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Abstract

Two schemes for computing moments of free-form objects are developed and analyzed. In
the first scheme, we assume that the boundary of the analyzed object is represented using
parametric surfaces. In the second scheme, we represent the boundary of the object as a
constant set of a trivariate function. These schemes rely on a pre-computation step which
allows fast reevaluation of the moments when the analyzed object is modified. Both schemes
take advantage of a representation that is based on the B-spline blending functions.

1 Introduction

Moments of objects are intrinsic to the shape. Thus, the ability to compute moments is
necessary in a vast range of applications. Moments of inertia are used in mechanical design
and analysis. For example, in the design of aircrafts, ships, and automobiles the computation
of moments of inertia (and products of inertia) are employed toward the determination of the
dynamics of the vehicle. Moreover, in these application areas, B-spline surfaces are now the
standard representation used in design.

Moments of inertia are even used in animation of human characters [7, 8]. In [7, 8], con-
trol systems for human characters that perform several motion operations such as running,
bicycling, or vaulting are considered. The animation processes require several successive reeval-

uations of parameters that are described by equations, taking into account the moments of



inertia of different body parts [8]. Moreover, in [7] the authors describe algorithms for auto-
matically adapting existing simulated behaviours to new characters and require moments of
inertia of the different body parts toward this end as well. A metamorphosis animation from
a man to a woman was performed by creating intermediate models and relying on linear in-
terpolation of the moments of inertia of the simulated body parts. Another useful application
of moments can be found, for example, in optical character recognition systems [1]. Being
intrinsic, moments of inertia can clearly be used in other object recognition applications; see
[15] for a survey.

The literature on the computation of moments is vast. Work that deals with the problem
of fast computation of moments in different models can be found, for example, in [10, 14, 18].
In [14], the authors describe a model in which the volume of solids bounded by subdivision
surfaces can be approximated. They sketch an extension to the evaluation of higher-order
moments as well. However, in [14] the stress is on the subdivision process that the authors
manage toward the volume estimation technique and its complexity.

In [10], the authors define the (p+ ¢ 4 r)th order moment as
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[10] only deals with uniform density objects that are represented in uniform resolutions. A com-
putation model is presented in which moments are evaluated with no need for multiplications,
given uniform density objects and uniform resolution. The trivariate expressions of zPy?z",
required in the moments definition, are computed in a preprocessing scheme. In order to com-

pute m, , ., one is required to compute all the moments m, , ,» where p’ < p, ¢ < q,7" <.



[10] presents a sequential algorithm, a parallel one, and a VLSI chip design which performs the
computation. There is no generalization to the computation of moments of objects in higher
dimension, although it is possible.

In [18], the authors use a variant of the discrete divergence theorem that is featured in
[4]. The computation is based on discretization of spels (space elements) of the domain of
an implicit function which describes the boundary of the object. The authors admit that
this method is sensitive to noise and discretization errors. The algorithm assumes a pre-
computation stage that performs surface tracking. The input of the surface tracking algorithm
consists of a point on the surface. Moreover, due to the surface tracking stage, the proposed
algorithm assumes that the input objects have no holes. An O(N?) complexity algorithm is
claimed for convex objects. As in [10], in order to compute m, , ., one is required to compute
all the moments m, ,,» where p’ < p,¢" < ¢,r" < r. This algorithm can be generalized for
higher dimension objects.

Other related results are [5] and [2]. In [5], the authors assume that the input is a free-form
object bounded by parametric surfaces. They employ the Stokes theorem of [4] to transform
the computation of moments using integrals on volumes to integrals on the surface boundaries,
of the input objects. In [2], the author reformulate the computation of the area/volume of
an object enclosed by a parametric B-spline curve/surface as a bi-linear/tri-linear form. This
computation is also based on the Stokes theorem.

