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1 Introduction

Freeform curves, surface and solids are generally represented in B-spline ba-
sis. Various geometric quantities, such as control points, knots and weights
have to be specified. Controlling the shape of an object under complex de-
formations by manipulating the control points directly is often difficult. The
movement of control points gives an indication of the resulting deformation,
but being extraneous to the object, the control points do not allow for precise
control of the shape. In addition, large deformations of complex objects with
many details to be preserved become nearly impossible without any ”higher
level” control mechanisms. User-friendly shape-control tools, therefore, gener-
ally make use of modeling techniques that integrate constraints. The present
paper surveys the state-of-the-art of geometric modeling techniques that in-
tegrate constraints, including direct shape manipulation, physics-based mod-
eling, solid modeling and freeform deformations as well as implicit surface
modeling. In particular, we will focus on recent advances of multiresolution
modeling of shapes under constraints. Going beyond the limits of traditional
modeling techniques, they allow for editing of complex objects while automat-
ically preserving the details.

2 Interactive freeform techniques

Controlling the shape of an object under complex deformations is often dif-
ficult. The traditional approach to interacting with deformable objects is to
manipulate control points since they allow precise control over models. CAGD
textbooks by Farin, Hoschek and Lasser, Bartels et al., and Cohen et al.
[Far96], [HL93], [BB87], [CRE01] cover the complete theory of parametric
freeform curve and surface representations such as NURBS curves and tensor
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product surfaces, triangular Bézier patches, n-sided patches, but also Coons
and Gregory surfaces. Limited by the expertise and patience of the user, the
direct use control points as the manipulation handles necessitates an explicit
specification of the deformation. Therefore, large deformations can be ex-
tremely difficult to achieve because they mandate moving a huge number of
individual control points by hand, and the precise modification of the freeform
object can be laborious. Deformation tools based on geometric constraints of-
fer more direct control over the shape. In this section high-level interactive
freeform curve and surface manipulation techniques are presented. These use
either geometric constraints as direct deformation handles (sect. 2.1) or as
definitions of functional behavior via geometric properties (sect. 2.2). Finally,
geometry-driven (freeform) solid modeling techniques are described (sect. 2.3).

2.1 Direct curve and surface manipulation

Rather than manipulating control points, [BB89] show how to pick any point
on a B-spline curve and change its location, i.e. the curve is constrained to
pass through a user-specified location. The new curve shape is computed by
minimizing the control point’s offset. [FB93] control the shape of a B-spline
curve by enforcing prescribed geometric constraints, such as the position of a
curve point, tangent direction and magnitude, or curvature magnitude. An ex-
tension to tensor product B-spline surfaces is given in [Fow92]. This satisfies
the user-defined position of surface points, normal direction, tangent plane
rotation (twisting effect), and the first partial derivative’s magnitude (ten-
sion effect). [BR94] deform B-spline surfaces by determining the displacement
and radius of influence for each constrained surface point. [HHK92] proposes
points picking for freeform deformations. Curve constraints, i.e. enforcing the
surface to contain a given curve or to model a character line, have been con-
sidered by [CW92], [GL96], [PGL02]. Direct shape manipulation techniques
are closely related to Variational Design, where the objective of obtaining fair
and graceful shapes is achieved by minimizing some energy, see sect. 4.1. In
general, a freeform shape has much more degrees of freedom than constraints
to satisfy. In order to compute a new shape the remaining degrees of free-
dom are prescribed by minimizing some energy functional, such as bending.
For example, [WW92] maintains the imposed constraints while calculating a
surface that is as smooth as possible. [CW92] derives interactive sculpting
techniques for B-spline surfaces based on energy minimization, keeping some
linear geometric surface-constrained features unchanged. [CG91] enforces lin-
ear geometric constraints for shape design of finite elements governed by some
surface energy. While energy minimization affects the surface globally, finite
element methods allow for local control. [FB88] later used the technique of hi-
erarchical B-splines attempt to overcome this drawback for B-spline surfaces.
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2.2 Feature Modeling

Constrained geometric modeling also occurs in feature modeling – a quite
different context. Geometric modeling tools are commonly used in various
phases of product development, for example, to generate product images or
NC-code. Many applications, however, require functional information that is
not contained in geometric models. A feature in a product model combines
geometric information with functional information, such as information about
its function for the user in a design application, or its manufacturing process
in a manufacturing application. Features are higher level entities compared to
the underlying geometry and as such are easier to maintain and manipulate
at the user level.

