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Abstract

Metamorphosis, or morphing is the gradual and continuous transformation of one shape into another.
The morphing problem has been investigated in the context of two-dimensional images [1], polygons and
polylines [7, 9, 11], curves [2], and even voxel-based volumetric representations [8].

This work considers two methods of self-intersection elimination in metamorphosis of freeform planar
curves. To begin with, both algorithms exploit the matching algorithm of [2] and construct the best
correspondence of the relative parameterizations of the initial and final curves.

The first algorithm described herein, investigates building and employing a homotopy
H : [0,1] x R?> — RR® where H(t,r) for t = 0 and ¢t = 1 are two given planar curves C4(r)
and Cy(r) and the first ¢ parameter defines the time of fixing the intermediate metamorphosis curve.
The locus of H(t,r) coincides with the ruled surface between Ci(r) and Cy(r), but each isoparametric
curve of H(t,r) is self-intersection free.

The second algorithm suits morphing operations of planar curves. First, it constructs the best corre-
spondence of the relative parameterizations of the initial and final curves. As a second post processing
stage, the algorithm eliminates the remaining self-intersections and flips back the domains that self
intersect.

Keywords: Computer aided geometric design, freeform parametric curves and surfaces, homotopic

curves and surfaces, matching, morphing.

1 Introduction

The piecewise polynomial or rational curves have gained a paramount position as a representation of
choice in many applications of computer graphics, geometric modeling, and vision. Probably the easiest
approach to the metamorphosis of two given curves is the transformation, which is computed using a

convex combination of the curves. Let C;(r), i = 1,2 be two planar simple curves, embedded into IR?,

Ci(r) =A{ai(r),yi(r),i— 1}, relo,1], i=1,2, (1)
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where Ci(r1) = Ci(rg)  iff  ry =1y,

and let the ruled surface R(t,r) be the convex combination of C'y(r) and Cy(r):
R(t,r) = (1—1)-Ci(r) +t-Cy(r), (2)

(t,r) € D =[0,1] % [0, 1].

Regrettably, this naive approach can lead to some undesirable results: varying ¢, the intermediate shapes
during the metamorphosis process can vanish (that is, degenerate into a point) or self-intersect even if the
two given curves (shapes) are self-intersection free. Hence, most of the research of metamorphosis of two-
dimensional curves and three-dimensional curves and surfaces has been concentrated on the elimination of
these undesired artifacts from the computed metamorphosis.

In [9] and [10], piecewise linear curves or polylines are metamorphed by deriving a heuristic algorithm
that takes into account the angles between adjacent edges as well as the length of the edges. In [11],
the geometry of both polylines is preprocessed into an intermediate representation called a skeleton which
contains the topological information of the shape and simplifies the correspondence problem between the
two shapes. 1In [7], multiresolution decompositions of the two (closed) polygons are precomputed and
a metamorphosis sequence is computed between the representations in the different resolutions of two
curves, only to be combined into the final metamorphosis result, in the end. In [12], one can find the
attempt at the morphing of three-dimensional polyhedral models using intrinsic shape parameters.

All the above work exploits piecewise linear polygons and polylines as a representation of choice, hinting
on the difficulty in extending this work to freeform curves. Even under these piecewise linear constraints,
none of the above algorithms can guarantee a self-intersection free metamorphosis.

In [5], the question of the feasibility of an automatic metamorphosis between two freeform curves is
raised. The metamorphosis, which uses a multiresolution decomposition (extending [7] to freeform B-spline
curves), and the metamorphosis using edge cutting are considered. The latter assumes, that the highly
curved regions are more likely to self-intersect during the metamorphosis stage than almost zero curvature
domains, so one can attempt and reduce the curvature of the curve at the highly curved regions first.

A fundamental and related question considers the relative parameterization of the given two curves in
order to avoid the undesirable effects of self-intersection or vanishing of the curves. In [2], a scheme that
closely approximate the optimal relative matching between two or even n given freeform curves, under a
user’s prescribed norm that is based on differential properties of the curve, is represented.

In this article and following the background introduced in Section 2, two approaches of solving the
self-intersection elimination problem in the metamorphosis of freeform planar curves will be presented.