In this work, we propose two schemes toward the computation of moments of objects
represented in 1) free-form polynomial or rational surface geometry or 2) via constant sets of
trivariate polynomial or rational volumetric functions. We will refer to the first scheme as the
surface scheme and to the second one as the wvolumetric scheme. In the surface scheme, we

assume that the input object is bounded by a set of parametric B-spline surfaces whereas in



the volumetric scheme we assume that the boundary of the object is defined as a constant set
of a trivariate B-spline function. For both representations, a major portion of the computation
could be performed a priori, allowing efficient reevaluations of moment during actual use.

B-spline blending functions are widely used in geometric modeling [3]. These polynomial
or rational functions offer many attractive properties such as refinement and subdivision op-
erations, and local support. Given an object that is represented using parametric B-spline
surfaces, there exist some work that deals with the computation of volumes, see [2]. Objects
represented using parametric Bernstein-Bézier forms are considered in [5]. The results in [5]
could be improved and extended with the proposed pre-computation that is suggested in this
work, following ideas from [2].

The presented surface scheme has the advantage that one can employ non-uniform B-spline
functions with different orders in any direction and several resolutions, thus the presented
surface scheme is more general than the models known in the literature until now. The
presented volumetric scheme is mostly usable in the context of uniform knot sequences while
the ability to employ non-uniform knot sequences is available at extra computational cost.
Interestingly enough, the volumetric scheme allows one to compute the moments of objects
with varying densities. In the case of uniform B-spline blending functions and coefficients along
an uniform three dimensional grid, the computational demands could be greatly decreased and
significant portions of the computation could be made a priori.

This paper is organized as follows. Section 2 reviews the concept of zero moments, defines
the notation used for B-spline functions, and contains a description of the approach that we
develop in the following sections. Section 3 lays down the algorithmic approach that we take
toward the computation of moments for objects bounded by free-form parametric surfaces.

The approach toward the computation of moments of objects bounded by constant sets of



trivariate functions is described in Section 4. In Section 5, we go into the details of the
implementation of the volumetric scheme for uniform B-spline functions. In Section 6, we
present some examples and a comparison between the results computed by our algorithms and
values that were derived discretely as well as analytically, for different objects. Finally, we

conclude in Section 7.
2 Background

Let B, r(t) be the ith B-spline blending function of order k (degree k — 1) defined over
knot sequence 7. Hereafter, we will simply employ B, (t) or B; (t) to denote B, j, r(t). Given
surface S(u,v) = 32,37 Py Bik, (w)Bjr, (v), Py = (245, ij, 2i), the direction of the normal,

N, of S(u,v) = (2(u,v),y(u,v), z(u,v)) is:
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having N' = (N, N, N,). Following [5], the signed zero moment M,, or the volume V,

enclosed by the parametric surface S(u, v) equals,

o B oz dy Oz dy
MQ—V—/[]ZNZ(U,U) dudv_/[],Z(%%—%%) du dv (2)

where U is the parametric domain of S(u,v). In [2], the author derives (2) for B-spline surfaces

as follows:
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This reformulation of the volume allows one to rewrite (2) as a tri-linear form in 2;_;,,y;. j.,

and 2, ;. Let
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and let

0
i iy dudodids = /¢z dvsdurdubusle (u,v) du dv.

Then, with the assumption of a pre-computation of the values of ®! that solely
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depends on the function space containing S(u,v), one can reevaluate the volume of surface

S(u,v) as a tri-linear product of the coefficients of the surface, P,;:
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As long as the function space of S(u,v) is fixed, i.e. the same knot sequences and orders,
@ i1, remains the same. Moreover, a change in a few control points amounts to the
reevaluation of (4), for the modified coefficients and terms only.

