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Abstract

The use of multiresolution control toward the editing of freeform
curves and surfaces has already been recognized as a valuable mod-
eling tool [Fink94, Gort95, Kazi97]. Similarly, in contemporary
computer aided geometric design, the use of constraints to pre-
cisely prescribe freeform shape is considered an essential capabil-
ity [Glei92, Welc92]. This paper presents a scheme that combines
multiresolution control with linear constraints into one framework,
allowing one to perform multiresolution manipulation of nonuni-
form B-spline curves, while specifying and satisfying various linear
constraints on the curves.

Positional, tangential, and orthogonality constraints are all linear
and can be easily incorporated into a multiresolution freeform curve
editing environment, as will be shown. Moreover, we also show that
the symmetry as well as the area constraints can be reformulated as
linear constraints and similarly incorporated. The presented frame-
work is extendible and we also portray this same framework in the
context of freeform surfaces.

Additional Key Wordsand Phrases. CAD, Curves & Surfaces,
Geometric Modeling, Wavelets.

1 Introduction

Building intuitive interactive editing capabilities of freeform curves
and surfaces into contemporary CAD systems has been an elusive
task for the geometric design community, for a long period of time.
While freeform curves were introduced to the computer graphics
world almost three decades ago, the editing process of freeform ge-
ometry continues to be considered a difficult task. Furthermore,
direct (control point) manipulation has been recognized as a pow-
erful computer graphics tool, and yet its locality appears to be an
Achilles’ heel of the B-spline representation, the most commonly
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used representation of freeform shapes in contemporary geometric
modeling systems. In a single direct manipulation operation, one
is unable to apply a modification to the B-spline shape that affects
more than a local neighborhood.

The hidden capabilities in multiresolution control and editing of
freeform geometry have been revealed in [Fink94, Gort95], in the
context of uniform B-spline curves and surfaces. [Fink94, Gort95]
allow the user to directly and interchangeably affect the freeform
shape globally as well as locally, in several resolution levels.
In [Kazi97], a similar solution has been presented that supports the
multiresolution editing of nonuniform B-spline curves and surfaces.

The work of [Fink94, Gort95, Kazi97] computes the orthogo-
nal projections of the freeform geometry into lower dimensional
spaces, employing a wavelet decomposition of uniform and nonuni-
form B-spline representations. While fairly simple to compute
for the case of uniform knot sequences, this decomposition in the
nonuniform case is computationally intensive. Fortunately, one can
recognize that the explicit orthogonal decomposition is not really
necessary [Gort], alleviating these computational difficulties in the
nonuniform case.

In [Elbe95], a multiresolution curve editor that is based on a
non-orthogonal decomposition has been presented. The major defi-
ciency of this non-orthogonal decompositions lays in the possibility
of the user to conduct many high resolution, fine, operations, that
can be represented as few low resolution operations. We will dis-
cuss this some more in Section 2.

In [Welc92], a surface editing system that satisfies zero dimen-
sional constraints such as positions, tangents and normals, has been
presented. The constraints, being linear, are efficiently solved,
allowing for the interactive manipulation of the freeform geome-
try. [Welc92] also considers transfinite constraints where the con-
straints might have a non zero dimensionality. While some cases
might be of finite dimension, such as the containment of a polyno-
mial curve in a polynomial surface when posed as a composition,
other cases might necessitate an approximation.

The satisfaction of nonlinear constraints is more difficult than the
satisfaction of linear constraints due to the imposed computational
demands. Non linear constraints that are commonly considered are
second order differential constraints such as convexity [Sapi95], en-
closed volume [Rapp96], and first and second order fairing con-
straint, typically in the form of strain and stress surface shape opti-
mization functionals [Welc92].

The exploitation of first and second differential order constraints,
in real time, is also highly intensive computationly. In [Plav98], an
interactive surface editing system that supports real time surface
manipulation with convexity/developability constraints is reported,
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with the aid of a careful pre-computation of the curvature fields.

This work presents a two-fold. First, a special attention is given
to the class of linear constraints that one can employ. Positional,
tangential, and orthogonality constraints are already known to be
part of this class. In addition, symmetry constraints are shown to
be part of this class of linear constraints. Furthermore, we also
show that the enclosed area of a closed curve can be posed as a lin-
ear constraint. Then, a synergetic view of the two methodologies
of multiresolution control and linear constraints is considered. We
combine the revealed capabilities of multiresolution control with
the ability of linear constraints to prescribe precise freeform ge-
ometry, all in the framework of interactive editing of nonuniform
B-spline curves.

Our implementation as well as all the examples shown as part
of this work were based on the IRIT solid modeling system [Irit00]
that is developed at the Technion, Israel Institute of Technology.

