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Abstract

Metamorphosis between two freeform B-spline curves is considered and several ap-

proaches to control the process are discussed. Starting with simple convex combination,

we examine two other approaches, one based on multiresolution decomposition of freeform

curves and the other based on edge cutting of the control polygon of curves. The later is

improved by introducing a correspondence test for simple metamorphosis relation. Finally,

we consider the possibility of extending these algorithms to surfaces.
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1 Introduction

Continuous shape deformation or metamorphosis has captured its place as a major tool in

animation. The problem has been investigated in the context of two dimensional images [1, 18],

curves and surfaces [8, 13, 14, 15, 16], and even voxel based volumetric representations [9,

11]. Several techniques were developed in recent years to compute the metamorphosis of two

dimensional univariate functions, the problem we address herein.

Probably the easiest approach to the metamorphosis of two piecewise linear polylines, P1 and

P2, is to establish the correspondence between the vertices of P1, V
i
1 ; 0 � i � l1, and the vertices

of P2, V
i
2 ; 0 � i � l2, for example by introducing new vertices. Then, the metamorphosis is

computed using a convex combination of the corresponding vertices as V = tV i
1 +(1� t)V i

2 ; 0 �

i � l.

Unfortunately, this somewhat naive approach, can lead to artifacts that disqualify the re-

sult from been considered an acceptable metamorphosis. Intermediate shapes during the meta-

morphosis can vanish and degenerate into a point (Consider the metamorphosis of the line

P1 = ((�1;�1); (�1; 1)) and the line P2 = ((1; 1); (1;�1)) at t = 0:5) or self intersect even if
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neither one of P1 or P2 self intersect. Hence, most of the research of metamorphosis of two

dimensional univariate functions has been concentrated on the elimination of these artifacts

from the computed metamorphosis.

In [14, 15], piecewise linear polylines are metamorphed by deriving a heuristic algorithm

that takes into account angles between adjacent edges as well as the lengths of the edges.

In [16], the geometry of both polylines is preprocessed into an intermediate representation called

a skeleton which contains topological information on the shape and simpli�es the process of

correspondence establishment between the two shapes. In [8], multiresolution decompositions of

the two (closed) polygons is precomputed and the metamorphosis process is computed between

the di�erent resolution representations of the two curves only to be combined into the �nal

result metamorphosis, in the end.

All the above work exploits piecewise linear polylines as the representation of choice and

it is di�cult to extend this work to freeform curves. Moreover, none of the above algorithms

guarantee a self intersecting free metamorphosis. Finally, some manual intervention, in di�erent

levels, is required in all the above metamorphosis techniques for piecewise linear polyline. For

example, the correspondence between vertices in P1 and P2 is typically established by man-

ually correlating a small subset of vertices in both polylines. Nevertheless, in this paper, we

question the feasibility of an automatic metamorphosis between two freeform curves directly.

In Section 2, we are introduced to the metamorphosis of freeform curves through a simplistic

approach. In Sections 3 and Section 4, we examine two more sophisticated algorithms. One

(Section 3) examines the possibility of extending the multiresolution approach suggested in [8]

to freeform shapes and the other (Section 4) draws some ideas from corner cutting smoothing

techniques [10, 17].

All the examples and �gures in this paper were created using the IRIT [12] solid modeller

that is being developed at the Technion.
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2 Metamorphosis using Simple Convex Combination

Let C1(u) =
Pl1

i=0 P
1
i B

n1
i (u) and C2(u) =

Pl2
i=0 P

2
i B

n2
i (u) be two arbitrary B-spline curves of

orders n1 and n2 respectively. C1(u) and C2(u) will not share the same order, nor would they

possess the same continuity (knot vector), in general. However, using degree raising [4] and

re�nement [2, 3], one can elevate the two curves to a common function space, in which both

share the same order n = max(n1; n2) and continuity. Let Ĉi(u) represent Ci(u) in the common

function space. Obviously, Ĉ1(u) and Ĉ2(u) share the same number of control points l.

