
Precise Contact Motion Planning for Deformable Planar Curved Shapes

Yong-Joon Kima, Gershon Elbera, Myung-Soo Kimb

aDepartment of Computer Science, Technion, Israel
bSchool of Computer Science and Eng, Seoul National University, Korea

Abstract

We present a precise contact motion planning algorithm for a deformable robot in a planar environment with stationary obstacles.
The robot and obstacles are both represented with C1-continuous implicit or parametric curves. The robot is changing its shape
using a single degree of freedom (via a one-parameter family of deformable curves). In order to reduce the dimensionality of
the configuration space, geometrically constrained yet collision free contact motions are sought, that have K(= 2, 3) simultaneous
tangential contact points between the robot and the obstacles. The K-contact motion analysis effectively reduces the degrees of
freedom of the robot, which enables a more efficient motion planning. The geometric conditions for the K-contact motions can
be formulated as a system of non-linear polynomial equations, which can be solved precisely using a multivariate equation solver.
The solutions for K-contact motions are represented as curves in a 4-dimensional (x, y, θ, t) space, where x, y, θ are the degrees of
freedom of the rigid motion and t is the deformation’s parameter. Using the graph structure of the solution curves for the K-contact
motions, our algorithm efficiently finds a feasible path connecting two configurations via a graph searching algorithm, whenever
available. We demonstrate the effectiveness of the proposed approach using several examples.

Keywords: Configuration spaces, multivariate algebraic constraints, freeform geometric models, B-spline curves, deformable
robots.

1. Introduction

The problem of collision-avoidance in robot motion planning
has been an active research area over the last several decades.
Remarkable progress has been achieved in numerous practical
applications. However, relatively few results were introduced
for the case of deformable robots, even though potentially many
applications can benefit from the added degrees of freedom.
The deformation ability of the robot provides more flexibil-
ity in the motion planning and enables the successful naviga-
tion of more challenging tasks that cannot be accomplished by
rigid robots. Actual designs of deformable robots already ex-
ist, i.e. [1]. On the other hand, more degrees of freedom in the
robot exponentially increase the complexity of motion planning
algorithms. As a consequence, it is very difficult to find feasible
motions in a reasonable amount of time.

The geometry of deformable robots and their environ-
ments are often designed with Non-Uniform Rational B-spline
(NURBS) curves and surfaces, which is the de facto standard
representation for industrial objects. Yet, the majority of con-
temporary algorithms for motion planning first tessellate the
freeform NURBS curves and surfaces, as they can handle only
piecewise linear discrete objects. The errors caused by the
polygonal approximation are difficult to control. Moreover, it is
non-trivial to precisely manage the collision detections (in par-
ticular when dealing with contact motions) using these polygo-
nal approximations. Thus, it is highly desirable to directly pro-
cess the NURBS curves and surfaces for applications requiring
high accuracy.

In this paper, we consider the precise (up to machine pre-

cision) contact motion planning for a deformable planar para-
metric or implicit freeform C1-continuous robot Φt(C(u)), with
respect to a C1-continuous stationary (set of) parametric ob-
stacle(s) D(v), in the plane. The transformation Φt repre-
sents a one-parameter smooth freeform deformation of the C1-
continuous robot C(u) and we assume that Φt is pre-defined
algebraically. The deformable robot Φt(C(u)) has two rigid mo-
tion degrees of freedom in translation, (x, y), and one rigid mo-
tion degree of freedom in rotation, θ. Finally, the last degree of
freedom t provides the shape control over the robot’s deforma-
tion function Φt. The configuration space (C-space) is thus a
4-dimensional space, in (x, y, θ, t).

A naive approach for planning the motion of such a de-
formable robot is to compute the entire boundary of the C-
space’s obstacle which can be represented as an implicit 3-
manifold, f (x, y, θ, t) = 0, and use this 3-manifold for the mo-
tion planning. The optimal motion path may then be computed
by considering all possible motion paths over the entire bound-
ary of the obstacle’s C-space. Clearly, computing and even rep-
resenting the entire 3-manifold solution is expected to be highly
challenging. It is indeed inefficient and in fact unnecessary to
compute the entire boundary of the C-space, because the robot
typically follows a univariate motion path and thus only a small
portion of the C-space is used for the motion planning.

Therefore, instead of computing the entire C-space, we focus
on analyzing contact motions that satisfy additional geometric
constraints so that the dimension of the computed solution can
be significantly reduced. Toward this end, we seek the collision
free motion of a (deformable) robot Φt(C(u)) while it maintains

Preprint submitted to SPM 2015 July 1, 2015



(c) (d) (e)

(a) (b)

Φ0(C(u))

Φ 1
2

(C(u))

Φ1(C(u))

D(v)

Figure 1: K-contact motion planning for a deformable robot: (a) a deformable
robot Φt(C(u)) and the shape of Φt(C(u)) for t = 0, 1

2 , 1. (b) The robot with con-
stant deformation parameter (t = 1

2 ) cannot go deeper into obstacle D(v) with-
out gouging at the 3-contact configuration. (c)-(e) A 3-contact motion analysis
between robot Φt(C(u)) and obstacle D(v) enlarges the accessible region of the,
now deformable, robot.

multiple tangential contacts, typically two or three, with obsta-
cles D(v). We denote such motions K(= 2, 3)-contact motions.
The reasons for using K-contact motions, in the motion plan-
ning, are twofold:

1. We can now effectively reduce the degrees of freedom in
the contact motion analysis. Now, every K-contact motion
will be represented as a curve in a 4-dimensional C-space.
As a result, the entire set of K-contact motions forms a
graph structure in the (x, y, θ, t) space and the motion plan-
ning can be addressed via well-known graph searching al-
gorithms.