This paper is organized as follows. Section 2 reviews the
concepts of multiresolution control, following [Elbe95, Fink94,
Gort95, Kazi97], that we have been exploiting. Section 3 consid-
ers the linear constraints that can be employed as part of this work,
while in Section 4, we show how to fuse the two methodologies
of multiresolution control and linear constraints into a single syn-
ergetic framework. Some examples that demonstrate the expected
benefits of this synergy, are presented in Section 5. We consider
the extensions of this work to freeform surfaces in Section 6, and,
finally, we conclude in Section 7.

2 Multiresolution editing of curves

Let .
C(t) =Y PiBir k(t), @)

be a planar nonuniform B-spline curve of order &, with n control
points P; = (z;, y;), thatis defined over the knot sequence = ¢
of length n + k,

T:{t07t17"'7tk—17"'7tn7"'7tn+k—1}7

where the knots ¢; through ¢,_, are denoted the interior knots.
Let ¥, be the piecewise polynomial function space that is induced
by 7 = 7. A piecewise polynomial function, f(¢t) € Vo, is
potentially discontinuous, only at the interior knots of ¥,

Let 7; be a knot sequence formed by the first and last £ knots of
T and a subset of the interior knots. Further, let 7,41 C 7;. Such
a hierarchy of knot vectors, {7}, presents the following properties:

e The B-spline curves of order k& defined over 7, have the do-
main of [tx_1,t,), Vi.

e The piecewise polynomial function space, ¥, 1, defined by
Tit1, IS strictly contained in ¥;.

In this work, 7,41 is selected to hold a half of the interior knots of
T, using every other interior knot of ;.

Clearly, the domain of all the curves in all the subspaces of ¥,
is the same because we kept the first and last & knots unmodified.
Consider ¢; € T; with multiplicity m; ; suchthat¢; & 7;41. Then,
a piecewise polynomial function g(¢) € W;41 is C* at ¢; whereas
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h(t) € W, is at least C*~™i.i~! continuous at ¢;. Alternatively,
consider the case of ¢; € 7,41 but the multiplicity of ¢; in 7,41,
m; i+1, IS lower than the multiplicity of ¢; in 7, m; ;. Then, the
continuity of g(t) € U,4; att; is at least C*~™4.i+1 =1 whereas
the continuity of h(¢) € U, at ¢, is at least C* =™,

We would like to consider a modification to curve C'(¢) that starts
from t. = ¢;, andends at t. = t;,, where ¢;,, t;, € To. In Uy,
this entails the potential updates of all control points P;, 1 = 51 —
k+1,---,32 — 1. The possible need for an update of an arbitrary
large number of control points exposes the Achilles’ heel of the
B-spline representation; the locality property of the representation
hinders any attempt to control the shape of the curve at various other
resolutions.

Assume the existence of a subspace ¥, such that ¢;, and ¢;,
are adjacent to each other, or no other interior knot exists between
them. In ¥;, the same modification of the curve from ¢, = ¢;, to
t. = t;, entails the potential update of exactly & control points, P;,
i=g1—k+1,---,71. Lett;, <ty < t;, bethe pointon C(¢)
that is selected by the user for the interactive modification and let
Vim be the modification vector of C(¢,,). That s, C(t,,) should be
translated to C'(¢..) + V. Typically, ¥, will be computed as the
difference between the old and the new mouse positions, in a select-
and-drag operation on the curve. Let Ar,(¢t) € ¥, be a polyno-
mial function such that Az, (t,) = 1. Then, C(t) + Vi Ar (1)
satisfies the modification requirement at ¢ = ¢,. Further, due to
the fact that A+, (¢) is a single polynomial between ¢;, and ¢;,, the
affect of the modification will always span¢;, to ¢;, and hence will
be at the proper resolution.

Having only one constraint on A, (¢), as A, (t.) = 1, there
are typically infinitely many solutions to the construction problem
of Ar,(t). Nonetheless, we also seek to minimize the change in
C(t) as the result of applying A+, (¢). Having support at the proper
resolution of U; that modifies C'(¢) from ¢, to t., we would also like
to minimize the change outside of this domain. One simple and di-
rect approach at efficiently constructing such a minimal change so-
lution can use the values of the supporting B-spline basis functions
at t., in U;, normalized so that A+, (¢.) is indeed one,

1 m
Ari(t) = — % Bir k(ta) Bir x(1),
1=0

with,
o = > (Birk(t.)
1=0
J

= Z (Bir i(tu))?, t5 <ty <ty
i=J—k+1

assuming any function in ¥, including A+, (t), has m + 1 coef-
ficients. Here, only the & basis functions that are non zero at ¢,
contribute to A, (¢).