The control polygons of a B-spline curve resembles the shape of its curve. In fact, the

control polygon, after proper re�nement, is sometimes employed as an approximation to the

curve, for display purposes. In order to form a continuous metamorphosis between C1(u) and

C2(u) at time t, C(u; t), one can compute the appropriate convex combination of the points of

their control polygons,

C(u; t) = (1� t)Ĉ1(t) + tĈ2(t)

= (1� t)
lX

i=0

P 1
i B

n
i (u) + t

lX
i=0

P 2
i B

n
i (u)

=
lX

i=0

(1� t)P 1
i B

n
i (u) +

lX
i=0

tP 2
i B

n
i (u)

=
lX

i=0

�
(1� t)P 1

i + tP 2
i

�
Bn
i (u); (1)

and hence, the convex combination of the corresponding control points is the same as the convex

combination of the two curves. t is constraint to be between zero and one for an interpolation.

Figure 1 shows one example exploiting this approach. Unfortunately, this somewhat naive

approach frequently fails due to inabilities in satisfying fundamental requirements that are

necessary for a metamorphosis to be considered acceptable. Two non self intersecting curves,

Ci(t); i = 1; 2 might be metamorphed using Equation (1) to a degenerated point or to a self

intersecting intermediate curve. See, for example, Figure 2.

Eliminating the self intersection in intermediate steps is a necessary requirement in creating

a pleasing metamorphosis. Unfortunately, it is a di�cult problem that partial solutions are

known only for metamorphosis between piecewise linear polylines [8, 14, 15, 16]. In the next two
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Figure 1: A metamorphosis between two B-spline curves computed using a convex combinations

of the two curves, sharing a common function space.

(a) (b)

Figure 2: A metamorphosis between two B-spline curves computed using a convex combinations

of the two curves can lead to vanishing edges (a) or self intersection (b) in the intermediate

representations.

sections, Section 3 and Section 4, we examine two attempts at the creation of self intersection

free metamorphosis of freeform B-spline curves.

3 Metamorphosis using Multiresolution Decomposition

Multiresolution decomposition methods of freeform curves and surfaces where investigated in

the context of curve manipulation [6, 7] and data reduction [5]. Recently, multiresolution

decomposition methods were suggested as tools for morphing of piecewise linear polylines [8].

Herein, we examine the possibility of extending [8] to freeform B-spline curves.

Let C(u) be a B-spline curve, C(u) 2 W 0. W 0 is the function space de�ned over �0, the

knot vector of C(u). De�ne a set of lower resolution function spaces W j ; 0 < j � k, such that

W j+1 � W j . By computing the least squares projection of C(u) onto W j as Cj(u), one can
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de�ne,

C(u) = Ck(u) +
1X

j=k

Dj(u); (2)

where Dj(u) = Cj�1(u)� Cj(u). The set fD1(u); � � � ; Dk(u); Ck(u)g is called the multiresolu-

tion decomposition of C(u). See [6] for more.

Ck(u) 2 W k, the lowest resolution curve, conveys the generic shape of the curve. The vector

�eld D1(u) 2 W 0 expresses the �nest details of C(u). It is plausible that the metamorphosis

between the two curves can be made more pleasing by controlling the metamorphosis in di�erent

resolutions, an argument suggested in [8].

Let C1(u) and C2(u) be two B-spline curves that one would like to compute an inbetweening

metamorphosis for. Assume Ci(u); i = 1; 2 share the same function space. Then, following [6],

the vector �eld curves, Dj
i (u), resulting from the multiresolution decompositions of Ci(u) share

the same function spaces. As in Section 2, one can attempt and apply a convex combination to

each of the pairs of the di�erent corresponding vector �elds Dj
i (u); i = 1; 2; 0 < j < k as well

as Ck
i (u); i = 1; 2, and algebraically some the results, following Equation (2). However, due

to the linearity of the spaces this would lead to the exact same result as in Section 2, namely,

convex combination of C1(u) and C2(u) as in Equation (1). In [8], an additional approach,

instead of exploiting a convex combination of two (control) points or vectors, is suggested.

