Surface Design Using Global Constraints on Total Curvature

Michael Plavnik and Gershon Elber
Computer Science Department Technion - Israel Institute of Technology
Haifa, Israel

February 26, 1998

Abstract

Tensor product surfaces are now widely used in application areas from industrial design to computer
animation. Yel, the quest for more effective design methods continues. We consider a new approach to
the design of free form surfaces using global second order differential geometric constraints defined over
the entire domain of the surface or a prescribed subset of it. This work considers two cases of convexity
preservation and of developability preservation.

Keywords: Geometric design, tensor product surfaces, geometric constraints, total curvature.

1 Introduction

Computer aided geometric design distincts between building a model from already defined surfaces (high
level) and designing the surfaces (low level). While modeling requires the modification of the shape of
the surface, such operations are usually restricted to regular operators such as rigid motion, stretch-
ing/shrinking and bending [2]. In this work, we limit ourselves to surface design. Traditional methods for
designing tensor product surfaces include operations upon the underlying mathematical building blocks
(control vertices and basis functions) and are sometimes denoted direct manipulation methods. The direct
manipulation method is flexible, and simple to implement. Modifications of the shape of the surface are
local and tractable, and are very efficient and highly interactive. However, local pretrusions and dents
are not the only surface shaping operations one might desire. A conceptually simple change like bending
along a diagonal line may force the precise repositioning of many control points. Consequently, there is a
constant drive to develop new geometric forms that overcome some of those limitations of tensor product
surfaces. Triangular surface patches [1, 11] and multi-sided patches [10] are two examples for different rep-

resentations that attempt to alleviate some of these difficulties. Nevertheless, the problem of inadequate

control over the design of the desired surface is bound to arise whenever the controls provided to the user
are closely tied to the representation’s degrees of freedom, since no fixed set of controls can be expected
to anticipate all of the user’s need.

This paper deals with enforcing constraints on the curvature properties of Bezier surfaces. At the same
time, the behavior of the surface is governed by one or more simply expressed objectives, for example the
preservation of the shape of the original, unconstrained, surface. Formally, our approach specifies a surface
as a solution of a nonlinear programming problem. Novelty of the approach entails the global satisfaction
of the constraints at every point of the surface’s domain, compared to specification at finite number of
points or along a curve on the surface, in previous methods [7, 8]. In this paper, we report on our progress
in pursuing the goal of tensor product surface modeling using a variety of global second order geometric
constraints.

This paper is organized as follows. In Section 2, we present some background information on the use
of constraint based methods in the geometric modeling, while in Section 3, we mathematically formulate
the problem in hand and narrow the global differential constraints specification to the cases of convex
and developable surfaces, and describe the symbolic tools we employ in supporting the implementation
of these differential geometric constraints. Section 4 considers two possible objective functions one can
employ, while in Section 5, we discuss the numerical solutions. Examples are presented in Section 6, and

we conclude in Section 7.

2 Background

Recently, some work have been conducted to incorporate intuitive and interactive controls over the ge-
ometrical properties of the surface. We follow [6, 7] and define a differential property that is expressed
directly in terms of a surface representation and its derivatives, and a geometrical property which is a set
of differential properties. Examples of geometric properties include a point and a curve on the surface,
tangent and normal, elastic energy of the surface approximation functionals, etc. Geometric properties

provide the mean to achieve desired shape control over the surface without resorting to direct manipulation

of the surface’s representation. Geometric constraint is a restriction on a property value which should be
completely satisfied, subject to some small error tolerance. The constraints allow precise control over (a
portion of) the surface, and are therefore the means for a design that follows specifications. Other kinds
of restrictions may be formulated that do not require a complete satisfaction. Instead, some objective
function may be defined over the property and the minimum of the objective function is sought. Typically,
the objective function is either an energy approximation functional [5, 12], a minimal shape change, or
minimal control points’ motion [6, 7]. Local minima problems may arise when the global minimum is
sought and in [2, 5] user’s intervention is required to resolve it. Sculpting tools that are implemented as
a set of physical forces such as pressure, springs and gravity, and produce qualitative effects like enlarge,
attract and flatten are examples of unconstrained restrictions used to manipulate the shape of the surface
[5].

Constrained and unconstrained restrictions may be allowed to vary in time by changing existing re-
strictions and introducing new ones. They are useful when defining operators that preserve some surface
properties during the modification process, and operators that do modify other properties of the surface.
Integrating both preserving and modification operators means flexibility and precision at the same time.
Nevertheless, constraint-based approaches have not been successful in practical interactive systems com-
pared to the direct manipulation methods. In [9], problems with the constrained-based approaches are
discussed and a practical approach to partially overcome these problems is proposed.