A, (t) could always be raised to A, (t) € U, by inserting the
knots [Cohe80] of {7 \ 7:}. Then, a simple addition of A+, (¢)
to the original curve, C(t) € Wy,

C(t) « C(t) + VmAr, (1), )

can be materialized as the addition of the respective coefficients of
C(t) and A7 (t) (times Vi,).
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In general, however, the specified domain of influence will fall
between knots. Having ¢., t. ¢ 7o, One is required to either insert
the new knots, ¢« and ¢t., into 7o, or else to approximate the do-
main of influence. Recognizing the obvious overhead of drastically
increasing the number of knots in the modified curve, as the editing
process of the curve progresses, an approximation is employed in
thiswork. Let¢;, 1 < ts < t;, and t;, < t. < t;,+1 be the start
and end parameters of the specified domain of influence. Moreover,
let U; be a space such that ¢;, and ¢;, are adjacent to each other in
T, and similarly let ¥;4; be a space such that ¢,,—1 and ¢;,4+1
are adjacent to each other in 7;41. The approximated solution is
formed by linearly blending between the reconstructed A+, (¢) and
Az, (t) functions. Moreover, and while this blended solution
continues to be in ¥, one can independently solve for A+, (t) and
AT;+1 (t)

3 Linear Constraints of Freeform Curves

Constraints are an important tool in design. When a curve must
interpolate a certain location or be perpendicular to another curve
at some other location, linear constraints can satisfy these demands,
all while the user is free to manipulate the curve as he or she see fits.
In Section 3.1, we review the basic linear constraints that are tradi-
tionally employed. In Section 3.2, we consider the linear symmetry
constraint whereas in Section 3.3, the enclosed area is formulated
as a (bi)linear constraint.

3.1 Basic Linear Constraints

Recall curve,
n—1
C(ty="_ PiBirx(t),
1=0

from Equation (1). A positional constraint, P, at some parameter
value t;, is linear in the control points of the curve, P;, as it reduces
to,

P=C(tp) = Z PiBi 1 k(tp). (3)

Similarly, a tangential constraint, 7', at some parameter value ¢,
is reduced to the following linear equation in the control points,

T = Cl(tt)

k-nY (MBi,T,k_l(tt)) @

— Livk—1 — b

A normal or orthogonality constraint can be satisfied by constrain-
ing the normal field of the planar curve C'(t) = ((t),y(t)) as
N(t) = (=y'(t),z'(t)). Hence, an orthogonality constraint is
equivalent to a tangential constraint, for planar curves, with minor
differences. Equation (4) completely constrains C'(¢;). In contrast,
the tangency constraint could also be prescribed as,

0 = (C'(t),N), (5)

where N is the direction that C(¢) should be orthogonal to, at ¢;.
In (5), only the direction of C’(t;) is prescribed whereas in (4), the
magnitude of the vector is fully constrained as well. This difference
is similar to the difference between G'' and C'* continuity.
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Unlike Constraints (3) and (4), the inner product constraint of (5)
necessitates the derivation of the solution of all axes, simultane-
ously. Hence, instead of independently solving two sets of con-
straints (for planar curves), one is forced to simultaneously solve
one set of twice as many constraints, satisfying both the = and the
y requirements.

To complete our discussion on the basic linear constraints, we
should also consider higher order derivatives that are also linear in
the control points of the curve and hence can be equally employed.
Nonetheless, second order, curvature, constraints are likely to be
the only higher order constraints that one might exploit, in practice.

3.2 Symmetry Constraints

An additional linear yet useful constraint we would like to con-
sider as part of this work is X -, Y-, or Circular-symmetry. Clearly,
one can handle one half of the shape only to be reflected to yield
the symmetry. Nevertheless, continuity along the joint of the two
halves must be then preserved and knots must be unnecessarily in-
troduced, along the symmetry line. Moreover, such a reflection of
the curve induces a special case treatment needs on the curve edit-
ing tool which we would like to refrain from. Hence, we would
rather express the symmetry as a linear constraint. Assume the do-
main of curve C(t) is ¢ € [0, 1] and let 7 be a symmetric knot
sequence. Thatis, ¢; = 1.0 — tnyr—i—1, Vit € T.

Consider the major axes. Then, we say that C'(¢) = (z(t), y(t))
is (See Figure 1),

X-sym. if z(t)==z(1-1¢) and  y(t) = —y(1 —¢),
Y-sym. if y(t)=y(1—-1¢) and  x(t) = —2(1—1¢),

Circ. if z(t)=-2(1—-1t) and y(t)=—-y(1-1).
-sym.
(6)

These symmetry constraints reduce to similar constraints over
the control polygon. Having a symmetric knot sequence, we have,
B,‘,T,k(l.o - t) = Bn_l_,‘yryk(t). Then,

n—1
C(LoO—t) = Y PiBirx(1.0-t)
1=0
n—1
= ZPiBn—l—i,T,k(t)
1=0

n—1
= > PacisiBiTa(t). )
1=0

Now, for example, consider the X -symmetry case. If z(t) =
z(1 — t), from Equation (7) we have,

n—1 n—1
Z v Bir k() = Z Tn—1—iBir k(b),
i=0 =0
or
n—1
0= Z(x, — Tn_1—i)Bir (1),
i=0

which immediately reduces to the set of linear constraints of the

form,
Ozxi—xn_l_i,i:0,~~~,{gJ—1, (8)
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(a)