The concept of features has been investigated mainly in mechanical envi-
ronments [DFG94], [Ros90]. This is due to the fact that classical mechanical
parts are defined by canonical geometry shapes, which can easily be classi-
fied. Constraints occur at different stages in feature modeling. In [BB00], a
semantic feature modeling approach is presented. All properties of features in-
cluding their geometric parameters, their boundaries, their interactions, and
their dependencies, are declared by means of constraints. Another issue in
feature modeling is feature validation, which concerns the meaning of a fea-
ture, given by its information content [DKB96]. A feature modeling system
should ensure that product modifications by a user are in accordance with the
meaning of the features. Herein constraints are used to specify such feature
validity conditions; constraint satisfaction techniques are applied to maintain
feature validity under product modifications from multiple views.

More recently, freeform feature modeling approaches have been developed
[CM92], [Vos99], [VVB03]. In contrast to the feature-based approach adopted
by CAD systems for classical mechanical design, freeform features are strongly
related to aesthetic or styling aspects when modeling with freeform surfaces.
The Brite-Euram Project called FIORES (Formalization and Integration of
an Optimized Reverse Engineering Styling Workflow) focused on the develop-
ment of modeling tools for direct shape modifications closer to the stylist’s way
of thinking [DP98]. Here again, properties of aesthetic features are expressed
in terms of constraints, including convexity, shape preserving deformations,
eliminations and cuts, and continuity conditions [FGM99].

2.3 Solid modeling

The history of solid modeling goes back to the 1980s when the term ”solid
modeling” was introduced; see survey papers [RV82], [RR92]. This was also
the period when early advances were motivated primarily by the mechanical
engineering industry. Traditional solid modeling approaches include implicit
functions (CSG and blubby models), boundary representations and cell de-
compositions. The use of constraints has mainly been developed from inter-
action with freeform solids.
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Sederberg and Parry [SP86] developed free-form deformation (FFD), a
technique for globally deforming three-dimensional objects. The object to be
deformed is embedded in a three-dimensional parametric space, usually de-
fined by a Bézier or B-spline solid (called the control lattice). The vertices of
the object are assigned parametric values that depend on their positions inside
the parametric solid. Local control can be achieved by patching FFD lattices
along their boundaries. As the user moves the control points of the solid, the
vertices of the embedded object move in response. The geometric structure
and definition of the embedded object are independent of the FFD process.
Polygon-based, parametric, implicit and other types of objects can be embed-
ded and deformed using the same FFD interface. Hsu et al. [HHK92] improved
upon traditional FFD with their technique that permits users to manipulate
the embedded object directly. In this manner, the system computes how the
Bézier (or B-spline) control points must move in order to produce the desired
deformation. Shi-Min et al. [SHCJ01] proposed a similar scheme in which an
FFD function is computed based on the manipulation and translation of a
single point. Complex deformations are then achieved via the composition of
several such single-point FFDs. MacCracken and Joy [MJ96] generalized FFD
by incorporating arbitrary-topology subdivision-based lattices.

Rappoport et al. [RSB95] derived a technique for preserving the volumes
of tri-variate Bézier solids. They were the first to publish a way to use free-
form solids for representing a sculpted object. In their method, different solids
are patched together at their boundaries to create more complex objects.
Their algorithm uses an energy minimization function whose purpose is to
preserve the volume during sculpting. In addition to the volume-preserving
constraint, their system can satisfy interpatch continuity constraints, posi-
tional constraints, attachment constraints, and inter-point constraints. All of
these are formulated using a Lagrange multiplier method.

Hirota et al. [HML99] presented an algorithm for preserving the global
volume of a solid undergoing a free-form deformation. Unfortunately, their
algorithm works only for Brep solids. During initialization, each triangle in the
surface is projected onto the x-y plane, and the volume under the triangle is
stored. During the deformation process, this volume is constantly re-computed
and compared to the original. By taking the difference between the volumes
of the original and deformed volume elements, the total change in volume is
computed. A simple energy functional is minimized, subject to the volume
preservation constraint using the augmented Lagrangian method.

Self-intersection could clearly occur in the FFD function. Local self-
intersection can be identified via the vanishing Jacobian of the FFD, an ap-
proach proposed in [GD01].
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3 Implicit Surfaces

Implicit surfaces have sparked great interest in the computer graphics and
animation community [WMW86], [BS91], [DG95], [PAS95], [GWG98], with
applications for geometric modeling and scientific visualization [LC87]. De-
formations of implicit surfaces can be obtained intuitively by articulating the
skeleton or by changing the parameters of implicit primitives that hierar-
chically define the surface [Can98], [CD97]. Another, more intricate way to
deform implicit models is to change the iso-surface progressively by modifying
the sample field function defining it [WB98], [DC98].

Two kinds of constraints are particularly easy to integrate. First, collision
detection can be accelerated, since in-out functions are provided. Second, im-
plicit surfaces provide a good tool for physics-based animation; see section
4.