We will employ a similar scheme to compute moments of higher orders, in the following

sections. Expanding N, in (1), we have,

ox 8y oz 8y
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where,

Vivivguge W, 0) = Bi . (u)Bi, k, (0)Bj, k., (u)Bj, . (v)

= Bi,p, (W) B, ., (V) B} i (1) By, x, (v).
Moreover, ¢f . . (u,v) = By, () Bi, k, (V)i i, 4.4, (4, v) (see Equation (3)).
3 Moments of Free-Form Surface Geometry

In subsection 3.1, first order moments will be considered whereas in subsection 3.2 second
order moments are discussed. The extension to higher order moments is fairly simple and

follows similar guidelines.
3.1 Computation of First Order Moments

Following [5], the first order moments of an object enclosed by parametric surface S(u,v) can

be expressed as:

M, =[xz N, dudv,
My = [,y z N, du dv, and (6)
Ms= [, % N, du dv.

Then, by substituting A, (u,v) from (5) into Equations (6),
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1 _
¢Zuylv7]u7]vyluylvymuymv /¢Zuylv7]u7]vyluylvymuym ( ,v) du dv,

and

gu,iv,ju,jv,lu,lv,mu,mv (u,v) = Bmu,ku(u)Bmv,kv(U)Blu,ku(U)Blv,kv(v)%u,iv,ju,ju(uv v).

Following the computation of M, the values M5y and M3 can be similarly derived as,
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My My lu 1y [ Ju  Ju

and
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. can be pre-computed, once the function space of the surface S(u,v) is

determined. That is, the knot sequences and the orders of the surface are set.

3.2 Computation of Second Order Moments

Following [5], the second moments of an object enclosed by parametric surface S(u,v) can be

expressed as:
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Then,
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= B,k () B, k,(0) Bk, (0) By, ke, (V) Br, ke, (W) Br, g, ()
Vi iy judn (U, V).

Similarly, the values of M, My3, Mys, Mss, and Mass could be evaluated into:
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The computation of the ® functions demands the ability to compute products and integrals

of B-spline basis functions. See [9, 13] for several ways to evaluate these operators in the B-

spline domain.

4 Moments of Trivariate Based Geometry

In subsection 4.1, we will introduce several key results that will be employed in subsection

4.2 toward the computation of the moments. These key results are the evaluations of higher

order moments of one dimensional objects. That is, they are integrals on products of B-spline

blending functions with monomials.
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4.1 Integration of Products of B-spline Blending Functions
With Monomials

Assume [t,, t,y1) is the last nontrivial interval of some B-spline function, and denote by z‘

the ith power of 2 while 2(*) denotes the ith derivative of z.

Proposition 4.1 The following identities hold:
[ Buatoyin = 2 ZBW U

J

z - z “ s _t
/tBZEk( )dt = +k (tE Bjq1(t) =Y Byt Z +Z+—|1- 1 )) (8)
=i

Proof. Equality (7) is proved in [9]. We will prove the identity (8) here.

The derivative of a B-spline basis function equals [3]:

B;j_1(t) B Bz’+1,k—1(t)]
ko1 —ti bk —tign ]

Bl = (k=1 [;

It follows that

Ligh—1 — b

Bi w1 (t —'Bl . (t Biyi e (1),
k-1(t) 1 z,k()‘|‘ti+k_ti+1 +1-1(t)
or
e (t) = Bl (1) + B (1) (9)
k Livkt1 — Liga

Multiplying both sides of Equality (9) by ¢ and integrating, we have,

t; =1
/tBZ,k(t)dt = /t th BZ’,CJrl dt+/ 7Bi+1,k(t)dt
k Lithe1 — L1

ti - tz ) - tz
= Tl [
k ’ Livktr — it

/ t By (1),

Applying (9) successively while 7 < m, one obtains,

tigk — 1
/tBlk( )dt Z*’“ Z /tB;k+1 )dt + til/th,k(t)dt.

m+k T tm

Multiplying Equation (9) by t and integrating for the last nontrivial domain [t,,, t,,41) we have

/thyk(t)dt = /tt”“’%B;MH( )dt

11



and hence,
/thk() Z+k_ Z/tB;k+1

Integrating (10) by parts,

/tBZEk( )dt = Z+k (ZtB] kg (t) — é/Bjka(t)) :