(6)

(¢)

Figure 1. Symmetries of curves: (a) X -symmetry, (b) Y-symmetry, (c) Circular-symmetry.

due to the independence of the B-spline basis functions. Therefore,
the symmetry constraint of z(¢) = z(1 — ¢t) as reduced to Equa-
tion (8) could be posed as [gJ linear constraints in the coefficients
of the X axis, z;.

Similarly, a constraint of the form y(¢) = —y(1 — ¢) could be
reduced to [g] linear constraints in the coefficients of the Y axis,

Ys, as,

n

Ozyz‘i'yn—l—uZ:O,,’VE—‘—l (9)

Obviously, the axes of symmetry need not be the major axes and,
for example, a constraint of X -symmetry around the horizontal line
y = Yo is reduced to a set of [ 2] constraints of the form 2Y, =
Yi + Yn—1—i.

3.3 Area Constraint of a Closed Planar Curve

We now consider the area as a constraint on a closed freeform pla-
nar curve. The enclosed area or volume of a closed curve or a
closed surface, respectively, were considered in the context of vi-
sion [Eber91] as well as geometric modeling [Ocho98, Rapp96].
Presented as a non linear problem, approximation methods are typ-
ically employed toward the computation of the enclosed property.

Let C(t) = (z(t),y(t)) be a regular closed planar parametric
curve. Employing Green’s theorem, the (signed) area, .4, enclosed
by C(t) equals (See, for example [Eber91, Ocho98]),

A=t
2

=0+ 2t e =} e < cotar

(10)
where |C(t) x C'(t)] denotes the cross product’s determinant. Hav-
ing the = and y components of this cross product vanish to zero
because the curve is planar, this determinant is reduced to the z
component only. Hereafter, we use C(¢) x C'(t) to denote this
scalar z component.

A geometric interpretation of Equation (10) can be found in Fig-
ure 2. Herein, we are interested in evaluating this equation as ef-
ficiently as possible when C(¢) is a B-spline curve. Moreover, we
are pursuing this computation in the context of (linear) constraint
satisfaction, in real time interaction.

Figure 2: The area of a closed parametric curve. The differential
area in gray equalsto 1|C'(t) x C'(t)|dt and the enclosed area by
the curve is the result of integrating this differential area over the
entire parametric domain of the curve. See Equation (10).

Let C(¢) be a B-spline curve, C(t) = Z:;_Ol P;B; 1 (t), where
P; = (x4,y:) and B; i (t) is the ¢’th B-spline basis function of
order k. Then, the enclosed area can be rewritten as the bilinear
form of,

24

j{ - Z zi B k(1) Z vi B x(t)
+ Z x,‘B,‘yk(t) Z yJBJ/,k(t)dt

S aiy oy, f{ — B () Bji(t) + Bin(t) B x(t)dt

[ w0, a1, 2n1 |
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®0,0 @01 ®0,n—1 Yo
D10 d1,1 D1,n—1 Y1
¢n—1ﬁ ¢n—1J ¢n—Ln—1 Yn—1
= X®Y, (11)
where
¢ij

= j{-B{yk(t)Bj,k(t) + Bik(t)B; i (t)dt
j{_(k _ ( Big—1(t) Bi+1,k—1(t)) By a(t)

bivk—1 —ti  bigr — tig1
Bjk=1(t)  Bjt1k-1(¢)

tith—1 — t; bive — b4

+(k—1) ( ) B (t)dt.

12)

Equation (11) sheds some light on our objectives. Assume the
y: coefficients of the constrained curve are fixed. Then, the area
constraint is linear in the z; coefficients! Similarly, if the x; coeffi-
cients of the constrained curve are fixed, the area constraint is linear
in the y, coefficients.

This crucial view of the area equation allows us not only to
enforce a prescribed area as a linear constraint, but also to pre-
compute all the coefficients of the ® matrix. A typical editing
session of a freeform shape starts with a prescription of the spe-
cific function space, ¥y, or knot sequences. Only then, the shape is
modified, for example via a direct or a control point select-and-drag
operation. Once the function space, ¥y, of the curve is prescribed,
the @ matrix can be clearly computed. The computation of integrals
and products of nonuniform B-spline basis functions is considered,
for example, in [Kazi97].