2. A K-contact motion analysis often provides a good solu-
tion for narrow passage problems, because there is a high
probability for the robot to have multiple contact points
in such narrow passages. Figure 1 shows an example of
a deformable robot with K-contact motion that follows a
narrow passage.

The rest of this paper is organized as follows. In Section 2,
we briefly review previous related work. Section 3 describes the
different ways one can prescribe the deformation of the robot,
algebraically. Section 4 introduces the algebraic conditions for
the K-contact motion between Φt(C(u)) and D(v). Section 5 ad-
dresses the construction of the K-contact motion graph and the
motion planning algorithm using this K-contact graph. Several
experimental results are reported in Section 6 and the paper is
finally concluded with discussions on future work in Section 7.

2. Related Work

Algorithms for motion planning of deformable robots are
typically based on the probabilistic road-map (PRM) ap-

proach [2]. A PRM planner samples random points in the C-
space and generates an approximated C-space graph by con-
necting adjacent sample points. Then, the planner finds a feasi-
ble motion by connecting these points on the graph via a graph
searching algorithm. The performance and quality of PRM
based algorithms is heavily dependent on the sampling strategy.
Guibas et al. [3] proposed an efficient motion planning algo-
rithm for flexible objects. By deforming the robot as closely as
possible to the medial axis of the workspace, the algorithm suc-
cessfully finds critical deformations and effectively reduces the
deformation space. However, the medial axis computation for
3D objects is computationally expensive and fitting the object
to the 3D medial axis is non-trivial. Bayazit et al. [4] sampled
configurations that might cause inter-penetration into the obsta-
cles and then generated a collision-free path by locally deform-
ing the robot. The deformation of the robot is employed only
for preventing the inter-penetration of the robot and thus limits
the exploration of the deformation space. Gayle et al. [5] devel-
oped a practical algorithm for motion planning of deformable
robots in complex environments, which can take into account
geometric and physical constraints. The deformation of the
robot should satisfy some imposed constraints that are formu-
lated as an energy minimization problem and be solved via an
optimization algorithm. This optimization can be inefficient if
the geometry of the robot and the environments are not similar.
Mahoney et al. [6] tackled the problem of motion planning of
deformable robot by reducing the dimension of the deformation
space via principal component analysis over the deformation
space. The entire deformation space is reduced to the subspace
spanned by a small number of basis elements and the degrees of
freedom in C-space are significantly reduced. The problem is
that, in many cases, the reduced deformation space suffers from
narrow passages of the obstacles.

The above results focus on polygonal representation and typ-
ically produce approximate solutions. The previous work on
precise motion planning for NURBS curves and surfaces is
limited. Bajaj and Kim [7, 8, 9] considered the generation of
C-space obstacles for translational motions of rigid algebraic
curves and surfaces. For the case of a rigid planar freeform
shapes moving (with translation only) among similar static
freeform curves in the plane, Lee et al. [10] presented a high-
precision algorithm that can approximate the boundary of the
obstacle’s C-space using B-spline planar curves. Holleman et
al. [11] and Lamiraux et al. [12] applied a PRM planner for path
planning of flexible surface patches modeled with low degree
Bezier surfaces. Holleman et al. [11] enforced a desired defor-
mation of the surface by formulating the energy function and
Lamiraux et al. [12] handled a specialized deformation having
only one degree of freedom. Milenkovic et al. [13, 14] devel-
oped a robust algorithm for constructing the C-space obstacles
for a rigid planar moving object and obstacles bounded by cir-
cular arcs. Recently, Kim et al. [15] presented an algorithm
for computing the precise contact motion between rigid planar
freeform curves. In this work, we extend the approach of Kim
et al. [15] to the case of deformable robot.

Designing the proper deformation of the robot is crucial for
the generation of feasible motions. We employ shape morph-

2



ing techniques (also known as metamorphosis) for designing
the deformation of the robot. The algorithms for shape mor-
phing can be classified into two main categories: parametric
correspondence and interpolation [16, 17] and implicit func-
tion interpolation [18, 19]. The parametric methods directly
interpolate two (or more) shapes using the correspondence be-
tween them and are therefore relatively faster and more efficient
than methods for implicit functions. On the other hand, im-
plicit methods interpolate the implicit representations of shapes
and have no constraints on the topological similarity of the de-
formed shapes (see Figure 2 for an example). The motion plan-
ning algorithm for deformable robots that we present in this
work can handle both types of shape deformation interpola-
tions.

The presented algorithms for motion planning of continu-
ous NURBS curves and surfaces involve solving a system of
non-linear equations. Based on the analytical representation
of NURBS, the desired geometric constraints can be converted
to a set of implicit multivariate equations via symbolic com-
putation. Sherbrooke and Patrikalakis [20] proposed an early
subdivision-based approach for solving a system of multivari-
ate equations. Elber and Kim [21] and Hanniel and Elber [22]
improved the subdivision based method by introducing a simple
termination condition into the subdivision process. Barton et
al. [23] presented an efficient algorithm for handling the special
case of univariate solution spaces. In this work, we employ the
approach of [23] to solve the presented systems of non-linear
constraints.