Volume of an implicit object is another constraint that it is important to
preserve during deformation [DG95], [CD97], [DC98]. For example, volume
constant deformations in a morphing process can make virtual objects look
like real ones. A more complete overview on implicit surface modeling can be
found in [B97], [Can99].

4 Physics-based modeling

Physics-based modeling attaches physical properties to geometric structures
in order to achieve better or more fair shapes for design purposes, or in order
to increment realism in computer animations. The constraints are formulated
in terms of energy functionals or kinetic and mass laws that are, in many
cases, non-linear.

4.1 Variational shape design

Although it is difficult to exactly define, in mathematic terms, what fairness
of a curve or surface is, it is commonly accepted that smooth and graceful
shapes are obtained by minimizing the amount of energy stored in the surface.
The energy functionals originating from elasticity theory are in general non-
linear, such as the bending energy for curves

∫
κ2(t)dt or the thin-plate energy

for surfaces
∫

κ2
1 + κ2

2dA. These and other higher order non-linear energy
functionals have been used in [MS92], [Gre94].

In order to accelerate computations, linearized versions of these energy
functionals are generally used; see, for example, [CG91], [CW92], [WW92],
[GC95]

E =
∫

σ

(α stretch + β bend)dσ
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where α and β are weights on stretching and bending. This produces a sur-
face which tends to minimize its area to avoid folding and to distribute cur-
vature over large regions in order to result in fair shapes. The stretch-and-
bend functionals are typically approximated via the following quadratic terms:
α11X

2
u +α12XuXv +α22X

2
v and β11X

2
uu +β12X

2
uv +β22X

2
vv, respectively, only

to be linearized in the optimization process.
Historically, use of such energy functionals goes back to early spline and

CAGD literature [Meh74], [Rei67] and has led to a research area, called Vari-
ational Design of smooth curves and surfaces, today [FRS87], [HS87], [HS92],
[BH94], [BHS93], [Hah98], [Had95].

4.2 Dynamic modeling

Deformations of objects are obtained by externally applying forces. The dy-
namic approach based on well-established laws of physics aims to produce
smooth and natural motions in order to create realistic-looking computer an-
imation. Traditional animation techniques [Las87] have to be considered as
well. To synthesize convincing motions, the animator must specify the vari-
ables at each instant in time, while also satisfying kinematic constraints.

[TPB87] introduced freeform deformable models to computer graphics, pi-
oneering the development of dynamic parametric curves, surfaces and solids.
Animation of implicit surfaces goes back to [WMW86]. Gravitational, spring,
viscous and collision forces applied to the geometric model act as constraints
when deforming objects. Non-linear dynamic behavior [TF88] results from
simulating inelastic deformation. Different dynamic behavior of deformable
objects has been developed by many varying the imposed constraints, the
numerical solution method or by applying these to different geometric mod-
els, including modal dynamics [PW89], animation of non-rigid articulated ob-
jects [WW90], FEM-based methods [CG91], D-Nurbs [TQ94], implicit sur-
faces [DC95], deformable voxel methods [CZK98] and dynamic subdivision
surfaces [QMV98]. In [PLH02], dynamic parameters are directly evaluated
over B-spline curves, while parameterization of the curve is ignored.

5 Multiresolution Editing

Multiresolution analysis has received considerable attention in recent years
in many fields of computer graphics, geometric modeling and visualization
[SDS96], [WW01]. It provides a powerful tool for efficiently representing func-
tions at multiple levels-of-detail with many inherent advantages, including
compression, LOD display, progressive transmission and LOD editing.

In the literature the term multiresolution (MR) is employed in differ-
ent contexts, including wavelets, subdivision and hierarchies or multigrids.
Multiresolution representations based on wavelets have been developed for
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parametric curves [CQ92], [LM92], [FS94], and can be generalized to tensor-
product surfaces, to surfaces of arbitrary topological type [LDW97], to spher-
ical data [SS95], and to volume data [CMP97]. Wavelets provide a rigorous
unified framework. Herein, a complex function is decomposed into a ”coarser”
low resolution part, together with a collection of detail coefficients, necessary
to recover the original function. Other multiresolution representations exist
for data defined on irregular meshes [BHN96], [Bon98], for arbitrary meshes
[ZSS97], [KCV98], [EDD95], [H96], for tensor product surfaces, known as hi-
erarchical B-splines [FB88], and for volumetric data sets represented using
tri-variate functions [RE99].

In the context of geometric modeling, LOD editing is an attractive MR
application because it allows the modification of the overall shape of a ge-
ometric model at any scale while automatically preserving all fine details.
In contrast to classical control-point-based editing methods where complex
detail-preserving deformations need to manipulate a lot of control points (see
sect. 2), MR methods can achieve the same effect by manipulating only a few
control points of some low resolution representation; see [FS94], [DSS95]. How-
ever, there are application areas, including CAGD and computer animation,
where deformations under constraints are needed. As stated in the introduc-
tion, it is obvious that constraints offer an additional and finer control of the
deformation applied to curves and surfaces.