Interactive systems demand efficient solution. As noted in [5, 8, 12], the current state of computer
technology limits the applicable constraints to mostly linear and the objective functionals to quadratic, in
the surface degrees of freedom (e.g. control points). The constrained system of equations is usually solved
by transforming the constrained problem into an unconstrained problem in which constraints are implicitly
satisfied. Tt may be achieved by a null-projection [6, 8], via Lagrange multipliers [5, 12] or with the aid of
penalty methods [5]. When no conflicts exist between the different constraints, they might be completely

satisfied. Otherwise, they may be satisfied in a least squares sense [12] or by minimizing an error functional

[7]. To control the constraint’s error, automatic or manual refinement of the representation of the surface
is used in [5]. Control over the objective function is more difficult, because an error measure is generally
unavailable [5, 6].

Welch and Witkin discuss in [5] two broad classes of geometric constraints: finite-dimensional con-
straints, that control the shape of the surface at a discrete set of points, and transfinite constraints, that
control the shape of the surface along embedded curves. Only an interpolation constraint for a curve
was presented. All other references address finite-dimensional constraints and to a less extent transfinite
constraints. In addition to finite-dimensional and transfinite constraints, we define the third class of global
geometric constraints, that globally control the properties of the surface at the entire surface’s domain or
at a prescribed subset of it. Examples include the interpolating of some analytic surface, controlling the
normal field of the surface by prescribing the Gauss map as some bivariate vector field function, having
a zero Gaussian curvature throughout (developable surface), prescribing elliptic and hyperbolic regions of
the surface and constraining the parabolic regions of the surface. In [4], some global shape properties like
convexity and a fixed degree of smoothness were explored through a system that automatically generates
a surface with a required shape. Early work by Ferguson [13] concentrated on a global convexity control
over B-spline surfaces along a prescribed isoparametric direction. A sufficient convexity condition on the
isoparametric curves of the surface was very conservative. Floater [14] presented an improved weaker
sufficient condition for the convexity of Bezier and B-spline surfaces. However, most of the work on the
global properties is concentrated on curves’ design. In [15], curvature of the curve and its derivatives are
used to constrain aesthetic (visually pleasing) properties of the curve approximation. Direct manipulation
of the curvature’s profile using numerator and denumerator profiles was described in [16]. Constrained
optimization and least squares approximation are employed to integrate best-fit curvature profiles. Com-
bined fairing and local convexity preservation problem for interpolatory splines was solved in [17] using

nonuniform C? — continuous polynomial splines.

3 Second Order Constraints

Consider the tensor-product Bezier surface:

SP(u,v) = iiﬂy‘jBTj’”(u,v), degree(ST) = (m,n), (1)

i=0 j=0

where B;)" (u,v) = B} (u) B} (v) are the ith and jth Bezier basis functions of degree (m,n) and P = {P, ;}
are the control points. Denote the initial surface as S® = S”(u,v). Then, S7(u,v) denotes the desired
new surface, following some changes in the control points that satisfies a given set of total curvature and /or
other constraints. Such a surface can be obtained as a solution to the following nonlinear programming

problem (NLP), where the control points are the variables of the problem:

minimize: F(P) (2)

subject to: PeQ={PecR™: :h(P)=0, g(P)>0, Vk,I},

where F(P) is some objective function, h(P) is a vector of equality constraints and ¢(P) is a vector of
inequality constraints, and M = (m+1)(n+ 1), where the control points are in a three dimensional space,
R®.

From the designer’s point of view, one is interested in shaping a convex surface or a surface that is
developable. From the point of view of the underneath representation, the convex surface is a solution
of the NLP problem Equation (2) with constraints ¢(P) coercing the positivity of the total (Gaussian)

curvature, K, of the surface:

minimize: F(P) (3)
subject to: PeQ={PecR™:K(P,uv)>0, Yu,ve]l0,1]}.
In order to achieve strict convexity, K (P, u,v) > 0 is required. Nevertheless, in order to numerically solve

the NLP problem, K(P,u,v) > € is allowed, where € is a small number > 0. Analogously, the developable

surface is a solution of the NLP where the total curvature of the surface, K, is prescribed as equality

constraints h(P).

minimize: F(P) (4)

subject to: PeQ={PecR™:K(P,uv)=0, Yu,ve][0,1]}.

Hence, one seeks an efficient way to compute the sign of the total curvature at every point of the domain of
the surface. That is, whether the total curvature is everywhere positive, or everywhere zero. For a regular
surface, the sign of the total curvature, K, equals the sign of the determinant of the matrix of the second

fundamental form of the surface:

where,

057 (u,v) y 057 (u,v)
du dv

N(u,v) = degree(N)= (2n — 1,2m — 1),

e(u,v) = <%,N(u,v)>7 degree(e) = (3m — 3,3n — 1),

Judv

9?57 (u,v)
Jv?

flu,v) = <w,l\7(u,v)>7 degree(f) = (3m — 2,3n — 2),

g(u,v) = , N (u, v)>7 degree(g) = (3m —1,3n — 3).

To obtain the sign of K, one can compute the sign of K(u,v). From Equation (5), one can see that the
desired sign of the total curvature constraint, K (u,v), is representable as a scalar Bezier surface of degree
(6m — 4,60 — 4).