3. Deformable Robots

We consider two general ways of prescribing a planar de-
forming shape, algebraically. Parametric forms are blended
to generate a parametric deformed shape, and implicit forms
are also blended to generate implicits under deformation. We
briefly discuss both approaches below.

3.1. Parametric Deformable Robots
Let Ci(ui), (i = 1, 2), ui ∈ [0, 1], be two regular smooth para-

metric curves. Then, let

Φt(C(u)) = (1 − t)C1(u) + tC2(u). (1)

In essence, Φt(C(u)) is a ruled surface between C1(u) and
C2(u). However, any one-parameter family of curves can be
equally used. Specifically, any bivariate surface S (u, t) can
serve as the shape deformation function:

Φt(C(u)) = S (u, t), (2)

where Equation (1) is just one possible (ruled surface) instance
of Equation (2).

3.2. Implicit Deformable Robots
Let Ci(x, y) = 0, (i = 1, 2), be two smooth implicit curves.

Then,

Φt(C(x, y)) = (1 − t)C1(x, y) + tC2(x, y) = 0, (3)

Figure 2: Topological changes of an implicitly defined deformable robot.

Φt0 (C(x, y)) = 0 Φt1 (C(x, y)) = 0 Φt2 (C(x, y)) = 0

prescribes an implicit curve that identifies with C1(x, y), for t =

0, and with C2(x, y), for t = 1.
In essence, Φt(C(x, y)) is a ruled volume between bivariates

C1(x, y) and C2(x, y). However, any one-parameter family of bi-
variates can be equally used. Specifically, any trivariate volume
V(x, y, t) can serve as the shape deformation function:

V(x, y, t) = 0, (4)

where Equation (3) is just one possible (ruled volume) instance
of Equation (4).

Implicit blends have the advantage that they may change the
topology as a part of the deformation; thus, the two shapes
Ci(x, y) = 0, (i = 1, 2), are not constrained to have the same
topology (see Figure 2). On the other hand, the implicit form
is typically more difficult to handle and approximated solutions
are typically employed.

Both the parametric and implicit deformation forms yield
algebraic constraints that can be exploited in this work. This
ability will be demonstrated in the coming sections. In the en-
suing discussion, we assume the deformable robots are always
smooth and regular.

4. Algebraic Conditions for K-Contact Motion

In this section, we present the algebraic conditions for K-
contact configurations between a deformable robot Φt(C(u))
and stationary obstacle D(v). Consider an orientable planar
C1-continuous regular parametric deformable curve Φt(C(u)) =

(Φt(C(u))x,Φt(C(u))y), where t is the deformation parameter,
and a stationary obstacle given as a C1-continuous parametric
curve D(v) = (D(v)x,D(v)y), 0 ≤ u, v, t ≤ 1. Now consider the
rigid transformation of Φt(C(u)), T [Φt(C(u))] = Rθ[Φt(C(u))]+

(x, y), T = T (x, y, θ), where (x, y) and θ represent the planar
translation and rotation degrees of freedom, respectively. When
T [Φt(C(u))] and D(v) have K contact points at T [Φt(C(ui))] and
D(vi), i = 1, · · · ,K, these conditions can be formulated by the
following 3K equations:

0 = Rθ[Φt(C(ui))]x + x − D(vi)x,

0 = Rθ[Φt(C(ui))]y + y − D(vi)y,

0 = Fi(ui, vi, θ, t)
= Rθ[Φt(C′(ui))] × D′(vi), for i = 1, · · · ,K. (5)

The first two constraints in Equations (5) ensure the two curves
share a contact location in the plane. The last constraint makes
sure this contact is being tangential.

3



Figure 3: Singular case for the constraint system of K-contact motion.

u1

v1

u2

v2

Isolating x and y in the first two constraints in Equations (5),
we get:

x = Gi(ui, vi, θ, t)
= D(vi)x − Rθ[Φt(C(ui))]x,

y = Hi(ui, vi, θ, t)
= D(vi)y − Rθ[Φt(C(ui))]y. (6)

The linear terms, x and y, in Equations (6), can be eliminated
from Equations (5), for i = 2, · · · ,K, by replacing x and y with
G1(u1, v1, θ, t) and H1(u1, v1, θ, t), respectively. Consequently,
we get the following 3K − 2 constraints in 2K + 2 variables
(ui, vi, θ, t):

0 = G1(u1, v1, θ, t) −Gi(ui, vi, θ, t), for 2 ≤ i ≤ K,

0 = H1(u1, v1, θ, t) − Hi(ui, vi, θ, t), for 2 ≤ i ≤ K,

0 = Fi(ui, vi, θ, t), for 1 ≤ i ≤ K. (7)

In this work, we consider the analysis for two types of uni-
variate contact motions, 2-contact and 3-contact univariate mo-
tions:

• For a rigid robot, the 2-contact (K = 2) motion analysis
has a univariate solution. Because the deformation param-
eter t is fixed, we have four constraints in five variables
(u1, v1, u2, v2, θ).

• If the robot is under a one-parameter family of deforma-
tions, the 3-contact (K = 3) motion analysis has a uni-
variate solution. Here, we have seven constraints in eight
variables (u1, v1, u2, v2, u3, v3, θ, t).

