit surface of z* + y* + 2* — 22 — y? — 2% = ¢, respectively.

The orders of the trivariate, the number of vertices in the iso surface, and the
number of iterations computed are all factors that affect the accuracy, quality, and
efficiency of the resulting iso-surface. In Table 1, the extraction times for several
resolutions of the model of the cuboid data set (See Figure 2) with different number
of vertices are compared to the Marching Cubes algorithm. Iso-surface computation
using only first order approximation (Equation (4)) of MG, and using second order
MG (Equation (6)) are both compared to MC using various number of vertices. This
comparison shows a speed up of close to 100% for second order MG approximation
and more than 100% if only a first order MG approximation is employed. In Table 2,
the convergence rate as more iterations are computed is examined, only to conclude
that for practical and interactive use, a single iteration is more than adequate.

A side effect of the use of the trivariate’s representation is the alleviation of aliasing
in the medical images, following [10]. Most objects extracted out of the volumetric
data have severe aliasing problem due to the discrete nature of the input data and



(a) iso-value = 15

(c) iso-value = 48

(b) iso-value = 34

(d) iso-value = 76

Figure 1: A sequence of consecutive MG transformations of a femoral head. (a) was

extracted using MC and (b) to (d) were derived using MG.

Table 1: Iso-surface extraction time for the Cuboid data set (See Figure 2) using a

Bspline trivariate of order 4.

# Vertices | MG (MSec) (First Order) | MG (MSec) (Second Order) | MC (MSec)
216 90 140 120
458 190 270 350
936 360 540 700
1202 460 710 1120
2256 880 1330 2170




(¢) c=-0.35 (d) ¢ =-0.42

Figure 2: A sequence of consecutive MG transformations of 2*+y*+42* —22 —y? —2? =

¢. Compare with Figure 4.



Table 2: Relative error (first order) of Cuboid data set (See Figure 2), order = 4, #

vertices = 458.

Change of Iso-value | One iteration | Two iterations | Three iterations
-0.00 — -0.07 3.610% 0.488% 0.450%
-0.07 — -0.14 1.998% 0.206% 0.181%
-0.14 — -0.21 1.376% 0.114% 0.111%
-0.21 — -0.28 1.300% 0.219% 0.083%
-0.28 — -0.35 1.037% 0.058% 0.036%

low quality estimation of normals. Figure 3(a) represents a polygonal model of a
femur, obtained by applying the Marching Cubes algorithm.

One can significantly improve this image (compare with Figures 3(b) and 3(c))
by estimating normals to each point on the polygonal surface of the femur, exploiting
the Bspline trivariate approximation of different order. That is, each such point
is considered a point in the implicit trivariate surface. The normal to the point is
calculated as a normalized gradient, following Equation (3). Evidently, the continuous
Bspline trivariate serves as a low pass filter and the approximation results in an
improved normal estimation compared to the discrete differencing approach exploited
in MC. The selection of higher degree trivariates that act as stronger low pass filters
can produce smoother normal fields, at the expense of less accurate model and more
expensive over whole computation. This same approach was exploited in [10] and
similar results were obtained.

5. Conclusion

An algorithm for the computation of a new iso-surface from an existing iso-surface
has been developed. The presented method allows one to compute each point of the
new iso-surface using only local neighborhood of D. The MG algorithm significantly
reduces the time complexity of the extraction of the iso-surface. Initial iso-surface
computation, applying the traditional Marching Cubes algorithm, can be viewed as
a preprocessing stage with time complexity O(N?), possibly optimized to a better

time such as O(\/J\W + k). Herein, the computation of any new sufficiently close
iso-surface has a linear time complexity in terms of the number of points forming the
initial iso-surface.

The MG algorithm has a significant drawback. It cannot properly follow the
topological changes of the iso-surface. Figure 4 represents the results of applying
the MC algorithm to the cuboid’s surface with different iso-values. It is clear that
the surface in Figure 2(b) differs from the surface at the Figure 4(b), because of the
topological changes that took place in the iso-surface. Moreover, as more and more
MG transformations take place, severe distortions in the surface’s topology can be
accumulated (see Figure 2(c), 2(d)). A possible solution to this accumulated error



(a) Original view (b) Order = 4 (¢) Order = 8

Figure 3: Aliasing elimination in normal computation using a Bspline trivariate of
the specified order. (a) is computed using regular MC while (b) and (¢) are MC with

normals estimated from the Bspline trivariate of the specified order.



is to interleave the MC and MG algorithms, applying MC when distortions in the
iso-surface’s topology are no longer acceptable and /or interactive manipulation is not
a high priority.

While MG can be combined with MC to reconstruct the correct topology, March-
ing Cubes is more expensive computationally. Proper analysis of local extreme values
of D can yield the locations where new branches should be formed or old branches
should be eliminated. Holes formed within the same connected branch are harder to
detect and process, and more effort should be invested into this topological analysis.
Both adaptive polygonal refinement when the iso-surface’s complexity is increasing
and adaptive polygonal decimation when the iso-surface’s complexity is declining
should be considered, while the Gradient Marching is continuously applied. The
sought result should be the ability to exploit only the Marching Gradient algorithm
throughout while properly maintaining the topology, yielding the correct iso-surface
in all instances.
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(b) ¢ =-0.28

(¢) c=-0.35 (d) ¢ =-0.42

Figure 4: A sequence of consecutive application of MC algorithm for surface z* +

yt+ 2t — 2? — y? — 2% = ¢. Compare with Figure 2.