Both of them exploit the matching method of [2] to better form a self-intersection free morphing at the
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preprocessing stage. In Section 3, the first approach is presented that uses the reparameterization along the
time domain of the ruled surface R(t, r) (see Equation (2)), which is the locus of convex combinations of the
two given curves. The second algorithm that is introduced in Section 4 suits planar morphing operations.

Finally, we conclude in Section 5.

2 Background

Definition 1 Let S be a locus of R(t1,r1) = R(ta,r2), for ri,ry € [0,1] and ry # ro. In other

words, S is the locus of the self-intersection points of the ruled surface R(t,r):

S:{PER(t7T‘)|E|T‘1,T‘2€[071]7 7‘1#7‘23 R(t17r1):R(t27r2):P}. (3)

In this work, we aim to guarantee that isoparametric curves {R(tq,r), to = const, r € [0,1]}, are simple

or self-intersection free.

Assumption 1 Assume that for any point P € S in the Fuclidean space, there are no more than two
different points in the parametric domain D, which occupy P. While, in general, one can clearly find more
than two points intersecting at a single point P, this case is extremely unlikely and will be ignored from
now on. Furthermore, these cases of multiple coincidence may be treated in a similar way to the presented

approaches.

Hence, in the ensuing discussion, for any self-intersection point of the ruled surface P € R(t,r) there
are exactly two points in the parametric domain D, that occupy P in IR®. Denote each such pair of points,

at the same time value as mirror points:

Definition 2 Two points (t,r1) and (t,r3) in the parametric domain D are mirror points iff
R(t,r1) = R(t,r2) and ry # ry. Without loss of generality, assume ry < rq. Then, (t,r1) is

called the left mirror point, and (t,ry) the right mirror point.

The mirror points have a crucial topological behavior (see Figure 1). Denote by §;, i = 1,2,3,4, the
parameter values, that are small preturbations of parameters s;. That is, §; = s;4+¢;, whereg;, 1 = 1,2, 3,4,
are user’s prescriptions (see Figure 1). £; will be employed in the coming sections for a better control over

the elimination of the self-intersections. Then,

Definition 3 Consider the isoparametric curve C'(s) = R(to,s) of the ruled surface R(t,s),
where s € [0,1],tg = const, and s is an arc length parameterization.

If {(to, s1), (to, s2)} and {(to, s3), (to,s4)}, S1 < s3 < s4 < Sy are two adjacent pairs of two
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()

0(871) = C(Sl — 61)

Figure 2: Shown are two parallel segments of the curve C(s), [C'(s1),C(s3)] and [C'(s3),C(s4)], where
$1 < 53 < 84 < 89, P=C(s1) =C(s2) and Q = C(s3) = C(s4) are the two mirror points, and C'(s) and
C'(sp) are the two parallel points.

mirror points on C(s), P = C(sy) = C(s3) and Q = C(s3) = C(s4), then the segments
[C'(s1),C(s3)] and [C(s4),C(52)] of the curve C(s) are denoted as parallel segments (see
Figure 2).

Definition 4 If [C'(51),C(53)] and [C(s4),C(53)] are the parallel segments of the curve C(s),
then for any s € [s1, 53] U [s4, 53] the parallel point of s, s, (see Figure 2) is defined as:
S3—351 (4)
i 4 (2miBoq) if s4 < s < sy

52—54

g — Lmsilmsa) yr o <o < g
Sp:

Section 2.1 considers a method to locate the set S, or the self-intersection points of the ruled surface

R(t, s) between two planar curves C(r) and Cy(r) (see Figure 3).
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Figure 3: Self-intersection on the ruled surface between a horse (topin (a)) and an elephant (bottom in (a)).
The resulting ruled surface between the two outlines self intersects. The resulting self intersection curve,
near the tail, is shown in (a) in gray color. Also shown in (a), in a dotted line style, is one intermediate
isoparametric curve of this ruled surface that self intersects near the tails. (b) shows an enlarged view of
the self-intersection area between the two tails.