Continuing the previous sections, the present section reports on con-
strained modeling methods using MR representations. Section 5.1 presents
an LOD editing method for B-spline curves and surfaces that allows the in-
tegration of linear and non-linear geometric constraints, including fixed po-
sition, symmetry and constant area. Section 5.2 presents wavelet-based MR
curve editing methods preserving area and length of curves. Section 5.3 is
about variational MR methods, where minimum energy is the constraint to
be satisfied. Finally, section 5.4 describes MR subdivision methods.

5.1 Constrained Multiresolution control

Multiresolution editing of freeform curves

In [FS94, GC95], a wavelet decomposition for uniform cubic B-splines is pre-
sented toward interactive and intuitive manipulation of freeform shape. In
[KE97], results from [LM92] are similarly employed toward the support of
non uniform knot sequences. While local support is considered the major
advantage of the B-spline representation, it is also its achilles heel. Global
changes are fundamentally difficult to apply to a highly refined shape and a
pain-staking laborius manual effort is required to move one control point at a
time. The ability to decompose a given freeform B-spline curve or a surface as
offered by [FS94, GC95, KE97] is a large step in the direction that alleviates
these difficulties. The user can now modify the shape locally or globbally as
he/she see fits. In Figure 1, a single select-and-drag operation is applied to a
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non uniform quadratic B-spline curve at six different resolutions. The outcome
clearly shows the power of multiresolution editing, allowing for both local and
global control.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Multiresolution manipulation of a non uniform quadratic B-spline curve
with 138 control points. In all six images (a)-(f), a single select-and-grad operation
was applied to the top of the ’s’ letter in the upward direction.

Let C(t) =
∑n−1

i=0 PiBi,τ ,k(t) be a planar non uniform B-spline curve of
order k and n control points. Let the knot sequence of C(t) be

τ = {t0, t1, · · · , tk−1, · · · , tn, · · · tn+k−1} .

C(t) is defined for the domain [tk−1, tn). The knots from tk to tn−1 are denoted
the interior knots and their removal does not affect the domain of C(t).

The knot sequence of τ , together with the order k, define a subspace Φ
of piecewise polynomial functions. This subspace contains the all polynomial
functions but also piecewise polynomials with potential discontinuities at each
of the interior knots, depending on the multiplicity of the knot. Let τ 0 = τ
and further let τi+1 ⊂ τi by removing only interior knots from τi. Then:

• The domain spaned by all the τ i is the same and equal to [tk−1, tn), ∀i.
• The subspace Φi+1 induced by τi+1 and k is a strict subspace of Φi. That

is Φi+1 ⊂ Φi.

Clearly C(t) ∈ Φ0. Denote C(t) as C0(t). Let Φ1 be a new subspace
formed out of Φ0, by removing a single knot tj = τ0/τ1. We seek to find
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the orthogonal projection, under the L2 norm, of C0(t) onto Φ1. Denote this
projection by C1(t) ∈ Φ1 and let the difference be D1(t) = C0(t)−C1(t). We
call C1(t) =

∑n−2
i=0 QiBi,τ 1,k(t) a low resolution version of C0(t) and D1(t)

the details. D1(t) is in a new subspace Ψ0 ⊂ Φ0 which means we can express
D1(t) in terms of the basis functions of Ψ0 as

D1(t) =
n−1∑

i=0

diBi,τ 0,k(t).

D1(t) ∈ Ψ1 is orthogonal to the space of Φ1. Hence, the following must
hold,

0 = 〈D1(t), Bm,τ 1,k〉 =
n−1∑

i=0

di 〈Bi,τ 0,k, Bm,τ 1,k〉 . (1)

Turns out Equations (1) completely prescribes the coefficients of D1(t)
upto uniform scaling of the function. This D1(t) is also known as the B-
wavelet function of knot tj in subspace Ψ0. Figure 2 presents the orthogonal
projection of our “multiresolution” curve onto several subspaces, all the way
to a single Bezier curve.

Fig. 2. Projections (in thick gray) of the original “multiresolution” curve from
Figure 1 (in thin line) over different spline subspaces is presented. The top left is
the smallest space (single quadratic polynomials) all the way to the bottom right
which is the orignal space.

Unfortunately, the computation of the coefficients of D1(t), following
Equations (1) is expensive, as it necessitates the resolution of products and
integrals of B-spline basis functions,

〈Bi,τ ,k(t), Bj,τ ,k(t)〉 =
∫

Bi,τ ,k(t)Bj,τ ,k(t)dt.