Using (7) one obtains:
ti ot —1; —
/tBiyk( Ydt = +k (Z tB; g1 (1) — Z % ZBs,k+2(t)) ‘

j=i s=j

Therefore,

s=1

z ts - ts
/tBiyk( )dt = +k (tZB] kg ( ZB] pa( Z %) ;

proving (8). O

Recall that 29 denotes the ith derivative of z. Let Oy = ”+y fo . Then,

Theorem 4.2

! m 30 Sj—1
/tlBi,k(t)dt = 8ix D (=1 (YD DT Bkt ()Y Seyeag oo D Oas ety
7=0 so=1 s1=1 s;=1

for any i, k, 1> 0.

Proof.

(10)

(11)

We prove that Equation (11) holds for any 7,k > 0 by induction on [ > 0. In all stages of

the proof we take into account that ¢, £ > 0 but do not write it explicitly.

From Proposition 4.1, Equalities (7) and (8) hold. These equalities are special cases of

Equation (11) where [ = 0 and [ = 1, respectively.

Let [ > 0. Assume Equation (11) holds for [ — 1. We will prove that Equation (11) holds

for [.
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Multiply both sides of equality (9) by ¢ and integrate. We have:

/t’Biyk(t)dt = /t&szlk+1 dt—l—/t’ Livk = Bip1x(t)dt
z+k+1 - z+1

itk — b
= Sip [ U'Bl i (t)dt + L Rl
t2+k+1 - t2+1

/t’BiHyk(t)dt.

As in the proof of (8), one can successively apply (9) while i < m and obtain

/t’ ik ( dt_cSZkZ/tl L ( dt+tti+’“7_ti/t’Bm,k(t)dt.

m+k T tm

For the last non trivial domain we have,

/tleyk(t)dt: /t5m KBl e (D)L,

or
/tBlk dt_&kZ/tB;kH

Integrating (12) by parts,

/tlBi,k(t)dt = ik (ZtlBj,k+1(t) - Z/ltl_lBj,k+1(t)dt) .
=i

=i
From the inductive hypothesis, Equation (11) holds for [ — 1. Thus,
/t’Biyk(t)dt
m -1 m
= G [ Do t'Bia () — lZ D EDPET) P80 Y Bogpapya(t)
=i

p=0 so=7J

So Sp—1
DR TR N N

s1=7J sp=J
l
= (Zt B] k+1 (Z Z j k41 Z Bsu k+P+1(t)
p=1 so=J

s1=7J Sp_1=J

So Sp—2
) DR N

FjN

Il
o

= bix (Z ' By (t) + (
j=i P

NS By aprt ()Y 8041
=i

So=1
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Z 551 k+p - Z_: 5sp_1,k+2))

s1=j sp—lzj
m ! m S0
= ik (Z t' By (t) + (Z(—l)p(tl)(p) Y Beoktrt1 (1) D 8y ki
j=i p=1 s0=1 s1=1

Z i k41 Z 552 k+p - Z_: 5sp_1,k+2))

Jj=i s2=J Sp—1=]

FjN

PN By ptpi (1)

So=1

Il
o

P

= dix (Z t'Bjya () + (
=i
Z 551,/€+p Z 55,, 1,k+2 Z k+1)) .

s1=1 Sp_1=1

Thus,

/tlBi,k(t)dt = ik (Z(—l)p(tl)(p) Y Boosipti () D St -

p=0 so=t s1=t
Z 55,, 1,k+2 Z k+1) [}
or Equation (11) holds for [. O

Corollary 4.3 The following equality holds as a particular case of Theorem 4.2 for | = 2:

t; . t, —t,
/t2Biyk()dt +k (t22B3k+1 —21tZ:B],€Jr2 Z%

5=t

m It LA ¢
F23 Biunalt) 1 A S e ) "
p=t

j=1 s=1

We will employ the results of Equations (7),(8), and (13) in the coming section.