2.1 Self-Intersection Curves of R(t,s)

We are interested in the elimination of the self-intersections in the ruled surface R(t,r) between Cy(r)

and Cy(r), when they occur for the same value of the parameter ¢, and different values of the parameter r.
Lemma 1 R(t,r) = R(t,r2), (t,r1),(t,r2) € D, iff there exist d < 0 such that,

(Ci(r1) — Ci(r2)) =d-(Ca(r1) — Ca(r2)). (5)

Proof: Fort =0 or t = 1, R(t,r) does not self-intersect, since C'y(r) and C3(r) are known to be simple
curves.
If R(t,r1) = R(t,rs) for some t € (0, 1), then
(1—1)-Ci(r1)+t-Co(r1) = (1 —1t)-Ci(re) +1t-Cs(rg),
or, in other words,
Ci(r1) = Ci(ry) = 155 - (Ca(r1) = Ca(ra)).
Let d be L. Then, for t € (0,1) we have d < 0, t = 7%= and (Cy(r1) — Cy(r2)) = d - (Ca(r1) — Ca(r2)).

Recall that the curves C4(r) and Cy(r) are planar. Then, we have: R(t1,r1) = R(ta,ro) iff t; = t3 =
L€ (0,1) and Equation (5) holds.
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Figure 4: In (a), the z component of the symbolically computed vector field of L(ry,rz) is shown. The
zero set of L,(ry,r3) is also shown in (a) in a gray color. This zero set is employed in (b) to detect the
self-intersections (in gray color) in the original surface R(t,r).

Corollary 1 The condition of Lemma 1 is equivalent to:

R(t, 7‘1) = R(t, 7‘2)7 V(t, 7‘1)7 (t, 7‘2) € D,

iff,
0
L(r1,r2) = (Ci(r1) — Ci(r2)) X (Ca(r1) = Ca(r2)) = | 0 (6)
0
and,

(Ci(r1) = Ci(ra), Ca(r1) — Ca(ra)) <0.

Assume, C;(r) are constant z curves. Then, the surface L£(ry,r3) has only one non zero component, i.e.
Ly(ri,re) = Ly(ri,r2) =0, Vry,rg €0, 1].

In order to detect and compute all self-intersection points of the ruled surface R(t,r), L(ry,r3) is
symbolically computed from the bivariate vector fields of the two surfaces of Sy(r1,r2) = Ci(r1) — Ci(r2)
and Sy(ry,r2) = Co(r1) — Ca(re) (see [6]), and the zero set of the z component of the surface L(ry,r3) =
Si(r1,r2) X Sa(r1,re), L.(r1,r2) is derived resulting in the set S (see Figure 4).

Once the zero set of £, (rq, r2) has been computed, One can derive d using Equation (5) and then derive
t. With the computed ¢, the self-intersection points in IR* can clearly be derived as (1 —t)C' (r;) +tCa(r;),
i = 1,2. Figure 4 (a) shows £, (r1,r2) as well its zero set along with the self intersection in R® in
Figure 4 (b).

The matching algorithm for freeform curves of [2] between the two given curves, is applied in both

algorithms that are described in the following Section 3 and Section 4 as a preprocessing stage. It is com-
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Figure 5: A Morphing sequence between an elephant (bottom right) and a horse (top left), using a naive
convex combination of the initial and final curves (1 —t) - Cy(r) 4+t - Cy(r). Compare with Figure 6.

pletely automatic and has been successfully employed in different metamorphosis applications of freeform
curves with feature preservations. The usefulness of the approach of [2] can be appreciated by comparing
Figures 5 and 6. Section 2.2 describes the basic scheme of [2].

Creating intermediate curves as convex combinations of the two input curves, C'(r) = R(to,7),to €
[1,0], following Equation (2), one should correct for remaining self-intersections, if such occur. The self-
intersection elimination stage is discussed in Sections 3 and 4. The algorithms described in these section

use the freeform curve matching algorithm of [2] that is briefly reviewed in Section 2.2.