One could consider vertex V i
1 2 P1 as a vector and rotate it to V i

2 2 P2, while preserving the

sizes of the vectors. We can immediately apply this approach herein and rotate every control

point in the vector �eld of Dj
1(u) to the corresponding control point of vector �eld D

j
2(u) while

appropriately compensating for the size of the vector.

While this approach does not guarantee self intersection free metamorphosis, one could

hope for a more pleasing deformation. Figure 3 shows several examples of metamorphosis using

multiresolution decomposition. The results are unsatisfactory and self intersections can become

even more evident than in the convex combination. Moreover, little intuition can be found in

the intermediate shapes themselves that can assume unexpected forms. Unlike piecewise linear

polylines, curves have another degree of freedom which is their parametrization. It is probably

the case that this technique would be greatly improved if proper correspondence between the
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Figure 3: A metamorphosis between two B-spline curves computed using multiresolution de-

composition produces non intuitive intermediate shapes and can lead to a self intersection in

the intermediate representations.

two curves can be established, taking into account the di�erent parametrization of the two

curves.

4 Metamorphosis using Edge Cutting

Consider a curve with highly curved regions as well as almost zero curvature domains. Intuition

suggests that the highly curved regions are more likely to self intersect during the metamorpho-

sis stage than almost zero curvature domains. Hence, it is plausible to attempt and reduce the

curvature of the curve at the highly curved regions �rst. Extending the corner cutting method-

ology [10], we proposed an edge cutting method that metamorphs an arbitrary open B-spline

curve to a straight line, favoring the metamorphosis of high curvature regions �rst. Figure 4

shows several steps of an example of edge cutting a freeform B-spline into a line. While this

approach does not guarantee a self intersection free metamorphosis, it does produce superior

results in many instances, compared to both the naive convex combination of control points

and the multiresolution decomposition approaches.

Let C(u) =
Pl

i=0 PiB
n
i (u) be a B-spline curve of order n and l control points. Consider

three consecutive control points Pj ; j = i; i + 1; i + 2 (See Figure 5). In every step of the
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Figure 4: A metamorphosis of a B-spline curve to an almost straight curve using edge cutting,

without self intersection. See also Figure 3.

metamorphosis process, we update control point Pi+1 of C(u) to be,

Pi+1 ( tPi+1 + (1� t)
Pi + Pi+2

2
; (3)

where 0 � t � 1 provides the control over the edge cutting speed that is typically close to one.

Equation (3) is applied to all the interior control points Pi+1; 0 � i � l�2. The two end points

of the curve are hence left unchanged.

Lemma 1 The edge cutting process de�ned using Equation (3) over an arbitrary open B-spline

curve and applied to all interior control points converges to line P0Pl.
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Pi

Pi+1 Pi+2

Pi+Pi+2

2�i

�i+1

Figure 5: The control polygon of C(u) is updated in every iteration of the edge cutting process,

by letting every interior control points Pi+1 to be Pi+1 ( tPi+1 + (1� t)Pi+Pi+2

2
.

Proof: Clearly, a curve in which all its control points are collinear and equally spaced is a

�xed point of the transformation de�ned in Equation (3).

On the other hand, transformation (3) always reduces the total length of the control poly-

gon, provided triangle PiPi+1Pi+2 is non degenerated (i.e. not collinear). Speci�cally, the

accumulated length of PiPi+1+Pi+1Pi+2 is always smaller after applying Equation (3). There-

fore, successive iteration of Equation (3) must reduce the total length of the control polygon to

a minimum which is the line P0Pl, a line that we know is a �x point for Equation (3).

Given two arbitrary open B-spline curves, C1(u) and C2(u), one can compute their edge

cutting to lines L1(u) and L2(u). Let L(u) = (L1(u) + L2(u))=2. One can transform Li(u) to

L(u) using translation, scaling and rotation. Denote the transform from Li(u) to L(u) by Ri.