There exist special cases where the constraints for the K-
contact configuration are dependent on each other. Consider
a 2-contact motion between a rigid unit circle and two paral-
lel line segments (Figure 3). Then, we have the following four
constraint equations to represent this K = 2 condition:

0 = G1(u1, v1, θ, t∗) −G2(u2, v2, θ, t∗),
0 = H1(u1, v1, θ, t∗) − H2(u2, v2, θ, t∗),
0 = F1(u1, v1, θ, t∗),
0 = F2(u2, v2, θ, t∗),

where t∗ is a fixed deformation parameter. This system
of algebraic equations has four constraints in five variables
(u1, v1, u2, v2, θ) and thus it is supposed to have a univariate so-
lution set. However, in this case, the robot can rotate in place or
slide left/right while maintaining a 2-contact configuration. As
a result, this system of algebraic equations has a bivariate solu-
tion space. Special cases, with dependent constraint equations
near/at zeros, are referred to as singularities. In the rest of this
paper, we assume that there are no singularities in the constraint
systems for the K-contact motions.

Before concluding this section, let us also comment on the
required change if the deformable robot is represented implic-
itly. Having an implicit robot Φt(C(X,Y)) = 0, and assuming
the obstacle D(v) is parametric as before, Equations (5) now
becomes, for the i-th contact:

0 = Φt(C(Xi,Yi)),

0 = Xi + R−1
θ [(x, y) − D(vi)]x,

0 = Yi + R−1
θ [(x, y) − D(vi)]y,

0 = Li(Xi,Yi, θ, t),

=
〈
∇Φt(C(Xi,Yi)),R−1

θ [D′(vi)]
〉
, (8)

prescribing a tangential contact at a location (Xi,Yi), where
∇ denotes the gradient operator. The first constraint in Equa-
tions (8) ensures that the (deformed) implicit is satisfied at
(Xi,Yi). The second and third constraints ensure that the trans-
lation (x, y) and the (inverse) rotation θ applied to D(vi) will also
equate with (Xi,Yi). Finally, the last constraint in Equations (8)
guarantees that the contact is, again, tangential.

We can further reduce the number of variables and equations
by isolating the variables as we did for the parametric robot:

x = Mi(Xi,Yi, θ),
= D(vi)x − Rθ[(Xi,Yi)]x,

y = Ni(Xi,Yi, θ),
= D(vi)y − Rθ[(Xi,Yi)]y. (9)

If the implicit robot is defined by a linear interpolation of two
implicit curves as in Equation (3), we can also isolate parameter
t as follows:

t = Pi(Xi,Yi),

=
C1(Xi,Yi)

C1(Xi,Yi) −C2(Xi,Yi)
. (10)

The isolated variables, x, y, and t, can be eliminated from
Equations (8) by replacing x, y, t with M1(X1,Y1, v1, θ),
N1(X1,Y1, v1, θ), P1(X1,Y1), respectively. Now we have the
following 4K − 3 constraints in 3K + 1 variables (Xi,Yi, vi, θ):

0 = M1(X1,Y1, v1, θ) − Mi(Xi,Yi, vi, θ), for 2 ≤ i ≤ K,

0 = N1(X1,Y1, v1, θ) − Ni(Xi,Yi, vi, θ), for 2 ≤ i ≤ K,

0 = P1(X1,Y1) − Pi(Xi,Yi), for 2 ≤ i ≤ K,

0 = Li(Xi,Yi, vi, θ), for 1 ≤ i ≤ K. (11)

4



(a) (b) (c)

C(u)

D(v)

Figure 4: C-space obstacle boundary and 2-contact motion graph: (a) the rigid
robot C(u) and the obstacle D(v), (b) C-Space obstacle boundary between C(u)
and D(v), (c) 2-contact motion graph embedded on the boundary of the obsta-
cle’s C-space.

In the following sections, we present an efficient algorithm
for computing these 2- and 3-contact motions.

5. The Generation of the K-contact Motion Graph

The graph we build consists of 2- and 3-contact motions. We
first compute the 2-contact motion curves for a rigid robot, fix-
ing the deformation parameter as t = t∗. For the sake of simplic-
ity, we assume Φt∗ (C(u)) = C(u). The 2-contact motion curves
are derived using the algorithm described in Kim et al. [15].
We then compute the necessary 3-contact motion curves based
on the results of 2-contact motion analysis. In this section, we
briefly review the algorithm of Kim et al. [15] only to discuss
how to extend this algorithm to the case of 3-contact motion,
for a deformable robot.

5.1. 2-Contact Motion Curves
Consider the boundary of the C-space between a rigid robot

C(u) and an obstacle D(v), which is a 2-manifold in the three-
dimensional space (x, y, θ). Each point on the boundary of
the C-space obstacle corresponds to a collision-free contact
configuration. The 2-contact configuration between C(u) and
D(v) can be characterized as the self-intersections of the 2-
manifold boundary of the C-space obstacle. Each of these
self-intersection curve segments has two end points that corre-
spond to 3-contact configurations between C(u) and D(v). The
2-contact motion curves thus have a layout which can be rep-
resented in a graph structure, where each vertex corresponds
to a 3-contact configuration and each edge corresponds to a 2-
contact motion curve. (See Figure 4).

5.2. 3-Contact Motion Curves
If the 2-contact motion graph of a rigid robot has discon-

nected components (see the leftmost column, in Figure 8), there
is no valid 2-contact motion that connects these isolated compo-
nents. In such a case, it is impossible for a rigid robot to move
between the disconnected components. However, we may con-
nect these disconnected components by allowing the robot to
deform. Then, the univariate solution space for the 2-contact
motion expands to a bivariate solution space, having t as a new
degree of freedom.