2.2 Matching of Freeform Curves

The algorithm of [2] matches the relative parameterizations of two or more freeform parametric curves,
using their first order differential properties. In our case, it is enough to use only the tangent fields of the
given curves, the unit vectors T} (r) = % and Ty(v) = %

Consider the inner product of the unit tangent vectors. When the inner product of Ty (r) and Ty(r) is
maximal, that is (T (r),T5(r)) = 1, then the tangent vectors of C'i(r) and Cy(r) are parallel at r. If the
tangents of the curves are parallel throughout the entire parametric domain, then (Ty(r), T2(r)) = 1,Vr €
[0, 1], and we say that the two curves are completely matched. Typically, this is not the case and one only

requires the inner product of the tangent vectors to be positive throughout the curve’s parameterization,

(Ty(r), T2(r)) > 0, Vr € [0, 1], creating a valid parameterization. By Lemma 1, it is clear, that no self-
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Figure 6: A Morphing sequence between an elephant (bottom right) and a horse (top left), using con-
vex combination of the initial and final curves after the application of the curve matching algorithm [2].
Compare with Figure 5. Note the remaining self-intersection near the tail.

intersection can occur in the intermediate metamorphed curves if the parameterization of the initial curves
is valid. Therefore, one can reformulate the reparameterization problem, by maximizing the following

functional:

max/ol (T (), To(v(u))) du,  v(0) =0, v(1) =1,

v(u)
where v(u) is a regular change of parameter.

If a valid match between the two given curves exists, then the algorithm of [2] guarantees not only to
find a match, but also to compute the best match out of the set of possible valid matching. Figure 6 is the
result of exploiting this algorithm. Compare it with the Figure 5.

Regrettably, the algorithm cannot prevent self-intersections if no valid match can be established. More-
over, this algorithm cannot eliminate global self-intersections as in Figure 6. In such cases, one must correct

the results, using some other approaches, two of which are described in this paper in the coming sections.

3 The Time Variance Algorithm

All of metamorphosis methods that were discussed in Section 1 employ continuous transformations, that can
be considered as homotopic transformations H : [0,1] x IR* — IR, where the first parameter coincides

with the time of fixing the curve. For metamorphing of curves, we have: H : [0,1] x [0,1] — R?, where
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(tov 7?)

S~ AM(ST

Figure 7: Suppose that S™!' = {(t,r) € D | R(t,r) € S}, (to,r1) and (to,r2) are two mirror points in the
parametric domain D, such that R(tg,r1) = R(to,r2) = Ro M(tg,r1) # R o M(tg, rs).

the second parameter corresponds to the parameter on the given curves.

Herein, the homotopy H (¢, r) connects the two given curves in the three-dimensional space and lies on
the ruled surface R(t,r) between the given curves — that is H(t,r) = R o M(t,r), were M(t,r) is some
surjective continuous function M : D — D, satisfying the following condition: if (tg,r1), (fo,r2) € D are
two mirror points of R(t,r), then R o M(tg,r1) # Ro M(to,r2). The graph of the convex combination of
the given curves is identical to the graph of the surface R o M(t,r). Nevertheless, for any given ¢ € [0, 1],
the Euclidean location of the point R o M(t,r) may be different from R(¢,r) in order to avoid the cases of
self-intersections of the curve H (tg,r), at any given tg € [0, 1].

We seek a C° continuous surjective deformation M : D —s D, that satisfies the following conditions

(see Figure 7):
1. If (to,r1), (to,r2) € D are two mirror points of R(t,r), then Ro M(tg,r1) # R o M(tg,rs).
2. M(t,r) = (t,r),¥r €[0,1], t = 0,1, two initial boundary conditions on C;(r), i =1,2.

3. If Cy(r), ¢ = 1,2 are closed curves, then M(t,1) = M(t,0), Vt € [0,1]. Continuity condition for

periodic closed curves.

One possible simple construction for this M deformation follows. Let (tg,71), (to,72) € D be mirror

points, 1 < rg and let rip == "2'7’ . Then:

M(to, T‘) =

(to7 T‘) lf r S 712,
{ (7)

(A(to,r),r) otherwise,

where A : D — [0,1] (see Figure 8) is selected to be a C° continuous increasing function of the first time
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t
1 °
to . Alto, r12) A(to, 1)
tp
0 A to, 7‘2)
0 . . . . "
™ T19 = _7’1-|2-7’2 ] 1

Figure 8: A(to,r), to = const, r € [0,1].

parameter, for any fixed value of the second parameter r and any p > 0:

t, if r S 712,
A(t, T‘) = 7»22__7,:2 -1+ :2__7;,1122 ' tp7 if 12 S r S T2, (8)
— 1— .
;_;z-t—l—ﬁ-tp, if rg <pr < 1.