6m—46n—4

K(u,v) = Z Z kiiji?_4’6"_4(u,v) (6)

i=0 j=0

For example, for a bicubic Bezier surface, degree = (3,3), K has (6-3 — 3) x (6 -3 — 3) = 225 coefficients.
However, the representation of the sign of the total curvature by the sign of the second fundamental

form has a drawback of being sensitive to a reparametrization and scaling transformations, due to our

introduced ignorance in the first fundamental form. This ignorance has hindering effects on solving the

NLP problem. To partially overcome this deficiencies, one may down scale the constraints by the values of

the determinant of the matrix of the first fundamental form of S°, computed at the node points of the Bezier

basis functions of K (u,v), without introducing any substantial overhead in the constraints evaluation. Yet,
merely down-scaling the coefficients of the surface is insufficient to improve the algorithm’s stability. In
addition, we down scale every constraint by the length of the gradient of the constraint. In practice, we
found that this process of combined down-scaling works quite well.

Given the control points, P, of the surface S7, one can compute the coefficients of K. Nevertheless,
one is required to determine whether K is positive throughout, or zero everywhere. For K (u,v) to be
identically zero and S to be developable it is necessary and sufficient for all k; ;(P) to be zero. Hence, the
coefficients of K introduce (6m — 3) x (6n — 3) equality constraints, A(P). In contrast, there is no simple
procedure to determine whether K is positive throughout and S is convex. Alternatively, one can define
sufficient conditions for K to be positive throughout, if all coefficients of K are positive. Thus, once again,
the (6m —3) x (6n — 3) coefficients of K are used as inequality constraints g(P). For example, for a bicubic

Bezier surface, the convex surface constraint problem of Equation (3) is reduced to:
minimize: F(P) (7)
subject to: PeQ={PecR™:k;(P)>0,i7j=0,., 14},
whereas the developable surface constraint problem of Equation (4) is reduced to:
minimize: F(P) (8)
subject to: PeQ={PecR™:k;(P)=0,1i,7=0,.,14}.

One can employ symbolic analysis operators over Bezier surfaces [18] to derive the evaluation expressions

for k; ;(P).
957 (u,v) i
= 7 = PlOBm 1,n 9
8u i=0 j=0 v (U7v)7 ()
857) m n—1
OS] S R B), (10)
i=0 j=0
2 P m—2 n
T NS BB (), (1)
8u i=0 j=0
82573(%1]) == 11 pm—=1n-1
e~ - BBy " (uy0), (12)

n—2

0?57 (u,v)

3 ZZ;] 0 P B (u,v), (13)
where,
Pl = m(Py;— Piy),
Pl = (P — Py,
2y = m(m—1)(Pj = 2Py j + Pigsj),
P'L = mn(P ;- Py — Pijy+ Pajg),
P = n(n—1)(P; = 2P 41+ Pjyo).

Substitute by the ® symbol, the inner, vector, or scalar product operators over the control points and /or

coefficients in R?, R® and R' spaces, respectively. Then, one can derive the surface product operator as:

SP (u,v) @ S (u,v) = ZPJB’”P”P (u,v) ®2Qm 2" (uyv) (14)

i

_ ZR BmP-I-mQ,nP-I-nQ (u U)
= i ,

= SR(u7 v),
where
min(mp,k) min(np,l) (m'p) (m_Q) (np) (n_Q>
Ry, = Z (mp_:nq) (nP_HfQ‘; P @Quroii—j-
i=maxr(0,k—mqg) j=maz(0,l-ng) k {

The differentiation and product operators in Equations (9)-(14) are algebraic in nature and express the
coeflicients or control points of the resulting surface through a summation of terms, factored by a scalar
weight. A term is the coefficient or control point of the operand surface, as in Equations (9)-(13) or the
product of the control points of the operand surfaces, as in Equation (14).

One can consider the coefficients k; ;(P) as multivariate polynomials in the control points P of the
surface ST. Given control points P, one can compute the coefficients of K following Equations (9)-(14),
independently of the Bezier basis functions. The k; ;(P) constraints are multivariate polynomials of degree

six in P;

: i, and, generally, are not convex functions, enforcing the use of a general NLP solution methods. To

efficiently solve NLP problems, gradients of the constraints must be readily available. Numeric evaluation

of the gradients requires excessive number of evaluations of constraints, depending on the method of
choice. Also, the gradient of the polynomial function may be evaluated as fast as the function itself or even
faster. To make the evaluation efficient, symbolic computation tools for Bezier surfaces were developed,
implementing the operators defined in Equations (9)-(14), as well as symbolic derivative operators with
respect to control points. Such tools allow one to extract pure symbolic expressions for the constraints and
their gradients, as well as to explore optimizations based on symbolic manipulations and transformations.