To take advantage of the possibility of robot deformation
while aiming to keep the univariate graph structure of the mo-
tion space, we employ a 3-contact motion analysis for de-
formable robots. As pointed out in Section 4, the 3-contact
motion analysis for a robot with a one-parameter family of de-
formations also has a univariate solution space. Hence, this
analysis can provide a new type of collision-free contact mo-
tion which involves simultaneous deformations of the robot.
Indeed and as will be shown later on, in many cases, this de-
formable robot’s 3-contact motion is able to connect discon-
nected components of the rigid robot 2-contact motion graph
(see the second column from the left, in Figure 8). In this sec-
tion, we present the algorithm for computing these deformable
robot’s 3-contact motions, based on the result of the 2-contact
motion graph of Kim et al. [15].

5.2.1. Computing the 3-Contact Motion Curves
As discussed in Sections 4 and 5, the algebraic constraints for

3-contact planar motion of a deformable robot have seven equa-
tions with eight variables (u1, v1, u2, v2, u3, v3, θ, t), for a para-
metrically deformed robot. Due to its high dimensionality and
the corresponding large solution space, we strive to exploit the
2-contact motion analysis for a rigid robot as much as possible,
and resort to a 3-contact analysis over a deformable robot only
when necessary, achieving a better performance. The 2-contact
motion graph for a rigid robot includes 3-contact configurations
as vertices of the graph. These 3-contact configurations are lo-
cations where the rigid robot is tangential to the obstacle, in
three different places. We will take these 3-contact configu-
rations as the locations where the deformable robot is tangen-
tial to the obstacle, in three different places, when t = t∗, the
fixed deformation parameter. In other words, we use these 3-
contact configurations as seed points for tracing the 3-contact
deformable robot motion, by solving the algebraic constraint
equations for 3-contact motions of the deformable robot, in the
local neighborhood of these seed points, for which t = t∗.

For each 3-contact (u1, v1, u2, v2, u3, v3, θ, t∗) and a user spec-
ified threshold δ, we extract a sub-domainD:

D = [u1 − δ, u1 + δ] × [v1 − δ, v1 + δ]×
[u2 − δ, u2 + δ] × [v2 − δ, v2 + δ]×
[u3 − δ, u3 + δ] × [v3 − δ, v3 + δ]×
[θ − δ, θ + δ] × [t∗ − δ, t∗ + δ],

only to solve the algebraic equations for the sub-domain
D, which is much smaller than the entire domain and thus
can be computed more efficiently. The computed univari-
ate solution for the sub-domain D can be parameterized as
(u1(a), v1(a), u2(a), v2(a), u3(a), v3(a), θ(a), t(a)) for 0 ≤ a ≤ 1.

The two end points of the solution are typically on the bound-
ary of the domain D. Let one of the end points be E =

(u1
e, v1

e, u2
e, v2

e, u3
e, v3

e, θe, se). Since E is on the boundary of
D, at least one coordinate of E is a minimum or a maximum
value of the domain of D. Assume, without loss of generality,
the coordinate is u1

e = u1 + δ. We then continue the solution
tracing and march to the next domain, D2, which can be set as

5



(a) (b)

Figure 5: (a) A 4-contact configuration, (b) inter-penetration of Φt(C(u)) into
D(v). Of the geometry in Figure 8 (a).

follows:

D2 = [u1, u1 + 2δ] × [v1 − δ, v1 + δ]×
[u2 − δ, u2 + δ] × [v2 − δ, v2 + δ]×
[u3 − δ, u3 + δ] × [v3 − δ, v3 + δ]×
[θ − δ, θ + δ] × [t∗ − δ, t∗ + δ].

We repeat this tracing procedure, solving algebraic equations
for one sub-domain and then deciding the next sub-domain to
solve, until the traced 3-contact motion curve meets one of sev-
eral terminal points which are described in the next section.

5.2.2. Terminal Points for 3-Contact Motion
Typical terminal points for the 3-contact motion curve of

a deformable robot is a 4-contact configuration location (see
Figure 5(a)). The 4-contact configuration is realized when the
robot undergoing a 3-contact motion gets in a tangential contact
with the obstacle in a fourth location. The algebraic conditions
for this 4-contact configuration can be formulated using Equa-
tions (7), for K = 4 with 3K−2 = 10 constraints in 2K +2 = 10
variables, (u1, v1, u2, v2, u3, v3, u4, v4, θ, t).

During the 3-contact motion computation, we keep check-
ing whether the robot has any collision with the obstacle. The
inter-penetration of the robot can be checked by computing the
intersection point between the robot and the obstacle. Since the
robot already has three tangential contacts with the obstacle, we
check if the tangent directions at the intersection point are par-
allel or not, to distinguish the current three tangent points from
the new intersection point.

Once we detect an inter-penetration at
(u1(a), v1(a), u2(a), v2(a), u3(a), v3(a), θ(a), t(a)), we extract
a domainDF around this location as follows:

DF = [u1(a) − δ, u1(a) + δ] × [v1(a) − δ, v1(a) + δ]×
[u2(a) − δ, u2(a) + δ] × [v2(a) − δ, v2 + δ]×
[u3(a) − δ, u3(a) + δ] × [v3(a) − δ, v3 + δ]×
[us, ue] × [vs, ve]×
[θ(a) − δ, θ(a) + δ] × [t(a) − δ, t(a) + δ],

where [us, vs] and [ue, ve] are the parameters of the inter-
penetration location (see the blue points in Figure 5(b)). We
then solve the algebraic equations for the 4-contact configura-
tion in the domainDF .