3.3.1 Area Constraint of Linear B-spline Curves

It is interesting to examine this derived area constraint in the con-
text of linear B-spline curves. Then, the B-spline curve is reduced
to a polygon and hence we expect the constraint to reduce to the
equation of the area of a polygon with n vertices. For the linear
B-spline case where &k = 2, Equation (12) becomes,

= _ [ Bialt) _ Big1a(t)
¢U B j{ (ti+1—t,' tive —tiga BJ,2(t)
4 [ Bin® _ Biraa() Bir(tydt. (13)
t]+1_t]

ti+2 = t41
Clearly if |2 — 7| > 2 and due to the final support of the B-spline
basis functions, Equation (13) is zero. Moreover, if : = 5 and due
to the antisymmetry of the integrand in Equation (13), ¢.: is also
zero. Hence, we only need to derive ¢; ;+1:

Giigr = f_( Bia(t) _ Bit1,1(t) )Bi+1,2(t)

big1 — & tigo — big1

N ( Bisia(t) Biy2,(t) )Bi2(t)dt

tigo — big1 tiga — bigo2

_ j{ Bitia(t) Bisra(t) + Bitia(t)

B; o (t)dt
tivo —tig1 tizo —tig1 (®)
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z-l—l 1(
tigo — tz-l-l
tiyo

tz+2 tz-l-l

Bit1,2(t) + Bi2(t))dt

I (14)
¢i; = —d¢;; (See Equation (12)) or @ is an antisymmetric matrix.
Hence, ¢; ;-1 = —1, and we have shown that the area of a closed

polygon P = {P;}', P; = (=i, y:) equals,

1
A = 5[ xo,x1,~~~,xn_1,xo]
0 1 0 0 0
—1 0 1 0 0 Yo
0 -1 0 1 0 Y1
0 0 -1 0 0 (15)
H. Yn—1
0 o ... =1 0 1 Yo
| 0 0 0 -+ =1 0|
which is the same as,
.A — l ( o 1 + 1 Xo
2 Yo Y1 Yy Y2
Tn—1 o
+ ~~+‘ vt o ) (16)

as, for example, in [Pear90]. This linear B-spline case allows one to
edit closed planar polygonal domains while coercing the enclosed
area of the polygon to be the same throughout the editing process,
via a bilinear constraint over the vertices of the polygon.

3.3.2 Area Constraint in Interactive Multiresolution
Editing

Unlike other linear constraints, the area contribution of modifica-
tion Az, (¢) depends on the current shape of curve C(t) as well.

Let C(t) = (x(t), = (3 wiBi(t), Y yi Bi(t)) be the cur-
rent closed curve under edltlng Wlth area A. Let A, (t) =
(62(t),8 = (3 6x,Bi(t Z 8y, Bi(t)) be the modification

one Would Ilke to add to C(¢) as
D(t) < C(t) + Ar,(¢).

The area, .4, of the modified curve, D(¢), equals,

24 = j{D(t) x D'(t)dt

F100+ a7, 0) % (00 + Ar, o)

2A—|—j{0(t) x A () + A7, (t) x C'(¢)
+ A7, (t) x AT (t)dt.

In order to keep the total area of D(t) the same as C(t), we
require A = A, or,

0 = j{C(t) x AT, (t) + Ar,(t) x C'(¢)
+ A7 (t) x AT (t)dt



Multiresolution CurveEditing with Linear Constraints

= 80 = S0+ 5000~ 2 05,0 +

+ 84(8)05 (1) — 82(t)8, ()dt

= j{ém(t)y'(t) — 8o ()Y(t) + 2(£)8, (t) — 2" (£)dy (t)dt,
(7

where
y(t) = y(t) + 0y (t).
Equation (17) can also be written as,

j{ém(t)y'(t) — 8 (Og(t)dt = j{x’(t)éy(t) — z(t)d, (t)dt. (18)

Assume &, (¢t) has already been derived. Then, the right hand side
of Equation (18) is completely known and so is g(¢). In other
words, Equation (18) is linear in 4. (¢) that can, with the aid of
Equation (11), be rewritten as,

Yo +5ZI0
Y1 +5ZI1
[5$075$17"'75$n—1 ](I) .
Yn—1 +5yn—1
610
b
= [xo,x17...7xn_1 ]<I> : .(19)
Oyps

Therefore, and during interactive control point or curve select-
and-drag operations, the y axis of A+, (t) can be solved for all the
4y, coefficients satisfying all constraints, excluding and ignoring
the area constraint. Then, the z axis of A+, (¢) is solved for all the
4, coefficients satisfying all constraints, including the linear area
constraint of Equation (19). The right hand side of Equation (19) is
fully known, having the §,,, coefficients, and hence Equation (19)
adds one more linear (area) constraint in 6, to the existing set of
linear constraints.