A naive approach to the symbolic computation of k; ;(P) is very similar to the numerical one. Instead of
numeric values of control points, P, one processes symbols representing the control points and coefficients.
A symbol is a name of the control point together with its indices. The control points can be regarded as
the summation of factored terms. Summation of terms can be represented as a sequence of the factored
terms. That is, {to,t1,...,t,} denotes t, +t; + ... + t,. Operators (9)-(13) take the control points of the
operand surface and construct the control points of the resulting surface by literally merging sequences of
the factored terms of the corresponding control points or coefficients. The product operators (14) are more
complicated. P; ; @Qx_;;—; can be expanded by distributing the operator @ over termsin F; ; and Qx_; ;—;,

(") G2) (P2

and then factoring them by RRIGOE resulting in a new sequence of terms. All the sequences,
k 13

generated while computing Ry, ;, are literally merged. Order of the product operations is important, because
of the cross and dot products and, in general, this order can be captured in a structure of an expression tree.
Memory overhead can be reduced by storing one syntax tree per surface, because all symbolic expressions
corresponding to the control points of the surface share same product operations in the same order. The
tree representation does not contain references to the symbols, but indexes into a shared symbol table.
A term can be represented as a sequence of the control point’s symbols together with a factorization.
For example, {1, P5 o} represents P, o, and {—12, Py o, Py 1, P55} represents —12 (P o X Py 1, P5). In-order
traversal is used to restore order of operations and operands. Finally, the computation of K in Equation (5)

can be implemented via the operators of Equations (9)-(14).

Derivative of the surface 5S¢ =37, 57, QB (u,v) with respect to P ; equals

D(SR @ S9) ISR o om . 05
A 1
Ty o5 ©5°+5" 8 55 (15)

859 _ 7 8Qk‘l TTLQ,TLQ
oP ; - Zk:zl: (U,U), (16)

7]

and can be implemented by scanning all the terms in the sequence) ; and replacing every term containing
F; ; by a sequence of terms corresponding to the rule of derivatives of a product. Vanishing terms will be
eliminated altogether from the sequence. For P, ; = {; ;,y;;,2 ;} € R?, one is interested in the partial

852 952 pse
dx ;' Oy’ Oz,

derivatives () with respect to the z,y, and 2 components of the vector P, ;. Derivatives of

8(Po,0-P1,0-Po,0-Po,1)
5Po0

F; ; with respect to itself are replaced by a special unit symbol 7. For example, is replaced

by (I-Pio-FPoo-Po1)+ (Poo-Pio-1-Fy1). The symbol I equals one when the coefficients P, ; € R,
but I has a special meaning for the control points P, ; € R®. Symbolically, both cases can be represented
using I, but when evaluating a symbolic expression, one must replace I with (1,0,0) for z, (0,1,0) for y
and (0,0,1) for z.

For bicubic Bezier surfaces, the upper limit on the number of terms in the symbolic expressions of the
coefficients of e, f, ¢ is clearly bound by 163. In practice, this number varies between 24 terms for the corner
coefficient, fy o, to 862 terms for the interior coefficients. For bicubic Bezier surfaces, one is expected to
experience severe memory and computational overheads in computing the symbolic expressions for k; ;(P)
(bound by 16°, and, in practice, numbering between 250 terms for a corner coefficient, k¢ o, to 4.5 x 10°
terms for an interior coefficient) and in evaluating the values of these expressions, especially taking into
account that 225 such expressions exist. Nonetheless, the structure of e, f, ¢ in Equation (5) makes some
critical optimizations possible. Applying the symbolic product operator, one can realize that any of the

coefficients of the e, f, g factors can be represented as summation of terms of the form of:

ch B]7P XP = ch d@t PZ]7P(]7‘7P]7 (27])7&((]77‘)7&(870
k k

For example, for a biquadratic surface S7, ¢(P) and f(P) (Equation (5)) have degree(e) = (3,5) and

degree(f) = (4,4) respectively. Then, the symbolic expressions of the coefficient ey, of e and control

10

coefficient fy 4 of f equal:

6070 = 8d€t[PO0P01P02] — 8d€t[PO0P01P10] -I— 8d€t[PO0P02P10] — 8d€t|:P01P02P10]7 (17)

f0,0 = _16d€t[P00P01P10] + 16d€t[PO0P01P11] — 16d€t[PO0P10P11] + 16d€t[P01P10P11].

Our implementation identifies and eliminates terms violating the (7,j) # (q,r) # (s,t) constraint. An
ordering on the symbols of the coefficients, based on the rules of elementary matrix transformation, is
applied to combine all terms featuring the same triples of symbols into one term, corresponding to a mixed
product operation. Symbol ordering is defined using a lexicographic ordering on names and as two digit
number on indices. For example, Fy; < P;o and Pig < Q1. The term Cy det [Py o, Ps o, Py 2] can be
combined with the term Cy det [P, o, Py o, Py o] to produce a new term (Cg — C5) det [Py o, Py 2, P> o]. Then,
an expression tree containing the two product operations is replaced with a single mixed product operation.

From the point of view of pure symbolic computation, one can also apply the following optimizations:

BZ’;” (U? U) = (m) (n) (1 _ u)m—lul(l _ U)n—jvj = Brnrzflz,n—](l —u, 1 — U).

v J
One can immediately identify that there is a transitive symmetry relation between indices of control points

(see Figure 1):

P ; is symmetric around the horizontal axis to P,,_; ;, +=0..m, j = 0..n,

P ; is symmetric around the vertical axis to P, ,_;, ¢=0..m, j =0..n,

P ; is symmetric around the major diagonal axis to P;;, i=0..m, j = 0..n,

P ; is symmetric around the minor diagonal axis to P,_; ,,—;, 1 =0..m, j = 0..n.