4.2 Computation of Moments of Trivariate Based Geometry

Let dm be a differential element of mass. In our system, the mass distribution is defined as:

(u, v, w) Zp”lB (v) By (w),

7,7,0

where p; ;; is the (4, j, [)th scalar coefficient of the trivariate function f.
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The computation of the zero moment assumes the evaluation of the integral

I:/x/y/zdm

whereas the first order moments can be obtained from the values

Ix:///avdm,ly:///ydm7 and[z:///zdm.
cJy Jz cJy Jz TSy Sz

The computation of the principal axes of inertia assumes the evaluation of the following inte-

grals:

Ixx:///(yz-l_zz)dm? ]yy:///(xz—l—zz)dm,
cJyJz rJYy sz
o= [ [ [@syyam 1= [ [ [ayam,
cJyJz TSy Sz
Im:///wz dm, and Iyzz///yz dm. (14)
zJy Jz rJy Jz

Thus, any of the values of I, I, I, I,, Iy, Iy, I, Iy, I, and I, could be computed with

Yy Ty

the aid of Equations (7), (8), and (13). For example,
I, = /// Zpiyjyl(vz—|—w2)Bi(u)Bj(v)Bl(w)du dv dw
u v w iyjyl
— me’,l (/ Bi(u)du/szj(v)dv/ By (w)dw+

H /uBi(u)du/ij(v)dv/wszl(w)dw).

Any one of the integrals of (14) can be similarly decomposed, computing all the moments of
inertia. In order to evaluate these volume integrals, one can use the identities of Proposition

4.1.

5 Implementation Details

We have implemented the computation of moments for trivariate uniform B-spline blending
functions with floating end conditions. The assumption of the uniformity of the knots allows

us significant simplifications in the computations. Assume ¢;;; =¢; + v for any ¢ € N.
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Proposition 5.1 Given an uniform knot sequence, the following equalities hold:

) tigitk titr
(4) / Biyip (£)dt = / Bi(1)dt,
t t;

it

tigitk titk titk
(i) / EBypo (1) dt = / £By 4 (£)dt + 71 / B ()t
t t; ty

il
and
Litidk titk
(m’)/ Bk ()dt = / t* By, (t)dt
tigi t;
+ "
ts
titk
ts
Proof.

Since the blending functions are uniform, B, , (t) = B,y (t +v{), and (¢) holds. Moreover,

titith titk
tigl t;

titk
ts

titk titk
t; t;

and thus (i7) holds. Similarly,

Ligidk . titr .
tip t;
+ "
- / (t+ 1) By 4 ()t
t;
tigk
= / t* By, (t)dt
t;

titk

and thus (4¢7) holds. O

We have symbolically computed the values of

tr tr tr
/ Boyk(t)dt,/ tBo 1 (t)dt, and / t*Bo k(1) dt, (15)
to to to
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for specific orders in the Maple symbolic manipulation environment [11]. Now, with the aid of
the formulas of Proposition 5.1, one can efficiently recompute the integrals (15) for all discrete
domains ¢; to ¢;yx, recursively.

Let M be the mass of the object and let I,, be the moment of inertia along the axis
Oz when the center mass, (2., y., z.), of the object is in general position. Further, let I,,
be the same moment of inertia when the center mass is at the origin. I, is known as the

canonical moment. We will relate to I,,, 1., Toy, Iooy 1y, Iy, 1oy 1y, 1y and

vy yz, in a similar

fashion. The parallel axis theorems, (see [12]), provide the relations between the values of

IM,Iyy,IZZ,Ixy,Tm,T and I, 1y, 1., Iy, 1., and I,,. From the parallel axis theorems,

y2) vy ey
Tow = Lo + M(y? + 2?) and similar equations hold for all the other values. We only consider
canonical moments in the examples and tables of Section 6.