So far, the & matrix has been derived for curves in the origi-
nal space, ¥o. Nevertheless, and during the multiresolution editing
process, the modification curve, Ar,(¢), might be in a different
space, ¥;. Let A,,. be the refinement (alpha) matrix [Cohe80]
of a curve in W; to a curve in Wy, A, is a matrix of size
m X n, n > m, refining a B-spline curve in ¥; with m con-
trol points into an identical B-spline curve in Wy with n control
points. In essence, A,y inserts the knots of {7 \ 7;}. Then, for
AT, (t) = (02(8),04(t)) € W, and C(t) = (2(¢),y(t)) € Vo,
Equation (19) becomes,

[ 5$D75‘T17...75$m—1 ]Amn(b

Yo 52/0
Y1 _|-AT 52/1
Yn—1 5Z/m—1
dyo
. by,
= [ o, w1, w01 | BAL, , . (20)
)

Ym—1
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Needless to say, the role of the = and y axes could and should
be interchanged. In practice, and as the user is dragging the mod-
ified point on the curve, numerous location-event are generated by
the input device. We exchange the axis that is employed toward
the satisfaction of the area constraint in each such location event,
resulting in a fair looking behavior that favors no special axis.

4 Constrained Multiresolution Freeform
Curve Editing

The combination of multiresolution control and linear constraints
could be accomplished once one realizes how to properly construct
a modification function A+, (t) (See Equation (2)) such that,

A(ts) = 1, tu isauser specified modification location,
(see Equation (2)),
A(t,) = 0, ateach positional constraint, ¢,
(see Equation (3)),
A'(t;) = 0, ateach tangential constraint, ¢,
(see Equation (4)),
A(t) Is symmetric to following any symmetry
constraint, (see Equation (6)),
A(t) Has a zero area contribution to C(t),
(see Equation (19)). (21)

Much like the unconstrained multiresolution curve editing case,
if one could construct such a Ar,(t) function that satisfies all
Constraints (21), then if C(t) satisfies a positional constraint at
tp, 5O Will C(t) + Vi Ar,(t) because C(tp) + VmAr,(tp) =
C(tp). Similarly, a tangential constraint will also be preserved un-
der this the modification of A+, (¢) due to the fact that C’(¢¢) +
VAl (t:) = C'(t,). Moreover, if C(t) and Vi, A7, (t) are both
symmetric, so is their sum, and finally the area that is contributed
by Ar,(t) to C(t) is zero.

Hence, the construction of such a A(¢) function is the key ques-
tion in the possible synergy of multiresolution editing control and
linear constraints’ control. Before we go ahead and attempt to sat-
isfy all these constraints, we must realize that these set of con-
straints might be under-determined, exactly determined, or over de-
termined. Having m constraints can result in an over-determined
system of equationsin ¥; but an under-determined system of equa-
tionsin U, 5 < 1.

Clearly, an over-determined set of constraints can only be ap-
proximated. However, having an under-determined system sug-
gests an infinite family of solutions, much like in the unconstrained
multiresolution case. In order to minimize the global affect on
the whole curve, we once again employ a solution for the under-
determined linear system of equations that minimizes the global
change. Herein, the derived solution is the one that minimizes the
change in the control points of the C(¢) curve, in L2 sense. Two
possible approaches that can be employed to achieve an L mini-
mizing solution are either the singular valued decomposition (SVD)
or the QR factorization [Golu96] of linear systems of equations. In-
terestingly enough, the QR factorization is employed by [Welc92],
an approach taken by this work as well, due to efficiency reasons.
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The space of ¥; might be incapable of satisfying all the existing
constraints. More degrees of freedom, in the form of more knots,
must be employed. Toward this end, we can construct a hierar-
chy of subspaces, {¥;}, suchthat ¥;; C ;. Each knot sequence
T,+1 canemploy, for example, half of the interior knots of ;, skip-
ping every second interior knot. Having this clear hierarchy, the
user can interactively reduce the domain of influence, effectively
going to more and more fine subspaces, until a subspace is found
where a complete satisfaction of all the constraints can be achieved.
Section 5 presents several examples of multiresolution editing and
control with linear constraints that follows the proposed synergetic
methodology.

5 Examples

The presented synergy between multiresolution control and linear
constraints is equally applicable to periodic B-spline curves. The
manipulated periodic curves necessitate a more careful budgeting
of indices of the linear constraints as the system of constraints is
now derived modulo the number of actual coefficients in the curve.
Nonetheless, nothing is conceptually different when periodic curves
are employedand in this section we mostly employ periodic curves.

All the examples presented in this sections are the results of in-
teractive sessions were the user attempted to directly manipulate
the nonuniform B-spline curves, at various resolutions, and with a
whole variety of linear constraints. The current resolution level and
domain of influence is set by picking a point using the mouse at the
center of the desired domain on the curve, and narrowing and/or ex-
paning the domain under influence using the left and right keyboard
keys.