One option is to limit these computations to uniform knot sequences only,
removing half the knots each time, effectively doubling the knot spacing. This
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approach was taken by [FS94, GC95] and it allows one to precompute the
B-wavelets once for each order.

For non uniform knot sequences the B-wavelets must be computed every
time and while one can reach interactive rates for curves with dozens of control
points, this computation as already stated is expensive. Figure 3 presents few
examples of B-wavelets. See [LM92, E92, KE97] for more on the computation
of products and integrals of B-spline basis functions as well as more on this
B-wavelet decomposition. A similar computation is also necessary toward the
computation of Ci+1(t) from Ci(t), given the subspace Φi.

(a) (b) (c)

Fig. 3. B-Wavelets of a uniform quadratic (a), a uniform cubic (b), and a non
uniform knot seqence of a cubic curve (c). The third knot from the left in (c) is a
triple knot, resulting in a C1 discontinuity in the B-Wavelet.

Due to the computational costs, alternatives were sought. One alternative
is to approximate the low resolution projection using a simple least squares
fit [EG95]. Given Ci(t) ∈ Φi, find a least squares fit Ci+1(t) ∈ Φi+1 to Ci(t)
by sampling Ci(t) at m location, m >> ni+1, ni+1 the number of coefficients
in Ci+1(t). Nevertheless, for the task in hand of interactive multiresolution
manipulation with constraints, this B-wavelet decomposition is not really nec-
essary! Consider curve Ci(t) ∈ Φi, Φi ⊂ Φ0. Now consider a change of a single
control point in C0(t) against a change of a single control point in Ci(t). The
later will clearly affect a larger domain of the original curve C(t) = C0(t) ∈ Φ0

compared to a change in C0(t). A single control points Pj is supported along
the non zero domain of its basis function Bj(t). The less interior knot there
are, the larger the domain of Bj(t) is.

Then, a modification to the shape using a change in curve Ci(t) ∈ Φ0 could
be added to the original curve C0(t) using knot insertion [CLR80], refining
Ci(t) at all the knots of τ 0/τ i. In practice, direct manipulation is prefered over
control points manipulation, hiding the representation (i.e. control points)
from the novice user. If point C(t1) is directly selected and dragged along the
vector V to C(t1) + V, a new ∆i(t) ∈ Φi curve could be constructed as
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∆i(t) =
1
σ

ni∑

i=0

Bi,τ i,k(t1)Bi,τ i,k(t),

using the support of the different basis functions at t1 as the weights and

σ =
ni∑

i=0

(Bi,τ i,k(t1))
2 =

J∑

i=J−k+1

(Bi,τ i,k(t1))
2
, tJ ≤ t1 < tJ+1,

yielding ∆i(t1) = 1.

Linear constraints

Multiresolution editing has a drawback we already discussed. It can be impre-
cise. We now aim to add support for constraints to our multiresolution editing
capabilities. To begin with, we consider the two simple linear constraints of
position and tangency.

Recall curve C(t) =
∑n

i=0 PiBi,τ ,k(t). A positional constaint could be pre-
scribed as C(tP ) = P . Then, if the original curve satifisies the constraint or
C(tp) = C0(tp) = P , we are now required to have ∆i(tp) = 0, an additional
linear constraint that is easy to satisfy. In practice, two possible simple ap-
proaches could be employed to solve this underconstrained linear system, hav-
ing ∆i(tp) = 0 and ∆i(t1) = 1 as constriants and achieving an L2 minimizing
solution elsewhere along the domain. Either the singular valued decomposition
(SVD) or the QR factorization [GV96] of the linear systems of equations would
do. Interestingly enough, the QR factorization is also employed by [WW92]
for similar reasons.

A tangenial constraint could be supported in an almost identical way. Here,
C ′(tT ) = T and C ′(t), that is expressed in term of basis functions one degree
lower, is elevated back to the same function space using degree elevation,
resulting again in a linear alternative constraint to satisfy of ∆′

i(tT ) = 0. Sec-
ond order or even higher derivatives constraints could easily be incorporated
as well, in a similar fashion. Figure 4 shows one example of multiresolution
editing with positional and tangential constraints.

Fig. 4. Multiresolution editing without (a), and with two positional (b), and three
tangential (c) linear constraints.

Other linear constraints could also be support with some more effort. A
planar curve, having the domain of t ∈ [0, 1], is considered x-symmetric if
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x(t) = x(1− t) and y(t) = −y(1− t). Analogically, one can define y-symmetry
and even rotational symmetry as x(t) = −x(1 − t) and y(t) = −y(1 − t).
Assuming a symmetric knot sequence, that is τi+1−τi = τk+n−i−1−τk+n−i−2,
0 ≤ ∀i ≤ n/2,

c(1− t) =
n−1∑

i=0

PiBi(1− t) =
n−1∑

i=0

PiBn−1−i(t) =
n−1∑

i=0

Pn−1−iBi(t)

due to the symmerty of the basis functions. But now the constraint of x(t) =
x(1− t) reduces to

n−1∑

i=0

xiBi(t) =
n−1∑

i=0

xn−1−iBi(t), or
n−1∑

i=0

(xi − xn−1−i)Bi(t) = 0.