Function A(f,r) may be non linear or even a Bézier or a B-spline function of r. A(f,r) is an allowable
change of the parameter for any r = const isoparametric curve of the ruled surface R(t,r).

Inspecting R o M(t,r), the geometric shape of R(t,r) is completely preserved by the deformation, so
S continues to be the locus of self-intersection points of R o M(t,r).

Nevertheless, following the deformation M, all existing mirror pointsin R(t,r) would vanish, effectively
removing these self-intersections from the isoparametric curves of R(tg,r),to = const. Yet, one should recall
that these isoparametric curves are only intermediate steps in the planar curves’ metamorphosis, and are
now three-dimensional. One need to project these three-dimensional curves onto the XY plane.

Figure 10 shows a naive metamorphosis sequence, generated using convex combination of the tail of
the elephant and the horse (with parameterization that differes slightly from the one of whole animals)
from Figure 6. Figure 11 shows the projection of these curves on XY plane after the application of the
reparameterization function M(¢,r).

Hence, expecting the intermediate curves of the morphing process to be planar as well, one must
find some projections to the plane, that preserve the self-intersection free property in the intermediate
three-dimensional curves and provide the entire metamorphosis sequence in the two-dimensional plane.

Section 3.1 considers several such projections.
3.1 Projections

One simple projection to a plane, could be an orthogonal projection of the three-dimensional non planar
curve onto some plane P along a projection direction that would guarantee a self-intersection free curve

(see Figure 9), in each of the intermediate curves. Then, it might be possible to find a continuous transition
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Figure 9: (a) and (d) are the tails on the initial and final curves of R(t,r) from Figure 3 of the elephant
and the horse respectively, (b) shows one of the isoparametric curves of Ro M(tg, 1), to = const, r € [0, 1],
after the deformation M has been applied to R(t,r), and (c) is the orthogonal planar projection of the
curve (b), that is self-intersection free. The Frenet frame shown in (b) and (¢) can be used as well as a
non linear projection along the binormal direction B(s).

of such planes as a function of the time, t. The homotopy would consist of the composition of Ro M(t,s)
and projections onto a set of continuous planes P(¢).

Unfortunately, this method is difficult to use. Such planes are not guaranteed to exist for a whole
composed curve, RoM(tg,r), enabling a projection that is self-intersecting free. Other Possible alternatives

may be,

1. Consider the projection of the curve C(r), C' : [0,1] — IR®, onto its osculating plane, which
moves along the curve together with the modified Frenet Frame, which rotates smoothly at inflection

points [3]. See Figure 9.

2. Assign for each point of the curve C'(r) a vector V(r), to be used as the projection direction. V (r) must
be orthogonal to the tangent plane of the segments, where the curve is planar, in order to preserve the
geometric features of these parts of the curve. These projection directions can be set as a vector field,
V(r), for C'(r) = R(to,r), the curve could be projected to some plane along the corresponding vectors
in V(r). Interestingly enough, the placement of the plane of the planar projection has a significant
effect on the end result, including the delineation between the ability to eliminate self-intersections
and their possible existence. If the projection direction is equal to the binormal vector field, B(r)

(see [4]), of the curve C'(r) (see Figure 9), methods 1 and 2 coincide.

3. Define the projection direction V' (s) as V(s) = T(s) x [C(s,) — C(s)], where T'(s) is the tangent

vector of C'(s) and points s and s, are parallel (see Definition 4).

In Figures 10, 11 and 12, one can find an example of the metamorphosis of the two tails from Figure 6
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Figure 10: A Morphing sequence between the tails of the elephant (top left) and the horse (bottom right)
using a naive convex combination of the initial and final curves (1 —t) - Cy(r) +t - Cy(r). Compare with
Figures 11 and 12.

that were generated with the aid of the time variance algorithm after an orthogonal projection along a set

of planes P(t), when the P(t) is defined by the following:

Po, if 0<t<ty
) Po- 2=t 4Py f=t L ity <t <ty o
t) =
P t;fZ)—_t; + P ti_—tt11227 if 110 <t <ty