The cross section in Figure 3, possibly of a fuselage of a plane, is
constrained to present a constant area, and hence eventually a fixed
volume of the plane. Furthermore, and for obvious reasons, the
curve is also constrained to be Y-symmetric. Shown in the figure
are several cross sections that were all derived from the original
curve, in gray, in few seconds, while preserving both the fixed area
and the Y'-symmetry constraints.

The shape of a hand in Figure 4 is constrained to present a con-
stant area, while the five finger-tips are anchored via positional con-
straints. The hand’s outline is manipulated from below affecting
the width of the fingers in the attempt to preserve the total enclosed
area. Both linear and cubic B-spline cases are considered and dis-
played.

The closed cross sections in Figure 5 are also constrained to
present a constant area. A single point is selected and dragged,
resulting in the motion of the entire shape due to the preservation
of this area constraint. Furthermore, other linear constraints could
be simultaneously applied as is demonstrated in this Figure 5.

A curve in the shape of a butterfly is directly manipulated in
Figure 6. This butterfly is a cubic B-spline curve with 49 control
points. Shown in Figure 6 are several samples of editing the curve at
different resolutions, with and without constraints. A Y-symmetry
constraint guarantees the general symmetry of the butterfly while
a positional and a tangential constraints are placed on one wing
(affecting both wings due to the symmetry constraint).

In Figure 7, a curve is constrained to present a constant width by
constraining the position as well as the tangent at the two extreme
width locations. In addition, the curve is constrained to enclose
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a fixed area and be Y -symmetric throughout the editing process.
Shown in the figure are four steps of direct manipulations of the
curve via a select-and-drag operations, all while the constraints are
completely satisfied.

The infamous illusion of two faces vs. a vase has several exam-
ples in Figure 8. These examples where created using a quadratic
periodic B-spline curve in few minutes, with the aid of a Y-
symmetry constraint.

6 Extensions to Freeform Surfaces

The work presented here could be extended to support the same
synergetic view of multiresolution editing control and linear con-
straints for surfaces or even multivariate functions. Multiresolu-
tion control of surfaces has already been demonstrated [Fink94,
Gort95, Kazi97] and the power of linear constraints in shape de-
sign has also been recognized [Welc92]. The extension of the
basic linear constraints from Section 3.1 to surfaces is simple.
The symmetry constraint could also be considered in the con-
text of surfaces along the same lines. Given surface S(u,v) =
Zi Z] PijBi,ku (U)Bjykv (U), where P,‘] = (CE,‘J, y,‘J,Z,‘]), one
can extend the notion of symmetry and say that S(u,v) =
(z(u,v),y(u,v), z(u,v)) is (Compare with Equation (6)),

XY-symmetric if z(u,v) = 2(1 — u,v)
and  y(u,v) =y(1 —u,v)
and  z(u,v) = —z(1 — u,v),
X 7Z-symmetric  if z(u,v) = 2(1 — u,v)
and  z(u,v) =2(1 —u,v) (22)
and  y(u,v) = —y(1 — u,v),
Y Z-symmetric  if y(u,v) = y(1 —u, v)
and  z(u,v) = (1 —u,v)
and  z(u,v) = —2(1 —u,v),

for all v and similarly for » for all u. This form of surface symmetry
is clearly reducible to a set of linear constraints on the coefficients
of the surface, extending the curves’ symmetry case presented in
Section 3.2.

The presented view of an enclosed area as a bilinear constraint
could also be extended to handle the enclosed volume of freeform
surfaces. The decomposition of the area constraint into a bilinear
form is similarly extendible to the volume enclosed by a paramet-
ric B-spline surface. Following [Ocho98], the signed volume V/,
enclosed by parametric surface S(u, v) equals,

dxr oy Ox ay)
V= AT A A 2
/UZ (au v  Ov du dudv, (23)

where U is the parametric domain of
v) = Z Z Pi; Bi g, (u)Bjk, (v),
[ 3

and P,‘] = (CE,‘J,y,‘J,Z,‘J). Then,

/ DD i Buusa () By i (v)
Uy 1y
(ZZx"uyivau,ku(U)Biv,kv(v)
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Figure 3: In thick gray, a periodic planar B-spline cross section is shown that is constrained to be Y-symmetric as well as to present a fixed
area. All the other cross sections where derived from it in few seconds via direct manipulation while the area as well as the Y -symmetry are

preserved. The curve is a cubic periodic curve with twelve control points.

Figure 4: An outline of a hand is manipulated from below while the finger-tips are anchored and the total area is preserved. As a result, the
width of the finger is adapted to the changes from below while the finger-tips are stationary. Both linear (a) and cubic (b) curves are shown.
Starting with the original curve that is shown on the left, the modifications are shown in the middle and in the right side in black with the

original curve shown in thick gray color.
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Figure 5: A periodic planar cubic B-spline curve in gray is directly manipulated and dragged at the selected point to the right along the (solid
curved) path while preserving the enclosed area. Several shapshots are shown. In (a), and in addition to the area constraint, a tangential
constraint is preserved at the bottom of the shape. In (b), a third, additional, positional constraint is added to the top left side of the curve
anchoring the shape to interpolate that location throughout this direct manipulation stage.