(a) (b) (c)

Figure 6: Curvature contact point: the two different contact points merges to a
single point. Of the geometric configuration in Figure 8 (a).

Similarly to the 2-contact motion curve of a rigid robot, the
3-contact motion curve of a deformable robot has singular ter-
minal points in the form of order-four (curvature derivative)
contact points. The curvature derivative contact configuration
is realized when two different contact points merge to a single
location. Figure 6 shows one example of an order-four termi-
nal contact. Two order-two (tangential) contact locations coa-
lesce into one order-four (curvature derivative) contact. We can
formulate this event by the following three equations in three
variables (u, v, t):

κC(u, t) − κD(v) = 0,
∂κC(u, t)
∂u

−
∂κD(v)
∂v

∂v
∂u

= 0,

∂κC(u, t)
∂t

−
∂κD(v)
∂v

∂v
∂t

= 0,

(12)

where κC(u, t) and κD(v) are the curvature fields of Φt(C(u)) and
D(v), respectively. Stated differently, Equations (12) identify
locations on Φt(C(u)) and D(v) that share the same curvature
and curvature derivative. Using a rigid motion, one can always
bring these locations together so that they coalesce in their po-
sition and tangent.

Finally, a 3-contact motion curve may also terminate when it
reaches its extreme deformation, i.e. for t = 0 or t = 1. While
the other parameters u1, v1, ..., θ are all periodic for C1 closed
curves, here caution must also be taken to handle these extreme
deformations cases.

5.2.3. Constructing the 3-Contact Motion Graph
We start from the seed points which are 3-contact vertices

in the graph of the 2-contact motion of rigid robot, solve the
algebraic constraints for the 3-contact motion curve of a de-
formable robot in the local neighborhood of these seed points
and trace the 3-contact motion. When a terminal 4-contact con-
figuration is reached during this tracing, we must fork out mul-
tiple branches for new traces. We now explain this forking-out
process.

When a rigid planar robot is in a 3-contact with its obsta-
cle(s), there are three different 2-contact motion routes that the
robot can get out without collision. This is because there are
3 =

(
3
2

)
different ways to select 2-contact points out of the

three (without repetitions). When we trace a 2-contact motion
to a terminal 3-contact configuration, we already exhausted one
such path (where we came from) and so two new paths are to be
forked and traced out. Similarly, a deformable planar robot in a
4-contact configuration with its obstacle(s) has 4 =

(
4
3

)
different

ways to select a 3-contact. One path (where we came from) is

6



Figure 7: Four 3-contact curves forking out from 4-contact configuration and
zoom in of four 3-contact curves from 4-contact configuration of the geometry
in Figure 8 (d).

again already exhausted and so three new paths are to be forked
out and traced from every 4-contact location of a deformable
robot. As is shown in Figure 7, typically four 3-contact motion
curves branch out from the 4-contact configuration location.

Finally, when the 3-contact traced motion curve of a de-
formable robot terminates at the curvature derivative contact or
at an extreme deformation point (i.e., t = 0 or 1), we simply
stop the tracing process.

When solving the entire constraint system via a multivari-
ate equation solver [23], one can guarantee to find all solutions
up to some prescribed tolerance. On the other hand, when we
locally trace the 3-contact motion, we examine a considerably
smaller domain space while we are not guaranteed to find all
possible 3-contact motions. However, it effectively finds 3-
contact motions that connect the fully disclosed but possibly
disconnected 2-contact univariate components in the C-space
(solved using [23]).

6. Experimental Results

We have implemented the presented contact motion planning
algorithm for deformable robots in C++ and using the IRIT
solid modeling system [24] on an Intel Core i7 3.4 GHz PC
with 32 GB main memory. To demonstrate the effectiveness of
our algorithm, we performed the motion planning for obstacles
having narrow passages.

Figure 8 (a)-(d) shows four examples. The first three exam-
ples employ a parametrically define robot while the last exam-
ple, in Figure 8 (d), shows an example of an implicitly defined
robot. In the leftmost column, the 2-contact motion graph of
a rigid robot is shown. This graph has disconnected compo-
nents. The second column from the left augments the 2-contact
graph with 3-contact motion paths of a deforming robot (in red)
which connects the isolated components. The three columns on
the right show samples of the computed motion using the com-
bined 2- and 3-contact motion. Using the graph structure of 2-

and 3-contact motions and Dijkstra’s algorithm [25], non-trivial
motion paths can be efficiently computed.

Table 1 presents some statistics for these four examples. To
compare our local tracing algorithm for 3-contact motions with
a general algorithm (that is based on all possible constraints),
we solved the entire system of equations for Example 2 (shown
in Fig. 8(b)) which is the fastest among all test examples consid-
ered in this work. Because the construction of an entire system
of equations requires a huge amount of memory space, which
is far beyond the capability of modern workstations, we had to
subdivide input curves into Bézier pieces and then constructed
a system of equations for each sub-domain. It took about 295
hours to solve the entire domain and it is more than 70 times
slower than our local tracing algorithm. We report the average
fraction of examined domain for each variable. The domain for
each variable including θ is scaled to [0, 1] and thus the entire
domain space can be represented as [0, 1]8 for the parametric
robot and [0, 1]10 for the implicit robot. We added the sizes
of the sub-domains that were examined by our 3-contact mo-
tion computation algorithm and then computed the d-root (d is
the dimension of the space of the domain) of the summation.
As can be seen from the results, our algorithm examined less
than 5% of each dimension of the domain on average, which
means that the domain examined by our algorithm is less than
0.058 (0.0510 for the implicit robot) of the entire domain. Even
though our algorithm examined only a tiny fraction of the entire
domain, enabling a significant performance improvement, the
computation times are still in the range of many hours. Nev-
ertheless, the algorithm effectively and precisely produced 3-
contact motions that connect disconnected components of the
rigid robot 2-contact motion graph.