Hence and because of the independence of the basis functions, the sym-
metry constraint is now reduced to O(n/2) linear constraints of the form

xi = xn−1−i, i = 0, · · · ,
⌊n

2

⌋
− 1,

and
yi = −yn−1−i, i = 0, · · · ,

⌈n

2

⌉
− 1.

Finally, we consider area constraints. The area of a closed curve equals,

A =
1
2

∮
−x′(t)y(t) + x(t)y′(t)dt,

=
∮
−

∑

i

xiB
′
i,k(t)

∑

j

yjBj,k(t) +
∑

i

xiBi,k(t)
∑

j

yjB
′
j,k(t)dt

=
∑

i

xi

∑

j

yj

∮
−B′

i,k(t)Bj,k(t) + Bi,k(t)B′
j,k(t)dt.

=
[
x0, x1, · · · , xn−1

]



ξ0,0 ξ0,1 · · · ξ0,n−1

ξ1,0 ξ1,1 · · · ξ1,n−1

...
...

. . .
...

ξn−1,0 ξn−1,1 · · · ξn−1,n−1







y0

y1

...
yn−1


 ,

where

ξi,j =
∮
−B′

i,k(t)Bj,k(t) + Bi,k(t)B′
j,k(t)dt

=
∮
−(k − 1)

(
Bi,k−1(t)

ti+k−1 − ti
− Bi+1,k−1(t)

ti+k − ti+1

)
Bj,k(t)

+ (k − 1)
(

Bj,k−1(t)
tj+k−1 − tj

− Bj+1,k−1(t)
tj+k − tj+1

)
Bi,k(t)dt.
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The area constraint is not linear. Nonetheless, it is a bilinear constraint so
one could fix the xi coefficients, resulting in a linear constraint in yi and then
reverse the role of xi and yi, in the next iterations. During an interactive ses-
sion when the user select-and-drag curve’s locations we are in need of solving
these constraints every mouse event or almost every pixel. This interleaving
process becomes fully transparent to the end user at such low granularity.

Figure 5 shows two examples of direct manipulation of freeform curves
under symmetry and area constraints. The curves were directly manipulated
in real time while the symmetry and/or area constraints are fully preserved.
More on the symmetry and area constraints in multiresolution editing as well
as the special case of linear curves and the extension to freeform surfaces could
be found in [E01].

(a) (b)

Fig. 5. Y -symmetry constraint (a) and area constraint (b) are employed in mul-
tiresolution context. These two examples were created in few seconds using direct
curve manipulation under constraints.

5.2 Area and length preserving MR curve editing

In a wavelet based multiresolution setting complex objects can be edited at
a chosen scale with mainly two effects: First, modifying some low-resolution
control points and add back the details modifies the overall shape of the ob-
ject. Second, modifying a set of fine detail coefficients modifies the character
of the object without affecting its overall shape. In this section a wavelet based
multiresolution editing method is presented, that entirely integrateis the con-
stant area constraint completely into the multiresolution formulation of the
deformation.



14 Stefanie Hahmann and Gershon Elber

Wavelet based MR curve

Let us briefly sketch the notation of the wavelet based multiresolution analysis
that will be used in this section. For more detais see [Mal89], [FS94], and
[SDS96]. Suppose we have a certain functional space E and some nested linear
approximation spaces V j ⊂ E with V 0 ⊂ V 1 ⊂ · · · ⊂ V n. Since we are dealing
with closed curves, these spaces have finite dimension. Let V j be spanned by
a set of basis functions ϕj = [ϕj

1, . . . , ϕ
j
m]T , called scaling functions. A space

W j being the complement of V j in V j+1 is called the detail space. Its basis
functions ψj = [ψj

1, . . . , ψ
j
N−m]T are such that together with ϕj they form

a basis of V j+1. The functions ψj
i are called wavelets. The space V n can

therefore be decomposed as follows:

Vn = Vn−1

⊕
Wn−1 = Vn−2

n−1⊕

j=n−2

Wj = · · · = V0

n−1⊕

j=0

Wj . (2)

A multiresolution curve is then defined as a planar parametric curve
c(t) = (xn)T (ϕn), element of V n, where xn is a column of control points
xn

0 , . . . , xn
D2n ∈ IR2. Due to property (2) the same curve can be expressed

in terms of the basis functions of the different decompoditions of V n, each
of it corresponding to a certain resolution of the curve. The multiresolution
curve at any level of resolution L ∈ [0, n], i.e. element of VL

⊕n−1
j=L Wj is

then given by some coarse control points xL that form approximations of the
initial control polygon and by the detail coefficients dL, . . . , dn−1 as follows:

c(t) = (xL)T (ϕL) + (dL)T (ψL) + · · ·+ (dn−1)T (ψn−1), L = 0, . . . , n.