Po- 15 + Po- fams, i<t <1

where

Po={(,9,2) € B| = = 0},
Pr={(z,y,2) € R*] 0.439- 2 — 0.415 - y + 0.797 - = = 0},

Py ={(2,y,2) € R? 0.356 -2 — 0.545 - y + 0.759 - z = 0},

t1+to
5=

_ 1 5 _
and t; = 5, ty = 3, l1g =

4 The Flipping Algorithm

The second approach at self-intersection elimination assumes the metamorphosis of planar curves. One

can start by applying the matching algorithm for freeform curves of [2] between the two given curves (see
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Figure 11: A Morphing sequence between the tails of the elephant (top left) and the horse (bottom right)
using a naive convex combination of the initial and final curves (1 —t) - Cy(r) 4+t - Cy(r) after the time
variance algorithm. Compare with Figures 10 and 12. Note, this figure is an orthogonal projection of 3D

S
A7 LG
A\

Figure 12: A Morphing sequence between the tails of the elephant (top left) and the horse (bottom right)
using a naive convex combination of the initial and final curves (1 —t) - Cy(r) 4+t - Cy(r) after the time
variance algorithm and the orthogonal projection on the set of continuous planes P(t), described in the
Equation (9). Compare with Figures 10 and 11.

DA

BN
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Figure 13: In this figure three points of S can be found on the isoparametric curve C'(s) = R(tg, s), to =
const, s € [0,1]: P, = C(s1) = C(s2), P, = C(s3) = C(s4) and P35 = C'(s5) = C(sg), where s3 < s1 < 85 <
sg < 89 < 84, the fourth point Py = C(%) is selected to form the second pair of self-intersection points.

Section 2.2). Regrettably, as we have seen before, this algorithm cannot guarantee self-intersection free
metamorphosis of the two given planar curves. A second self-intersection elimination method is presented

in this Section.

4.1 Self-Intersections Elimination

We are interested in modifying only the curves, that contain self-intersections, and only in a local way,
preserving the well behaved regions of the curve. The following method is automatic, and can be effectively
used with any regular planar curve. It provides the user with the freedom to set the domain of the
curve, which will be affected by the algorithm, and the minimal distance between the end points of the
parallel segments, of the curve, affected by a correction amount and arc length of the deformation:
& = min{||R(to, s1) — R(to, s2)l, || R(to, s3) — R(to, S4)||} and { = max;{¢;} (see Figure 2). The end result
is controlled via the modifications of these degrees of freedom (compare Figure 16 and Figure 17).

The flipping algorithm operates in two phases. First, the algorithm finds pairs of two-dimensional points
in §, and orders them according to the value of the arc length parameter s of the curve. If Py, P, Ps € S
and P, = R(to,s1) = R(to,s2), P = R(to,s3) = R(to,s4), and P35 = R(to,s5) = R(to,ss), where
83 < 81 < 85 < 8¢ < Sg < 84, then the first selected pair is { P, P1} (see Figure 13 (a)). If there is only
odd number of such mirror points, Py = R(to,s7) = R(to,ss) € S, then the second point, which will be
selected for the last pair, will be Ps = R(tg, 21%2) (see Figure 13 (b)).

In the second phase, one selects a smooth functions F to flip the parallel segments of the curve,
corresponding to these pairs of mirror points.

For example, if the selected pair is {P2, Pi}, where P, = R(to,s1) = R(to,s2), P» = R(to,s3) =



Self-Intersection Elimination in Metamorphosis Samoilov and Elber 15

Figure 14: A(s) function for the parallel segments [s1, s3] and [s4, $3].
R(to, s4), 83 < s1 < 83 < S4, then F may be defined in the following way:
F o R(tg,s) = R(to,s) + A(s) - (R(to,s) — R(to, sp)),

where s, is a parallel point of s. Let Ay, = || R(to, %) — R(to, %)H Then,

o [1_|M|} Apmae 53 <5< 8,

51—83
_ 25— (55452 e _
A(s) = a-{l—|%|} Apar 1S3 <5< 8y,
0 otherwise.