6.1. A Video

The results are also presented in a video [26] that shows
the animated version of our four examples (Figure 8 (a)-(d)).
Again, the first three examples employ parametrically defined
deformable robots whereas the last example (d) employs an im-
plicitly defined deformable robot. The pink curve on the right
shows the computed continuous motion path connecting the
start (in blue) and goal (in red) configurations employing Di-
jkstra’s algorithm [25]. The deformable robot (in yellow) on
the left undergoes the computed continuous contact motion that
consists of 2- and 3-contact motions (and hence includes defor-
mations) from the start configuration to the goal configuration.

The motion of our deformable robot is fully determined by
Dijkstra’s algorithm. The algorithm does not distinguish be-
tween 2- and 3-contact motions and it simply finds a sequence
of edges connecting the start and goal configurations from the
graph structure of 2/3 contact motions. By following the se-
quence of 2- and 3-contact motions, the robot undergoes either
rigid transformations or deformations, respectively.

7. Conclusions and Future Work

In this work, we have extended previous results on motion
planning for rigid robots to a generalized approach that sup-

7

https://youtu.be/_Aj-J_KE6ec


(a)

(b)

(c)

(d)

Figure 8: Continuous K-contact motion analyses of four examples. (a)-(c) are examples of a parametrically defined robot while (d) shows an example of an implicitly
defined robot (See also Figure 2).

Example 2-contact 3-contact 4-contact Total Memory (MB) Examined Domain (%)
(in each dimension)

Fig. 8(a) 00:07:54 16:00:56 00:48:30 17:14:01 43.07 2.85
Fig. 8(b) 00:01:35 04:30:10 00:00:00 04:37:48 17.86 2.65
Fig. 8(c) 00:17:10 58:06:56 07:34:12 66:39:01 70.39 3.35
Fig. 8(d) 04:43:16 187:22:05 34:20:47 232:36:36 54.85 4.02

Table 1: Timing (in HH:MM:SS), memory consumption (in Megabytes) and average fraction of examined domain in each dimension (in %).

8



ports deformable robots. This extension is based on the repre-
sentation of deformable robots using one-parameter family of
deformations. Algebraic methods played a major role in this
work, an approach that yields high accuracy in the order of ma-
chine precision. More importantly, based on the ability of the
exploited multivariate solver [21, 22, 23] that ensures finding
all real solutions, we can guarantee that the configuration space
will be exhaustively analyzed, and thus always finds a feasible
motion if one exists, up to the prescribed tolerance. While the
presented algorithms are slow and requires hours and days of
computations, they all used a single thread. Parallelizing the
solver is possible and can clearly reduce the computing time.
Another possible consideration for optimization is the optimal
δ value to be used in the local tracing. One can also consider
further optimizations via the use of different δ values for each
variable, which potentially reduce the domain size of the sys-
tem of equations.

Our algorithm effectively addresses a narrow passage prob-
lem which is typically the most challenging part of the mo-
tion planning. On the other hand, it cannot handle open re-
gions where there exist no 2/3 contact motions. These open
regions can be effectively handled by using other well-known
algorithms such as a probabilistic road map (PRM) [2] or a
rapidly exploring random tree (RRT) [27]. However, there are
several technical issues that must be resolved before applying
these sampling based algorithms to C1 continuous implicit or
parametric curves. For example, collision test for the straight
line in the C-space connecting two collision free configurations
is non-trivial and it is even more difficult to check the condition
efficiently. Therefore, combining our work with other sampling
based method requires a further in-depth research and analysis.

Clearly one can consider more than one degree of freedom
in the deformation function of the robot. In fact, the tangible
robot of [1] can have several independent degrees of freedom.
Let Ci(u), (i = 1, · · · , n), u ∈ [0, 1], be n regular paramet-
ric curves that can be convex-blended using (n − 1) indepen-
dent parameters. Differently stated, consider the multivariate
M(u, t1, ..., tn−1). By setting the (n− 1) independent parameters,
t j, fixed in M, a univariate is prescribed. While the complexity
of solvers [21, 22, 23] is exponential in the dimension, the al-
gebraic structure of the problem is clear. One can hope that this
algebraic configuration can be exploited, as in the local behav-
iors scheme exploited in this work, reducing the dimensionality
and exploiting the deformations’ full degrees of freedom only
when they are really needed.

Similarly, one should also consider handling piecewise C1-
continuous shapes, handling curve-point contacts, where the
point is a discontinuity point. While conceptually simpler than
the curve-curve contacts, it does require the management of
some book-keeping of all the different contact events’ cases.

Acknowledgments

This work was supported in part by the People Programme
(Marie Curie Actions) of the European Union’s Seventh Frame-
work Programme FP7/2007-2013/ under REA grant agreement
PIAP-GA-2011-286426, in part by the ISRAEL SCIENCE

FOUNDATION (grant No.278/13). and also in part by the
Korean MCST and KOCCA in the CT R&D Program 2014
(No. R2014060001), and in part by NRF Research Grants
(No. 2013R1A1A2010085).

References

[1] O. Salomon, A. Wolf, Inclined links hyper-redundant elephant trunk-like
robot, J. Mechanisms Robotics 4 (4) (2012) 045001–045001–6.