In order to avoid numerical computation errors due to the fact that I, could be much larger
than I, we proceed as follows. After the pre-computation of (15), we shift the parametric
domain of the object so that its center mass is as close as possible to the origin. Denote

by {t7},{t]}, and {t;} the knot sequences corresponding to the directions of z,y, and z,

respectively. Let (t7 7 4] )

te? VJe?

(lzc], Y], |zc]). Finally, compute the moments of the objects
around (z. —t{ ,y. — 1] ,2. — 1} ). In Section 6, we refer to the computation of the integrals
in (15) as pre-computation or table construction as it could be conducted off-line and to all

other operations as the computation of the moments, that are conducted in real time.
6 Experimental Results

We have computed the moments of several free-form surfaces as well as trivariate based ge-
ometry. We have employed the Irit [6] modeling environment in our implementation and

experiments that are presented in this section. We have analyzed the behaviour of our algo-
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Figure 1: The moments of the hull of the presented ship are computed in Table
1. This part is centered around its center of mass, computed using the presented
algorithm.

Mass I.. I, I, Iy I, Iy,

6325.3 | 667.49 | 297.11 | 6286.8 | -3.3276 x 1077 | 5.2063 x10~'° | 17442

Table 1: Moments of a ship hull shown in Figure 1.

rithms on trivariate objects like a human head, and primitive trivariate shapes such as spheres,
as well as bivariate geometry such as a ship hull.

We have computed the first and second order moments of inertia of a ship hull, see [16, 17]
for the data set. This surface was modeled as a bicubic B-spline surface of size 8x8 mesh. The
surface has a fixed thickness set to it (2 inches thick for a total length of shown part of 384
feet).

The computation consisted of two steps. First, we have computed the volume and the first
order moments, and have translated the center of mass of the ship hull into the origin. In the
second step we have computed the moments of second order.

Figure 1 shows the surface of a ship hull centered at the origin. Table 1 presents the mass
and the second order computed moments. I, and I,, are virtually zero due to the symmetry

of the shape.
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We have also computed the moments of inertia with the presented trivariate based method,
of several primitives such as spheres and cylinders, as well as complex volumetric data such
as a medical scan of a human head and a human knee. The results were compared to the
straightforward discrete computation approach, in which we have computed the moments of
the objects by summing up over all the voxels and taking into account the distances of the
voxels to the origin. Moreover, our results were compared to the analytic solution, whenever
available. This comparison allows us to analyze the accuracy of our model. Moreover, as will
be shortly shown, not only that we have been able to evaluate the moments directly from the
trivariate, but that the trivariate based methods provide a better approximation, as compared
to the discrete approach.

We have executed our program on a SUN Ultra-Enterprise E4500. The preprocessing stage
time is bounded by 0.19 milliseconds for the most complex patch, that consists of 128 x 128 x 256
scalar values.

In the following tables, the spheres and the cylinders are characterized by the radius r and
the height h. All the trivariate patches of the spheres and cylinders are cubes with a unit size.

In Table 2, the moments of inertia of six different spheres are compared. Here we have that
I.,=1,.,=1,, =0. The computation times of the algorithm based on trivariate methods and
the times required for the discrete method are also provided in seconds.

In Table 3, the moments of inertia of six cylinders are compared. Again, here we have
that I,, = I,, = I,, = 0. The computation times of the algorithm based on the introduced
trivariate methods and the times required for the discrete method are also provided in seconds.

We also employ two real life examples — a human head and a human knee. The scalar

values that were provided in these data sets were assumed to reflect the mass. While

not necessarily the case, one can always map these scalar values that hint on the tissue
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Trivariate Discrete Analytic
r | Patch | Mass | I,, =1, | Time | Mass | I,, =1I,, | Time || Mass | I, = I,
=1, (sec.) =1, (sec.) =1,
% 243 111.30 400.9 0.066 || 111.30 396.3 0.01 || 113.10 407.2
| 48 112.79 406.5 0.518 || 112.79 405.3 0.064 | 113.10 407.2
% 963 112.98 406.7 4.082 || 112.98 406.4 0.545 || 113.10 407.2
= | 128% | 266.73 1712 10.44 || 266.73 1701 1.338 || 268.08 1716
i 1283 || 2141.6 54860 10.54 || 2141.6 54771 1.327 || 2144.7 | 54903
= 128° 17155 1757 10.41 || 17155 1756 1.35 || 17157 1757
x10? x10? x10?