The filter bank algorithm [Mal89], [FS94] is used to compute the coefficients
of all levels of resolutions from the initial coefficients xn and vise versa.

Area preserving deformation of a MR curve

An advantage of a MR representation of the curve is that LOD editing consists
of simply applying deformations on the coarse control points at some level L,
the overall shape of the curve is therefore modified and the fine details are
preserved, see fig. 6 (a,b).

However the enclosed area of a (closed) modified curve is generally not
preserved. In [HBS02] is has been shown that the constant area constraint
can be integrated completely into the MR editing process. To this end a MR
formula of the area constraint has been developed that allows to compute the
area of a curve in terms of the coefficients at any resolution level L.

The area (see sect. 5.1) of a multiresolution curve can now be evaluated
at any level of resolution L in terms of the bilinear equation

2A = (XL)
[

ML

]
(Y L)T , ∀L ∈ {0, . . . , n},
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Fig. 6. area preserving multiresolution deformation. (a) original curve and coarse
control polygon, n = 7, L = 2. (b) deformed curve without area constraint (green).
(c) deformed area preserving curve (red).

where XL and Y L are the line vectors of the x- and y-coordinates resp. of all
coarse and wavelet coefficients of the MR representation of the curve, i.e.

(
XL

YL

)
= (xL,dL,dL+1, . . . ,dn−1),

and

ML =




I(ϕL, ϕL) I(ϕL, ψl)n−1
l=L

I(ψk, ϕL)n−1
k=L I(ψk, ψl)n−1

k,l=L




Note that ϕL and ψk are vector notations. Therefore the elements of the
previous area-matrix are in fact bloc matrices whose elements are of type
I(ϕi, ψj) =

∮
ϕi(t)ψ′j(t)−ϕ′i(t)ψj(t)dt and whose sizes vary in function of the

resolution level L. It has been shown in [HBS02] that the area matrices ML

can be computed efficiently by recursively applying the refinement equations.

The area preserving editing process now works as follows: Let Aref be the
refernce area to be preserved. After choosing the decomposition level L, the
user modifies one or more coarse control points (fig. 6(b)), defining the desired
deformation. Let (X0, Y0)

T denote the coefficient vectors of the deformaed
MR curve at level L. The algorithm then computes new positions, denoted
by (X, Y )T , of the coarse control points (and possibly the detail coefficients)
such that they are as close as possible to the user defined deformation while
preserving the area Aref , see fig. 6(c). The last step remains to solve the
following min-max problem:

max
λ

min
X,Y

(|X −X0|2 + |Y − Y0|2) + λ(XMY T − 2Aref )

If only local area preserving deformations are desired, the degrees of freedom
in (X, Y )T can be reduced to a user-defined subset of control points. Figure
7 shows an example, where the upper left coarse control points has been kept
fixed during deformation and area preservation.Length preserving deformation of a MR curve
Deformation of curves with constant length is needed typically if one wants
to create wiggles or folding of a curve. Sauvage et al. [SHB03] developed
a multiresolution approach of length preserving curve deformation for the
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Fig. 7. Local area preserving multiresolution deformation. n = 7, L = 2. original
curve (blue), deformed curve at level 2 (green), area preserving deformed curve at
level 2 (red).

particular case of piecewise linear curves using the Lazy wavelets [Swe97].
Let c(t) be a polyline of control points cn

i . Coarse coefficients and wavelet
coefficients are then computed by

{
xj

i = xj+1
2i

dj
i = xj+1

2i+1 − 1
2 (xj+1

2i + xj+1
2i+2) .

In the case of polylines the legth is given by L =
∑N−2

i=0 ||cn
i+1−cn

i ||2. One can
either keep the total length constant or preserve the length of each segment.
We choose the second way because of two main reasons:

• It ensures the balance between segment’s length that is to say the control
points don’t gather in a small part of the curve.

• It allows the length constraints to be expressed in such a way that com-
putationally inefficient square roots evaluations can be avoided.

The length constraint being a non-linear functional has no multiresolution
representation as the area constraint. However in [SHB03] it is shown that
length preserving MR curve editing offers a direct control of wrinkle gener-
ation. The level of resolution L where the length adaptation is performed
has two advantages. First, wrinkles can be generated locally on a user defind
extend, and magnitude and frequency of the wrinkles can be controlled.