This symmetry reduces the storage complexity of the control points of a Bezier surfaces by approxi-
mately a factor of eight. The gray triangle on Figure 1 marks the required storage region. For example,
recalling that degree(e) = (3,5) for a biquadratic surface, we can obtain the symbolic expression for the

control point eq 5 from the symbolic expression of e; o (compare with Equation (17)):

6075 = —8d€t[P02P01P00] -I— 8d€t[P02P01P12] — 8d€t[P02PO0P12] -I— 8d€t[P01PO0P12]

11

Figure 1: Bold font denotes source indices, regular font denotes symmetric indices and italic font denotes
transitively symmetric indices.

= 8d€t[PO0P01P02] — 8d€t[PO0P01P12] -I— 8d€t[PO0P02P12] — 8d€t|:P01P02P12]7

via a symmetry around the vertical axis.

Using the structure of e, f and g, one can improve the evaluation of k; ;(P) as well.

K(P) = e(P)g(P)— f(P)? (18)
oK de dq af
= -2 19
The coefficients of e, f, g can be precomputed and reused in the computation of k;; and gf{’? in Equa-

tions (18)-(19), using numerical equivalent of a product Equation (14). Further, one can easily notice
that terms in e, f, g are featuring the same mixed products. For example, the first terms of ey and fy,
(Equation (17)) contain det[P, oPy 1P o]. For a bicubic surface, the maximal number of instances of a
mixed product term is achieved for det[P, 1, P o, Py 1] and its seven other symmetric terms, that appears
53 X 8 times in e, f, g. Table of mixed products det [P; ; P, . P,], (i,7) < (¢,7) < (s,t) can be precomputed,
and evaluation of the value of one term of the control points of e, f, g and their gradients is as simple as
looking up into the table. The size of this table is governed by the combinatorial formula for the number
of ways one can select three numbers i < j < k, 4,5, k€ 1,..., M and is equal to (1‘34) = MM—_EMM (560

for bicubic surface, M = 16).

A special kind of a developability constraints, developability with the conjugate parametric net, might be

12

useful in practice and can be handled more efficiently then the general case described above. The conjugate

parametric net condition is identified by:

flu,v) = <%,N(u,v)> =0, Yu, v. (20)

It follows, that the developability problem in Equation (4) is reduced to:

minimize: F(P) (21)
subject to: PeQ={PecR™:f,;(P)=0,i=0,.,3m—3, j=0,..,3n— 3}
and subject to: P eQ={Pec R :¢,;(P)=0, i=0,.,3m—4, j =0,.,3n— 2}
when U isoparametric lines are planar, or subject to:
PeQ={PecR™:¢4,;(P)=0,i=0,.,3m—2, j=0,..,3n— 4}

when V isoparametric lines are planar.

4 The Objective Function

When a surface is altered during a constraints satisfaction process, it is desired to preserve the original
design as much as possible. Naturally, this requirement can be expressed by an objective function, with a
minimum that is achieved when S7 = S% In our implementation, we used the following L,-norm based

functional:

1 1
w) /0 1157 — 59| [2dudo. (22)

The minimum of this functional is the same as the minimum of the following objective function:

1 1
F(P):/O /0 157 = 5°|[2dudv. (23)

In practice, one can use a simpler alternative, for Bezier surfaces,

F(P) =3 > P = PlII5, (24)
i

which is an approximation to Equation (23), as follows:

1 1
F(P) = /0/0||S7’—SO||§dudv

13

1 a1
- /0/0 ||ZZ(PM_Pi?j)Bz’,j(U,U)Hgdudv
i
1 1 - 2
/0 /0 ZZH(BJ_]Di,j)||2Bi,j(u7U) dudv
i
1 a1 -
[[S - poduds
i
= DD IR = Pl
i

IN

IN

Both objective functions, Equations (23) and (24), are quadratic with respect to P, and thus have a global

minimum, satisfying S7 = S°.

5 Numerical solution

We have formulated the surface approximation problem with a quadratic objective function and generally

nonlinear constraints:

)

minimize: F(P)=> > "IP; - P, (25)
J
subject to: PeQ={PecR": k;j(P)=0,i=0,..,6m—4, j=0,..,6n—4},

or: PecQ={PcR™:k;(P)>0,i=0,..,6m—4, j=0,..,6n—4}.

Now, we seek an NLP method satisfying the following criteria. It should be robust, probably at the expense
of computation time. It should deal with a large number of equality and /or inequality constraints, typically
much greater than number of variables ((6m —3)(6n—3) >> 3(m+1)(n+1)). Due to properties of Bezier
surfaces, the number of variables is medium (up to several hundreds) and the Jacobian matrix (composed
of gradients) of constraints is not sparse.