Here the parameter a € IR™ is used to control the amplitude of the A(s) function. See Figure 14 for the
shape of A(s). One can clearly be given control over £;,7 € {1,2,3,4}, as well as the shape and intensity
of the smooth flipping function F, choosing & = min{|||R(to, 51) — R(to, $3)||, || R(to, 52) — R(to, sa)||}.
¢ = max;{e;}, and possibly letting the function A(s) to be non-linear, for example a Bézier or a B-spline
function (see Figures 16 and 17).

Finally, note that the two parallel segments are translated by F in the opposite directions as s and s,

are exchanging their positions (see Figure 15).

4.2 Continuity of the Flipping Function F

The continuity of the metamorphosis is a necessary requirements. Hence, the flipping function F must be
continuous in both parameters — ¢ and s.
It is obvious that the flipping function F is continuous as function of the second parameter for any fixed
time parameter between zero and one (one could select a function A(s) with desired degree of continuity).
The function F is also continuous as a function of the parameter ¢ for any fixed value of the parameter
s for the segment [t1,%2], when for every tg € [t1, 3] the isoparametric curve C'(s) = R(to,s), s € [0,1]

is not simple (self-intersects) or when for each ty € [t1,t2] the curve C'(s) = R(to,s), s € [0,1] is simple.
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Figure 15: The flipping function F of the parallel segments of the curve.

Nevertheless the flipping function F is not continuous on the boundary of the self-intersection region of
R(t,s). If an isoparametric curve self-intersects, then the function F modifies the curve by some amount
& while F leaves unmodified self-intersection free isoparametric curves with close t-values. Therefore, one
should smoothly interpolate between the isoparametric curves on the boundary of the self-intersection
regions, i.e. to treat self-intersection free curves as well, for instance, as long as the offset curves C'(s) =
C(s) — % - N(s) self-intersect, where N (s) is the unit normal vector of C'(s). If the curve C'(s) is not simple,

than the following curve may be taken as the intermediate curve of the metamorphosis:

Ci(s) = C(s) + g Ao - N (s).

5 Conclusions

In this article, we have presented two algorithms for correcting self-intersections in the metamorphosis of
simple freeform curves. The aim of these algorithms is to eliminate self-intersections in the intermediate
curves, which occur during the metamorphosis of two simple planar curves employing convex combination.
The first algorithm returns three-dimensional curves as a result of a reparameterization of the time in a
homotopy that should be projected onto a plane as a post process. The second method returns simple
two-dimensional curves at each step of the metamorphosis of the given curves.

One can extend the Time Variance Algorithm, and metamorph three-dimensional curves and even
freeform surfaces. In the case of metamorphosis of surfaces, one must add one more time dimension, and
now deal with a trivariate ruled (or possibly even general) hyper-surfaces R(u,v,t) in R*. Then, one
can construct a similar deformation to the one described in Section 3 and create a self-intersection free
morphing in IR*. Some projections of the hyper-surfaces into the three-dimensional Euclidean space should

be sought, as a second post process step.



Self-Intersection Elimination in Metamorphosis Samoilov and Elber 17

213534
213038
SEREL
=3935
203035

Figure 16: A Morphing sequence between an elephant (bottom right) and a horse (top left), after the
Flipping Algorithm was used with & = 0.2% of the total curve’s length (the minimal arc length between
the end points of the parallel segments of the curve) and ¢ = 0.35% of the total curve’s length. A(s) is a
cubic Bézier function. Compare with Figures 6 and 17.

HEREL
=SEREL
SEREL
=2)303%
213035

Figure 17: A Morphing sequence between an elephant and a horse, after the Flipping Algorithm was used
with € = 0.5% and ¢ = 0.55% of the total curve’s length. A(s) is a cubic Bézier function. Compare with
Figures 6 and 16.
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This work assumed a topological similarity between the two parametric curves, considering simple
curves with single loops. The blending of two freeform curves of different topologies continues to be an
eluding task.

Finally, one should consider a more general extensions to both the Flipping and Time Variance Algo-
rithms. Seeking a general, non linear, surface S : [0, 1] x [0, 1] — IR?, with the first time parameter ¢, while
employing isoparametric curves S(fg,r) as the mid-curves of the continuous morphing process. If S can be
made self-intersection free, clearly the metamorphosis would be self-intersection free as each isoparametric

curve S(to,r), to = const, r € [0, 1] is self-intersection free.
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