[2] L. E. Kavraki, P. Svestka, J. C. Latombe, M. H. Overmars, Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,
IEEE Transactions on Robotics and Automation 12 (4) (1996) 566–580.

[3] L. Guibas, C. Holleman, L. Kavraki, A probabilistic roadmap planner for
flexible objects with a workspace medial-axis-based sampling approach,
in: Proc. IROS, 1999, pp. 254–259.

[4] O. B. Bayazit, H. Lien, N. Amato, Probabilistic roadmap motion planning
for deformable objects, in: Proc. IEEE Trans. on Robotics and Automa-
tion, 2002, pp. 2126–2133.

[5] R. Gayle, P. Segars, M. C. Lin, D. Manocha, Path planning for deformable
robots in complex environments, in: In Robotics: Systems and Science,
2005, pp. 225–232.

[6] A. Mahoney, J. Bross, D. Lin, D. Johnson, Deformable robot motion
planning in a reduced-dimension configuration space, in: Proc. IEEE
Trans. on Robotics and Automation, 2010, pp. 5133–5138.

[7] C. Bajaj, M. S. Kim, Generation of configuration space obstacles: the case
of a moving sphere, IEEE J. of Robotics and Automation 4 (1) (1988) 94–
99.

[8] C. Bajaj, M. S. Kim, Generation of configuration space obstacles: the
case of moving algebraic curves, Algorithmica 4 (2) (1989) 157–172.

[9] C. Bajaj, M. S. Kim, Generation of configuration space obstacles: the case
of moving algebraic surfaces, Int’l J. of Robotics Research 9 (1) (1990)
92–112.

[10] I. K. Lee, M. S. Kim, G. Elber, Polynomial/rational approximation of
minkowski sum boundary curves, CVGIP: Graphical Models and Image
Porcessing 60 (2) (1998) 136–165.

[11] C. Holleman, L. Kavraki, J. Warren, Planning paths for a flexible surface
patch, in: Proc. IEEE Trans. on Robotics and Automation, 1998, pp.
21–26.

[12] F. Lamiraux, L. Kavraki, Path planning for elastic object under manipu-
lation constraints, Int’l J of Robotics Research 20 (3) (2001) 151–156.

[13] V. Milenkovic, E. Sacks, S. Trac, Robust free space computation for
curved planar bodies, IEEE Trans. on Automation Science and Engineer-
ing 10 (4) (2013) 875–883.

[14] V. Milenkovic, E. Sacks, S. Trac, Robust complete path planning in the
plane, in: Proc. of the Tenth Workshop on the Algorithmic Foundations
of Robotics, 2013, pp. 37–52.

[15] Y. J. Kim, G. Elber, M. S. Kim, Precise continuous contact motion for
planar freeform geometric curves, Graphical Models 76 (5) (2014) 580–
592.

[16] G. W. T. Sederberg, P. Gao, H. Mu, 2dd shape blending: An intrinsic
solution to the vertex path problem, in: Proc. SIGGRAPH ’93, 1993, pp.
15–18.

[17] S. Cohen, G. Elber, R. B. Yehuda, Matching of freeform curves, Com-
puter Aided Design 29 (5) (1997) 369 – 378.

[18] J. Gomes, L. Darsa, B. Costa, L. Velho, Warping and Morphing of Graph-
ical Objects, The Morgan Kaufmann, 1998.

[19] G. Turk, J. O’Brien, Shape transformation using variational implicit func-
tions, in: Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, 1999, pp. 335–342.

[20] E. Sherbrooke, N. Patrikalakis, Computation of solution of non-linear
polynomial systems, Computer Aided Geometric Design 5 (10) (1993)
379–405.

[21] G. Elber, M. S. Kim, Geometric constraint solver using multivariate ratio-
nal spline functions, in: Proc. of the 6th ACM Symp. on Solid Modeling
and Applications, ACM, 2001, pp. 1–10.

[22] I. Hanniel, G. Elber, Subdivision termination criteria in subdivision mul-
tivariate solvers using dual hyperplanes representations, Computer-Aided
Design 39 (5) (2007) 369–378.

9



[23] I. H. M. Barton, G. Elber, Topologically guaranteed univariate solu-
tions of underconstrained polynomial systems via no-loop and single-
component tests, Computer Aided Design 43 (8) (2011) 1035–1044.

[24] IRIT 11.0 Users Manual, http://www.cs.technion.ac.il/~irit

(2013).
[25] E. Dijkstra, A note on two problems in connexion with graphs, Nu-

merische Mathematik 1 (1) (1959) 269–271.
[26] The result video, https://youtu.be/_Aj-J_KE6ec.
[27] S. M. Lavalle, J. J. Kuffner, Rapidly-exploring random trees: Progress and

prospects, in: Algorithmic and Computational Robotics: New Directions,
2000, pp. 293–308.

10

http://www.cs.technion.ac.il/~irit
https://youtu.be/_Aj-J_KE6ec

	Introduction
	Related Work
	Deformable Robots
	Parametric Deformable Robots
	Implicit Deformable Robots

	Algebraic Conditions for K-Contact Motion
	The Generation of the K-contact Motion Graph
	2-Contact Motion Curves
	3-Contact Motion Curves
	Computing the 3-Contact Motion Curves
	Terminal Points for 3-Contact Motion
	Constructing the 3-Contact Motion Graph


	Experimental Results
	A Video

	Conclusions and Future Work