Current SQP (sequential quadratic programming) methods are considered the most efficient methods
for solving NLP’s of small and medium size [19]. The SQP method tries to obtain the solution of the NLP
problem by iteratively computing a sequence of candidate solutions {P'};, where [is the iteration number.
When an SQP solver is at iteration / with solution P', it should compute a correction direction d' from

solution point P’ such that all constraints are satisfied, or feasible, at a new point. That is,

P =Py old, PH e, o €(0,1], (26)

14

and the objective function is minimized. Usually, these conditions are contradictory, and an SQP method
should select the correct tradeoff between temporary violation of the constraints and fast minimization. o'

in Equation (26) is such a tradeoff factor guaranteeing the condition P'*! € Q. The computation of d' is

carried out as a solution of a quadratic programming subproblem of the original NLLP problem:

1
minimize: VEPHYTd + §leBldl, (27)
subject to: Vhi(PHYTd' + hi(P') = 0, Vi,

or subject to: Vg (PHTd + g;(P") > 0, Vi,

where B, is an approximation to the combined second order derivatives’ information of the constraints
h(PY), g(P') and the objective function of the surface’s modeling problem, F(P). By, is obtained from B,
using only first order derivatives, i.e. gradients. We employ a technique called BFGS (Broyden, Fletcher,

Goldfarb, and Shanno) update [19] to maintain B;. For example, for a bicubic Bezier surface one gets:

3 3
1
minimize: 2 Z Z(le] — P)d; + §leBldl, (28)
i=0 j=0
subject to: Vi ;(PHYTd + ki ; (P =0, (i,7) € {0,..,14x 0, .., 14},

or subject to: Vi ;(PYTd + ki ; (P >0, (i,7) € Ay C {0,..,14 x 0, .., 14},

where the set of constraints used at the [th iteration is denoted the active set A; and is typically less then
15% = 225 in the inequality NLP problem. Many of the inequality constraints are feasible most of the time
throughout the solution process, and are infeasible in a small number of iterations. When the inequality
constraint is feasible, it has no influence on the minimization, and thus, can be left suspended, until it
becomes almost infeasible. Nevertheless, one should care not to change the active set too often. In order
for d' to be well defined, B; is required to be positive definite on the subspace restricted to the active
constraints and thus, a unique global minimum is obtained.

A new technique for inconsistent QP problems in SQP method was recently developed in [20]. Our

present implementation uses a solver that is based on this method and is described briefly below. This

15

method considers only those constraints which are near active or active,
A= {irg(P) <8 € Ry}, (29)

8" — 0 implies that P! is regarded as local constrained minimum of the NLP problem. &' > 0 is chosen by
a decrease test for a so called L;(-norm) penalty function, for which the state is sought when the objective

function is at the minimum and no constraint violations are observed:

®(P3,y) = F(P)+)_ i max(=g:(P'),0)+ > wlhi(P],

where 3 and v are weights given to the violation of constraints in exact (distance) sense.

To make the active constraints consistent, the QP subproblem is also extended by introducing slack
variables with weights for every constraint. Careful handling that drives the values of these variables to
zero provides sufficiently fast, and robust realization of the SQP method. When the inconsistencies are
small, interactive speed of surface manipulation can be achieved. For example, preservation of the convexity
of the bicubic Bezier surface can be carried out during interactive manipulation of the control points. But
when the infeasibility is substantial and/or the problem is highly inconsistent, the minimization attempts
may fail or at least take enormous number of iterations, costing minutes of computation time. For example,
the developability problem defined in Equation (8) results in an over constrained quadratic subproblem
in Equation (28): there are 225 linear constraints and 48 variables. One should carefully choose an NLP
method that overcomes this difficulty. When such an NLP method is not available, one can transform the

problem in Equation (8) into:

minimize: F(P) (30)

subject to: P eQ={Pec R* :T{(K(P))=0, i=1..1, L <3M},

where T is a constraints transformation function having a C? continuity and satisfying the following

condition:

T,(K(P)=0 & K(P)=0.

16

These conditions ensure that the constraints of the original problem are satisfied at the solution and the

QP subproblem is not over constrained. A simple example of such a transformation function is:

VT(P) = VE(P)TK(P).

This function has an obvious deficiency, its gradient and Hessian are zero when the constraints are satisfied,
while the original gradient and Hessian may be different, resulting in slow convergence near the solution.
In practice, one can rely on the objective function to achieve an acceptable convergence rate. Advantages
of function (31) are the small computational overhead over the computation of K (P), the faster solver pro-
cessing due to the reduced dimensions of the matrices used in solving the QP subproblem in Equation (27)
and no impact on the conditional number of B; in Equation (27). One can explore other practical schema,
like transforming only the interior constraints of the problem.

One should distinguish between the interactive mode and the batch mode of solving the convex and
developable surface constraint problems. In an interactive mode, the initial surface S° satisfies either the
convexity or the developability constraints. The desired surface S” is obtained via a small change in the
position of a single control point. Such a modification can be formulated with the additional three linear

constraints in the problem Equation (25):

minimize: F(P)=> > "lIP; - P35,
i g
subject to: PeQ={PecR": k;j(P)=0,i=0,..,6m—4, j=0,..,6n—4},
or: PeQ={PecR™:k;(P)>0,i=0,...6m—4, j=0,., 6n—4},

_ po

and subject to: P, ;= 0, for the certain control point F; ;.