Z Z Yiugo Biuku (U)leu,ku (v)

Ju  Jv

=Y i Bik (0B, (0)
Z Z Yjusgo B.;uyku () By, ko (U)) dudv

Ju  Ju
= E E xiu,iu§ E y]uJUE E Pl
Ty Ty Ju Jv lu ly
/Blu,ku(U)Blv,kv(U)

U

(Bl(uyku (U)Bivvkv (U)Bjuvku (U)B.;’Uyk’l/ (U)
= Biw e () B, 1, (V) Bj ke, (0) B, i, (v)) dudv.
(24)

Hence, the volume enclosed by a parametric B-spline surface, in
Equation (23), is reducible to a tri-linear form in the z;,, :,,, Yj.,j.
and z;,, ;, coefficients of the surface S. In a similar way to Equa-
tion (11), one can a-priori compute the integral of the products of
the basis functions in ®, with

Dirusiv usivsusly

= / Bi k. (W) B, k, (v)
U

(B, kw (W) Biy iy (0) By i (w) BY, ik, (v)
— Biwku (W)BI, i, (V) B, 5 (W) By, k, (v)) dudv.

With the aid of this tri-linear form in the coefficient of the sur-
face, during the surface interactive manipulation, one is required to
solve for the linear constraint of the volume in either the z, the y,
or the z coefficients of the surface, in alternating order.
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Figure 6: A curve in the shape of a butterfly (in gray) is directly manipulated. A point on the bottom right side of the shape is moved in the
bottom right direction, following the arrows. A positional as well as a tangential constraint are both placed at the top right of the butterfly, that
is also constrained to be Y'-symmetric. The top row shows the result of multiresolution editing in several resolutions without any constraints
whereas the bottom row shows the same sequence of multiresolution operations with the constraints activated.

LI LESES

Figure 7: A Y-symmetric curve with a constant area has a positional constraint on the left and a tangential constraint on the right. Several
direct manipulation operations are performed while, effectively, these two constraints keep the curve at a constant width, throughout. The
previous operation is shown in gray and the new one is shown in black, from left to right. These examples where created in a few seconds.

In [Welc92], transfinite constraints are defined as integral con-
straints, and the coercion of a curve to be contained in a surface is
presented as one example. These constraints are not always of in-
finite dimension and, for example, this curve on a surface coercion
could be posed as the composition [Liu97] of a curve of degree n
in a surface of degrees m x m, resulting in an interpolation prob-
lem of a polynomial function with degree 2mn. Hence, such a
constraint could be embedded into the paradigm presented herein,
while enforcing 2mn + 1 linear constraints, much like the set of
linear constraints in the case of imposing a symmetry constraint,
that was presented in this work.

7 Conclusions

A possible synergy between two important freeform curve editing
paradigms has been demonstrated. Multiresolution editing control
could be smoothly integrated with a large variety of linear con-
straints. Furthermore, we have introduced two additional linear
constraints, the symmetry constraint that is linear but introduces a
set of  linear constraints, and the area constraint that as a bilinear
form could be employed as an interchangeable linear constraint as
well.

Herein, we have presented the ability to apply one symmetry
constraints only. It might be desirable to apply several symmetry

constraints, simultaneously. Then, each additional symmetry con-
straint reduces by half the number of degrees of freedom of the
shape. For example, a curve with an X- as well as a Y-symmetry
constraints would end up with % degrees of freedom left.

In Section 3.1, we have presented a relaxed set of simple linear
constraints that impose G'* continuity instead of C'* continuity. The
fact that these G style constraints necessitate a simultaneous solu-
tion of the X and Y axes, render them impossible to use in juxtapo-
sition with the area (for curves) or volume (for surfaces) constraints.
This deficiency deserves some more considerations and hopefully
could be resolved in a form of a two stages simultaneous solution,
relaxing one axes after the other.

Rational curves are typically supported by neither multiresolu-
tion editing and control nor by linear constraints. While it is feasible
for both paradigms to support the rational representation, the com-
putational overheads are significant. The expected benefits of using
rational forms instead of polynomial forms in free style shaping and
modeling should be weighed against these anticipated overheads.

We are hopeful that the synergy presented in this work will fur-
ther alleviate the difficulties that the geometric design community
is facing, in attempting to provide interactive as well as intuitive
tools to manipulate freeform curves and surfaces.
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Figure 8: Several examples of the illusion of two faces vs. a vase. These examples were created in few minutes using a quadratic B-spline
curve with 32 control points that is constrained to be Y -symmetric.
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