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Abstract

This paper presents how freeform surface properties can be estimated through bounding, rather than sampling. Bounding surface
positions using the control mesh, and bounding surface normals using normal cones, are both well known procedures. In this paper,
we add to these, a procedure to bound the normal curvature values of a surface.

We then show how collision free 5-axis tool-paths for CNC machining, using any convex shaped tool, can be generated using
the normal curvature bounds of a surface, without calculating surface offsets. As the tool-paths are generated using conservative
bounds on the surface, and not sampled points, the tool-paths can be both globally optimized and globally guaranteed to be collision
free. Simulation results validating our approach are also presented.
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1. Introduction

Computer numerical control (CNC) machining, is a widely
used form of subtractive manufacturing. In CNC machining, a
target model, usually expressed as a set of boundary surfaces, is
manufactured from some initial model (stock) by removing ex-5

cess material using a machining tool. In this paper, we present
methods that can be adapted to any convex machining tool, and
use two types of tools as examples:

Definition 1.1. A ball-end tool has a cylindrical shank, that
ends in a tip: a hemisphere of the same radius. A flat-end tool is10

made of a cylindrical shank, with the bottom disc of the cylinder
being the tip.

An important aspect of CNC machining, is the generation
of collision free (valid) tool-paths. Collision (or gouging) free
tool-paths are those in which the tool does not remove mate-15

rial that should remain as part of the target model. Generating
collision free tool-paths is especially challenging in 5-axis ma-
chining, where both the tool position and orientation change
along the tool-path. Collisions can be divided into two main
types:20

1 Local, in which the tip of the tool gouges the target model (or
the CNC machine, etc).

2 Global, when the shank of the tool gouges the target model
(or the CNC machine, etc).

In this paper, we show how bounds, computed for the normal25

curvatures of a given model surface, can be used to generate
collision free 5-axis tool-paths for convex tools. The main con-
tributions of this paper are:

1 A method to generate tight bounds for the normal curvatures
of a whole surface.30

2 A method to generate globally verified valid 5-axis tool-paths
for convex tools.

3 A collision avoidance strategy that enables global optimiza-
tions of the tool-path, without compromising its validity.

The rest of the paper is organized as follows: in Section 2, we35

discuss some of the relevant previous work. We lay down the
theoretical background for bounding the normal curvature val-
ues of a surface in Section 3. Section 4 presents how we apply
these normal curvature bounds in an algorithm that generates a
globally collision free tool-path, for a flat-end or a ball-end tool.40

We present our experimental results, which include simulations
validating our approach in Section 5. We mention some av-
enues for future research in Section 6, and conclude in Section
7.

2. Previous Work45

The concepts introduced in this work relate to local collisions
in CNC machining, and so in this section we focus on other re-
search efforts that deal with local collision avoidance. A more
thorough (but not very recent) review of CNC machining re-
search, in general, can be found in [1].50

Perhaps the greatest challenge in local collision avoidance
stems from the fact that the tool has to make contact with the
target model as part of the machining process. This means col-
lision avoidance algorithms must allow tangential contact be-
tween the tool and the target model, but still ensure that the tool55
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does not gouge into the target model. Mathematically, we can
say gouging occurs when the intersection of the tool and target
model has a non-zero volume.

One way of addressing local collisions is by using offsets
[2]. For ball-end tools, globally offsetting all model boundaries60

in their surface normal direction, by the tool radius, allows the
tool to be replaced by a ray, and the tip of the tool with a sin-
gular point. However, applying this method to other types of
tools (e.g. flat-end, toroidal), is difficult, as in this case every
combination of tool orientation (and surface normal) would re-65

quire a different offset surface. Additionally, the global offset
operation can create models that contain singularities and self
intersections.

Several local collision avoidance methods operate by match-
ing the second order (curvature) or higher order differential be-70

havior of the tool, to that of the machined surface. Matching
the normal curvatures of the surface and the tool, would usually
reduce gouging around the contact point, but would not elim-
inate it [3]. Curvature matching also optimizes the amount of
removed material and resulting surface finish for flat-end tools.75

The principal axis method [4] as well as earlier work like [5],
compute the optimal tilt for a given tool, that sets the normal
curvature of the tool to best match that of the surface at the
contact point. The rolling ball method [6], and the arc intersect
method [7] operate similarly, but match the second order dif-80

ferential behavior of a sphere bounding the tip of the tool and
an approximated second order differential behavior of the sur-
face, based on a number of sampled points in the vicinity of the
contact point. The method described in [3] matches higher or-
der behavior, namely hyper-osculating circles, which indicate a85

greater level of compatibility between the surface and the tool.
This method ensures no gouging occurs in some small neigh-
borhood around the contact point.

In flank machining, the aim is for the tool and surface behav-
ior to be matched along the entire length of the tool rather than90

individual points [8]. Flank machining is more limited, when
compared to machining using the tip of the tool, in the areas of
the model that it can be applied to. On the other hand, flank
milling can achieve a better surface finish in these areas. This
is because in flank milling it is possible to effectively change95

the shape of the contact profile between the tool and the surface
[9], and achieve a much better matching between the surface
and tool.