J

In contrast, in batch mode, the initial surface does not satisfy the constraints, in general. However, at
the initial phase of the optimization process, the solver of the NLP problem tries to obtain a surface that
satisfies the constraints, while it needs not to minimize the objective function F'(P). Alternatively, one can

provide the solver with an initial surface S” that differs from the surface S that is used in the objective

17

| Rotx_Roty mrr——m| Zoom

Figure 2: A snapshot of the modeling application of Bezier surfaces.

function. The surface S should satisfy the constraints of the prescribed problem and should not be too far
from the surface S°. For example, one can obtain such a surface by constructing a best fit planar surface

based on the control points of S°.

6 Results

An interactive tool for modeling Bezier surfaces that implements the techniques described in this work
has been developed using the Open Inventor [21] toolkit (see Figure 2). The modeler allows the user to
interactively manipulate control points of the Bezier surface while preserving various types of constraints.

All forthcoming figures are snapshots of intermediate surfaces during the optimization process until
convergence is reached. See, for example, Figure 3. In the batch mode, one is allowed to modify an
arbitrary number of control points. At any moment, one can select a desired constraint from a prescribed
menu and instantly observe the changes in the shape of the surface on the screen, until the convergence
is complete. Examples of modeling a bicubic Bezier surface using a variety of constraints is shown in
Figures 3-7. Global second order geometric constraints are most effectively used in a conjunction with
other constraints, because by themselves they leave too many degrees of freedom unspecified. For example,

the parametric nets in the examples of Figures 4 and 7 are not necessary orthogonal. To properly simulate

18

Figure 3: A planar bicubic Bezier surface is altered by dragging one of the four interior control points
of the surface while preserving convexity and locations of the corners. The sequence (a)-(f) demonstrates
sample frames of the manipulation, computed in an interactive session, all in few seconds on a 133 MHz
Pentium machine.

Figure 4: A planar surface is folded into a flat shape resembling an envelope by interactively dragging two
corner control points one after another while preserving developability and the locations of the three other
corners. (f) is a flat surface. Note, we do not preserve the first fundamental form in this example. The
sequence is computed in an interactive session, all in few seconds on a 133 MHz Pentium machine.

19

Figure 5: A planar surface is altered by dragging the far corner control point of the bicubic Bezier while
preserving developability, conjugate parametric net, planarity along the V parametric direction and the
locations of the three other corners. The sequence is computed in an interactive session, all in few seconds
on a 133 MHz Pentium machine.

Figure 6: The designer is interested in a hull shape resembling the one in (a), which obviously violates
convexity restrictions. In (b), the shape of the hull is globally convex and closely resembles the original
shape. During the optimization process, the locations of the corner control points are preserved. The
optimization process took approximately 4 seconds on a 133 MHz Pentium machine.

20

Figure 7: The plane is folded as in (a), which obviously violates developability restrictions. In (b), the
shape of the folded plane is globally developable. One can see that the parametric net is not necessary
orthogonal throughout the optimization process, since we do not preserve the first fundamental form.
During the optimization process the locations of the corner control points are preserved. The optimization
process took approximately 9 seconds on a 133 MHz Pentium machine.

the folding behavior of a sheet of paper, one is required to put a global orthogonality constraint upon
the surface. Restricting the surface to a arclength preserving orthogonal parametric net can be easily
incorporated into the presented framework, resulting in an isometric mapping.

Following [13], we consider the use of our tool with an 'unreasonable’ initial surface. Figure 8 shows
an initial surface with a loop in the control mesh as well as the final solution surfaces without a loop. Two
initial guesses were employed. The first is identical to the initial surface and the other is planar without
a loop in the control mesh. The techniques employed in this work allows one to solve the problem from
both initial guesses, while in [13] only ’reasonable’ initial guess (without a loop) succeeded. Nevetheless,

solving the problem with the first initial with the loop guess took considerably more time.

7 Conclusions

Our experience shows a high level of utility of the global second order constraints in both batch and inter-
active shape modeling. To make the incorporation of the global second order constraints practical, further
research is necessary in three directions. The first direction has the goal of extending the techniques dis-
cussed in this paper to support B-spline surfaces. The second direction would add other global constraints

on the basis of both the first and second fundamental forms to those already employed in the paper. Exam-

21

Figure 8: The control mesh of the bicubic Bezier surface in (a) has a loop. Solution of the strict convexity
(with tolerance 5 x 107*) problem is shown in (b). One can see that the solution eliminates the loop in
the control mesh, while preserving the general shape of the surface. During the optimization process, the
locations of the four corner control points are preserved. The optimization process took approximately 10
seconds on a 133 MHz Pentium machine when the initial guess was s planar surface without a loop in the
control mesh, and took approximately 30minutes, when the initial guess was identical to the surface in (a).