The entire metamorphosis will then be composed of �rst transforming C1(u) to L1(u) while

continuously and incrementally applying R1 so it ends up at L(u) instead of L1(u). Then, the

inverse transformation from line L2(u) to C2(u) will be computed, again starting from line L(u)

by decrementally applying R�12 to start at L(u) and terminate at C2(u).

The edge cutting process can create intermediate control polygons in which one (or more) of
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the edges vanishes. In order to prevent this from happening, the following heuristic is exploited.

Let �i = kPi+1 � Pik and let � = min
i

�i; 0 � i � l� 1. We then rede�ne Equation (3) to be,

ti ( t

�
�

�i+1

�2
;

ti+2 ( t

�
�

�i

�2
;

ti+1 ( 1� ti � ti+2;

Pi+1 ( tiPi + ti+1Pi+1 + ti+2Pi+2: (4)

The modi�ed edge cutting algorithm favors the shortening of the longer edge out of the

two edges PiPi+1 and Pi+1Pi+2 while computing the new location for Pi+1. At the same time,

Equation (4) favors the decrease of small edges and hence the reduction of curvature near shorter

edges over longer ones throughout the control polygon. This last heuristic is driven from the

fact that short edges probably convey information in a higher resolution and therefore create

high curvature regions in the curve. Figure 4 shows one example of curve's metamorphosis

exploiting this approach. This metamorphosis has no self intersection, that will occur when

both the naive and the multiresolution methods are applied to this problem.

Clearly, this approach su�ers from a major drawback. We must produce an intermediate

straight line half way through the metamorphosis process, no matter how close C1(u) and

C2(u) are. Figure 6 shows two almost identical curves that are edge cut metamorphed through

a straight line.

Fortunately, we can do better. Let Ti(u) =
dCi(u)

du
. De�ne,

T (u) = hT1(u); T2(u)i ; (5)

where h�; �i denotes the inner product. We say that C1(u) has a simple metamorphosis relation

to C2(u) if T (u) > 0; 8u. If T (u) > 0; 8u, then one can, in general, form a non self intersecting

ruled surface S(u; v) between C1(u) and C2(u) while v is the metamorphosis parameter. The

ruling direction, v, describes the convex combination metamorphosis from C1(u) to C2(u).

Lemma 2 If Ci(u); i = 1; 2 satisfy a simple metamorphosis relation, that is

T (u) = hT1(u); T2(u)i > 0; 8u;
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Figure 6: A metamorphosis of between two similar face �gures using edge cutting approach.

Although we prevent from self intersection, we do generate a non intuitive metamorphosis by

going through an intermediate straight line. Compare with Figure 3.

then C(u) = tC1(u) + (1� t)C2(u); 0 � t � 1 is a regular curve.

Proof: T (u) > 0 and hence kTi(u)k > 0; i = 1; 2 or Ci(u); i = 1; 2 are regular curves.

dC(u)

du
= tT1(u)+(1� t)T2(u) and is a linear combination of two vector �elds such that the angle

between T1(u) and T2(u) satis�es 6 T1(u)T2(u) < 90o. Thus, the result of the linear combination

of T1(u) and T2(u) is never zero.

Although the guaranteed regularity of the intermediate curves is a nice property, the simple

metamorphosis relation does prevent from self intersection of the intermediate curves only in

a local neighborhood, contrary to what one might expect. Assume Ci(u); i = 1; 2 satisfy a

simple metamorphosis relation, that is T (u) = hT1(u); T2(u)i > 0; 8u. C(u) = tC1(u) + (1 �

t)C2(u); 0 � t � 1 can self intersect as is demonstrated in two examples in Figure 7. In

Figure 7 (b), C1(u) intersects neither itself nor C2(u) and vice versa.

In the light of the inability to exactly predict self intersection, we found that using T (u)

one can signi�cantly alleviate the need to edge cut metamorph through a line, creating a

more pleasing metamorphosis. This, while preventing self intersection in the majority of cases.