Table 2: Trivariate methods based, discrete, and analytic computations of moments of a sphere.

Trivariate Discrete Analytic
r h Patch Mass Toz I, Time Mass Toz I, Time Mass Toz I,
= Iy (sec.) =TIy (sec.) =TIy

1 162 x 64 189.98 4117 372.6 | 0.074 189.98 4109 364.7 | 0.012 201.06 4490 402.1

o=

1 322 x 128 196.70 4327 389.9 | 0.614 196.70 4325 387.9 | 0.079 201.06 4490 402.1

N

1 642 x 256 199.53 4423 398.1 | 4.901 199.5 4422 397.6 | 0.655 201.06 4490 402.1

o=

é i 1282 x 256 780.61 | 19244 | 6189 20.85 780.61 | 19211 6157 | 2.641 804.25 | 20374 | 6434
i % 1282 x 256 6359.9 6359 2030 20.98 6359.9 6356 2028 2.612 6434 6520 2059

x10% | x102 x10% | x102 x10% | x102

1 | 1282 x 256 || 51195 | 2061 | 6546 | 21.10 || 51195 | 2061 | 6543 | 2.604 || 51472 | 2086 | 6588
x10* | x10° x10* | x10° x10* | x10°

N

Table 3: Trivariate methods based, discrete, and analytic computations of moments of a cylinder.
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Figure 2: A human head
of which moments are com-
puted and shown in Table 4.

Figure 3: A human knee of which moments are
computed and shown in Table 5.

type into the actual mass.

In Table 4, we employ the algorithm of the computations of moments on a real
scanned image of a human head (see Figure 2). While our algorithm needs 4.368 seconds
to compute the moments, the discrete algorithm needs 0.503 seconds for the same task.
The time required to modify one scalar coefficient and reevaluate the new moments of
the object as a result of this single coefficient change is 8.37 milliseconds. In Table 5 we
present the results of computations on a human knee, (see Figure 3). While the trivariate
based method needs 4.94 seconds to compute the moments, the discrete method requires

0.58 seconds for the same task.

7 Conclusions and Future Work

In the volumetric scheme, in order to compute a certain moment we do not need to
compute all the lower order moments. Our experimental results in Section 6 show

that the proposed algorithms result in a direct evaluation scheme of moments that is
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Patch Mass 1. Iy, L.
1282 x 54 | 2.436x10% | 3.920x 10 | 2.779x 10! | 5.514x 10"
L, . I,
-1.837x10° | 7.137x107 | -1.334x10°

Table 4: Trivariate methods based computations of moments of a human head.

Patch Mass 1. Iy, L.
128% x 63 | 3.853x10% | 6.607x 10" | 5.290x 10" | 9.351x 10"
L, . I,
-4.873%10° | -2.341x107 | 4.296x10°

Table 5: Trivariate methods based computations of moments of a human knee.
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also more robust and accurate, where the errors of computation for several objects are
presented in the tables of Section 6. Moreover, the volumetric scheme is equally valid,
regardless of the existence of holes in the object or even discontinuities or disjoint parts.
Finally, while in both schemes we have considered mostly the computation of mo-
ments of second order, the generalization for moments of arbitrary orders is technical.
Future work will also deal with the possibility of the generalization to objects in higher
dimensions.
Acknowledgments
Figures 2 and 3 are part of the UNC public domain volumetric data set that was

produced using Siemens Medical Systems, Inc.
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