ples include modeling minimal surfaces and surfaces of constant curvature, and applying global constraints
to subregions of the parametric domain (with bifocal and trifocal lenses as a possible application). To
improve the computation speed in interactive applications one can extend the conditions for the convexity
of the tensor-product Bezier and B-spline surfaces as described in [14]. One important application of the
techniques presented in this work may be fairing of the surface shape using the theorem presented in [3],
that a surface that satisfies f(u,v) = F(u,v)(kmin(t,v) + kpao (¥, v)), Yu,v is smooth in the sense that
(k2. (u,v) + k2 .. (u,v))dudv — min (where F(u,v) and f(u,v) are the symmetric components of the
first and second fundamental forms accordingly). The third direction invites research in numerical anal-
ysis to provide better techniques that are suitable for solving the NLP problems with the large number
of constraints expressed as multivariate polynomials. For example, convexity problems show stable and
robust behavior in our implementation. Developability problems behave almost as robustly, but as was
mentioned in the discussion on the constraints’ transformation function, in Section 5, SQP based optimiza-

tion methods are likely to experience difficulties when attempting to solve the developability problems and

22

may show slow convergence.

References

[1] G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic Press, San Diego,

California, second edition, 1990.

[2] A. Witkin, K. Fleischer, A. Barr. Energy Constraints On Parameterized Models. Computer Graphics,

Vol. 21, No. 4, July 1987, pp. 225-232.

[3] G.Farin, H. Hagen. A Local Twist Estimator. Hagen, Hans, editor, Topics In Surface Modeling, 1992,

pp- 79-84.

[4] E. Anderson, R. Anderson, M.Boman, T.Elmroth, B.E.J. Dahlberg, B. Johanson. Automatic construc-

tion of surfaces with prescribed shape. Computer Aided Design, No. 20, 1988, pp. 317-324.

[5] W. Welch, A. Witkin. Variational Surface Modeling. Computer Graphics, Vol. 26 No.2, July 1992, pp.

157-166.

[6] B.M. Fowler. Geometric Manipulation of Tensor Product Surfaces. Computer Graphics, 1992 Sympo-

sium on Interactive 3D Graphics, Vol. 25, No.2, March 1992, pp. 101-108.

[7] B.M. Fowler. Constraint Based Curve Manipulation. IEEE Computer Graphics and Applications, Vol.

13, No.5, September 1993, pp. 43-49.

[8] G. Celinker, W. Welch. Linear Constraints for Deformable B-Spline Surfaces. Computer Graphics, 1992

Symposium on Interactive 3D Graphics, Vol. 25, No.2, March 1992, pp. 165-170.

[9] M. Gleicher. Integrating Constraints and Direct Manipulation Computer Graphics, 1992 Symposium

on Interactive 3D Graphics, Vol. 25, No.2, March 1992, pp. 171-174.

[10] C. Loop, T. DeRose. Generalized B-spline Surfaces of Arbitrary Topology. Computer Graphics, SIG-

GRAPH ‘90 Conference Proceedings, Vol. 24, No. 4, 1986, pp. 151-160.

23

[11] G. Celinker, D Gossard. Deformable Curve and Surface Finite-Elements for Free-form Shape Design.

Computer Graphics, SIGGRAPH ‘91 Conference Proceedings, Vol. 25, No. 4, 1991, pp. 121-129.

[12] M. Kallay. Constrained Optimization in Surface Design. 1992.

[13] D. Ferguson, P. Frank, A. Jones. Surface shape control using constrained optimization on the B-spline

representation, Computer Aided Geometric Design, No. 5, 1988, pp. 87-193.

[14] M. Floater. A weak condition for the convexity of tensor-product Bezier and B-spline surfaces. Ad-

vances in Computational Mathematics, No 2, 1994, pp. 67-80.

[15] H. Burchard, J. Ayers, W.Frey, N. Sapidis. Approximation with Aesthetic Constraints. Sapidis, Nicko-
las S., editor, Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-

Aided Design, 1994, pp. 3-28.

[16] A. Jones. Curvature Integration through Constrained Optimization. Sapidis, Nickolas S., editor, De-
signing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-Aided Design,

1994, pp. 29-44.

[17] A. Ginnis, P. Kaklis, N.Sapidis. Polynomial Splines of Nonuniform Degree: Controlling Convexity and
Fairness. Sapidis, Nickolas S., editor, Designing Fair Curves and Surfaces: Shape Quality in Geometric

Modeling and Computer-Aided Design, 1994, pp. 253-276.

[18] G. Elber. Free form surface analysis using a hybrid of symbolic and numeric computations. PhD thesis,

University of Utah, 1992.

[19] R. Fletcher. Practical methods of optimization, 2nd ed., Wiley, Chicester - New York, 1987.

[20] P. Spellucci. A new technique for inconsistent QP-problems in the SQP method. Technical University
of Darmstadt, Department of Mathematics, preprint 1561, Darmstadt 1993.

ftp://ftp.mathematik.tu-darmstadt.de/pub/department /software/opti/newsqpsh.ps.gz

[21] Silicon Graphics, Inc. Open Inventor C++ Reference Manual, Addison-Wesley, 1994.

24