Employing Equation (5), one can establish simple metamorphosis relation from the intermediate

straight line representation L(u) out to both C1(u) and C2(u). The metamorphosis domain
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(a) (b)

Figure 7: Two examples of intermediate curves C(u) = tC1(u) + (1� t)C2(u), t =
1
2
, for which

Ci(u); i = 1; 2 are not self intersecting, or even do not intersect each other in (b), and satisfy

a simple metamorphosis relation, yet C(u) self intersects.

Figure 8: Two examples of combining edge cutting with simple metamorphosis relation testing.

Compare with Figures 3 and 6.

in which the relation can be established can be replaced by simple linear metamorphosis as

suggested in Section 2. If C1(u) and C2(u) are su�ciently similar that they satisfy Equation (5)

from the start, the entire metamorphosis becomes a simple convex combination, completely

preventing from the need to go through an intermediate linear segment. Figure 8 shows a

metamorphosis example that combines T (u) veri�cation with an edge cutting scheme.

The resulting metamorphosis, in all the above examples does not preserve another property

that is sometimes considered important for a pleasing metamorphosis. The length of the inter-
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(a) (b)

Figure 9: Two examples of metamorphosis of freeform curves using edge cutting. In (a) the

lengths of the curves are preserved, while in (b) the bounding box dimensions is kept the same.

mediate curves is frequently required to be preserved while the general size of the curve should

be preserved in other cases. One can scale the intermediate curves to preserve monotone change

of the curves length, or alternatively one can attempt to preserve the general size by coercing

a monotone change of the dimensions of the bounding box of the curves. Figure 9 shows two

examples.

5 Extensions and Conclusions

The three presented methods of metamorphosis of curves can be extended to freeform sur-

faces, some with more e�ort than other. Clearly, convex combination of freeform surfaces (i.e.

extending Equation 1 to surfaces), once in the same function space, is simple to implement.

Surprisingly, results are frequently more appealing than convex combination based metamor-

phosis of curves. Due to the newly introduced dimension, the eyes and the brain are probably

overwhelmed by the complexity and are is less sensitive to self intersections as in the curve

case. Figure 10 shows several snapshots of an animation movie, that metamorphs a disc into a

bottle, into a wine glass, and into a horn, all using the convex combination approach.

One might consider extending the edge cutting scheme to freeform surfaces, by considering

each control point of the mesh, Pij , as a apex of pyramid whose base is in the plane �tted
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through Pi�1;j�1. The simple metamorphosis relation test, suggested in Equation 5, can be

extended to surfaces, possibly correlating their normals,

N (u; v) = hn1(u; v); n2(u; v)i ; (6)

where ni(u; v) is the normal of surface Si(u; v).

We have examined three di�erent methods to compute metamorphosis of freeform curves.

The direct convex combination of two curves sharing the same function space, is the most simple

one. Yet it is prone to self intersection and degeneracies. The multiresolution decomposition

approach was also tested and was not found very successful. On the other hand, the edge cutting

method combined with the simple metamorphosis relation test was found to be successful in

creating nicer and more pleasing metamorphosis transitions of freeform curves.

It is clear that the self intersection free metamorphosis of freeform curves is a di�cult

problem that needs further investigation. Establishing correspondence between the two curves

needs further study. Contemporary algorithm for the metamorphosis of piecewise linear poly-

lines do require some manual interaction to de�ne this correspondence. For freeform curves,

the parametrization adds some di�culties into the metamorphosis process. The correspondence

procedure should take into account the, usually di�erent, parametrization of the two curves.

In a similar fashion, metamorphosis of freeform surfaces can be computed by a convex

combination of corresponding control points of two surfaces sharing the same function space.

Expanding the edge cutting scheme to general surfaces is feasible and should be explored as well

as deriving metamorphosis between surfaces as a metamorphosis of the curves used to construct

the two surfaces.
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Figure 10: Snapshots from an animation movie of freeform surface metamorphosis using convex

combination.
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