The algorithm works in two steps. Once the user has defined the deforma-
tion by modifying some coarse control points at an arbitrary scale, he fixes
the level of resolution L where he wants the length preserving being done. In
other words, with L he chooses the extend and frequency of wrinkle creation.
Following some geometric rules, the detail coefficients of the deformed curve
belonging to level L + 1 are then modified in order to make the control poly-
gon at level L + 1 having the same length as the level L + 1 control polygon
of the initial curve. The second step of the algorithm consists then of length
preserving by smoothing via an optimization method and precisely satisfies
the length constraint.5.3 Variational MR curves

The variational modeling paradigm is used in order to find the ”best” curve or
surface amongst all solutions that meet the constraints. The constraints may
result from the particular modeling technique used, for example sample point
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Fig. 8. Length preserving MR editing: Two successive deformations at different
levels of decomposition are shown. The initial curve (a) is edited at the coarsest
level. (b) its length is adapted at the scale L = 1 resulting in large wrinkles. (c), (d)
2 neighbouring control points are moved closer at the scale 3 and length preserving
at scale L = 6 creates small wrinkles.

Fig. 9. Wrinkles on the back of the hand by length preserving MR deformation.
The scheme has been applied on several lines of a triangular mesh modeling a hand.
It creates wrinkles at the back of the hand automatically by pinching the skin. The
skin is also stretched around the wrinkles. The model is purely geometric, no time
consuming physical simulation is used.

approximation, or direct curve manipulation (see sect. 2.1. In the context
of smooth curve and surface design the notion of ”best” is formulated by
minimizing some energy functional, see sect. 4.1.

Gortler and Cohen [GC95] show how the variational constraint, which gen-
eralizes least squares, can be solved through a MR formulation of a planar
curve. A wavelet based MR curve satisfying some linear contraints and min-
imizing a linearized bending energy functional may be found by solving the
following linear system [WW92]

[
H̄ ĀT

Ā 0

] [
x̄
λ

]
=

[
0
b

]
,

where Ā is the constraint matrix, H̄ is the Hessian matrix of the basis func-
tions, and λ is the vector of Langrange multiplyers. The bars signify that the
variables are wavelet coefficients. Gortler and Cohen show then how wavelets
allow to accelerate the iterative conjugent-gradient-solving of the variational
problem.

5.4 Multiresolution Subdivision methods with constraints

Subdivision has become a popular tool in computer graphics. Much litera-
ture derives and analyzes new subdivision algorithms for curve, surfaces and
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solids. For an overview see the SIGGRAPH 2000 course notes [ZS00] and the
textbook [WW01]. Subdivision curves and surfaces are intrinsically hierarchi-
cal. Different levels of subdivision of a coarse mesh provide different levels of
resolution. Constrained modeling techniques can then interact with different
subdivision levels in order to obtain particular local design effects.

MacCracken and Joy [MJ96] developed an extension of Catmull-Clark sub-
division surfaces to the volumetric setting, mainly for the purpose of freeform
deformation in 3D space. Qin et al. introduced dynamic Catmull-Clark sub-
division surfaces [QMV98]. McDonnell and Qin [MQ00] simulate volumetric
subdivision objects using a mass-spring model. A generalization of McDon-
nell et al. [MQW01] includes haptic interaction. Capell et al. [CGC02] use
the subdivision hierarchies to construct a hierarchical basis to represent dis-
placements of a solid model for dynamic deformations. Additionally, some
linear constraints, such as point displacements can be added at any level of
subdivision.

Variational subdivision is another modeling technique, where constraints
are combined with classical subdivision. Instead of applying explicit rules for
the new vertices, Kobbelt’s [Kob96] variational subdivision scheme computes
the new vertices such that a fairness functional is minimized. At each step a
linear system has to be solved. The resulting curves have minimal total cur-
vature. Furthermore, in [KS98] is shown how wavelets can be constructed by
using the Lifting Scheme [Swe97] which are appropriate for variational subdi-
vision curves. Weimer and Warren [WW98a], [WW98b], [WW99] developed
variational subdivision schemes that satisfy partial differential equations, for
instance, fluid or thin-plate equations.

6 Conclusion

In this paper geometric modeling techniques have been surveyed that all make
use of constraints of different nature in order to provide high-level user friendly
manipulation tools of geometric objects. Basic research, developing new curve
and surface representation, is going on and new deformation and editing tools
have to be invented. For example, it is still a challenge to develop modeling
tool for subdivision surface equivalent to those existing for NURBS surfaces.
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[ZSS97] Zorin D., Schröder P., Sweldens W., Interactive Multiresolution Mesh
Editing, Computer Graphics Proceedings (SIGGRAPH 97), (1997), 259-
268.
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