Another approach used for local collision avoidance is the
multi-point method [10]. This approach operates on concave100

surface patches, trying to find tool configurations (position and
orientation), that are as close as possible to having two tangen-
tial contact points between the tool and the surface. Using such
configurations, the tool can be transitioned between cutter con-
tact (CC) points while minimizing overall machining errors.105

Apart from the method based on offsets, all of the above
described methods rely on sampling of the tool-path and the
model surface. Sampling based methods can only test for col-
lisions at a finite set of CC points, and must operate under the
assumption that no collisions occur when transitioning between110

sampled points. In this paper, we propose a curvature matching
method based on bounding the surface normal curvatures rather

than sampling them. By employing bounds on the normal cur-
vatures of the surface (as well as normal cones and bounding
boxes), we can conservatively test if a tool-path is collision free115

in a whole neighborhood (sub-surface). By testing for collisions
in a sequence of adjacent neighborhoods, we can guarantee for
an entire CC curve that the resulting tool-path, is globally col-
lision free.

3. Calculation of Normal Curvature Bounds120

Given a polynomial or rational regular C2 surface S (u, v) ∈
R3, its normal surface n̄(u, v) =

∂S (u,v)
∂u ×

∂S (u,v)
∂v , and its unit

normal surface n̂(u, v) =
n̄(u,v)
‖n̄(u,v)‖ , we recall the following terms

of the first and second fundamental forms (following [11] or
similar):

E =

(
∂S
∂u

)2

, F =
∂S
∂u

∂S
∂v

, G =

(
∂S
∂v

)2

,

L =
∂2S
∂u2 n̂ , M =

∂2S
∂u∂v

n̂ , N =
∂2S
∂v2 n̂ .

(1)

The principal curvatures at a point p = S (u0, v0) would be
the roots of the following quadratic equation for the variable κ,
evaluated at (u0, v0):

(
EG − F2

)
κ2 − (GL + EN − 2FM) κ −

(
LN − M2

)
= 0 . (2)

In order to establish bounds on the maximal and minimal
normal curvature values for the whole surface, we place bounds125

on all the above factors. For E, F, G, this is trivial as they
are all products of (piecewise) polynomial or rational surface
derivatives, and so are (piecewise) polynomial or rational scalar
surfaces, with values that are bounded by the values of their
control meshes. L, M, N, are also scalar surfaces, but are not130

(in general) polynomial or rational. L, M, N, are projections of
the second partial derivatives of the surface on the unit normal,
n̂. As such, the values of L, M, N can not be bound in the same
way.

To obtain maximum and minimum values for L, M, N, we135

must go one step back, and find the maximal and minimal val-
ues for the dot product of the unit normal of the surface with
the second partial derivatives of the surface.

The unit normal (pointing outward in this paper) of the sur-
face can be bound in a normal cone of the surface [12, 13]:140

Definition 3.1. Given a regular surface S (u, v) ∈ R3, all nor-
mal directions of S at all points p ∈ S (u, v) can be bound inside
a (circular) cone with a unit axis d̂ ∈ S 2 and angle α ∈ R. This
cone, C(d̂, α), is denoted the normal cone of S .

n̄(u, v) is a rational surface as we assume S (u, v) is a rational
surface. Therefore, calculating the normal cone can be done
following [14], using the control mesh of the normal surface
n̄(u, v). Then, if p̄i j is a control vector from the control mesh of
a second partial derivative surface of S , and C(d̂, α) is the nor-
mal cone of S , we can calculate the bounds on the dot product
between p̄i j and any unit direction ĉ ∈ C. We do this by placing
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bounds on the maximal angle between p̄i j and ĉ ∈ C. These
bounds are based on the angle between d̂ and p̂i j =

p̄i j

‖p̄i j‖
as well

as the angle α:

〈 p̄i j, ĉ〉 ≥ ‖p̄i j‖ cos
(
min

(
arccos 〈 p̂i j, d̂〉 + α, π

))
,

〈 p̄i j, ĉ〉 ≤ ‖p̄i j‖ cos
(
max

(
arccos 〈p̂i j, d̂〉 − α, 0

))
.

(3)

The second partial derivatives of the surface are all polyno-145

mial or rational vector surfaces, and their values are affine com-
binations of the control vectors in their control meshes. Given
the nature of affine combinations, the dot product between a
second partial derivative of S and a unit normal of S , is bounded
by the maximal and minimal values in Equation (3) when ap-150

plied to all control vectors in the relevant control mesh, gener-
ating bounds for L, M, N.

Given bounds on all factors in Equation (2), interval arith-
metic [15] can be applied to bound any solution to Equation
(2), κ. The result will typically be two intervals: one for the155

value of the maximal principal curvature, and one for the value
of the minimal principal curvature. Note that the relation be-
tween the two intervals will depend on the values of the two
principal curvatures of the surface. The two intervals may be
disjoint for a surface with two very different principal curvature160

values, or overlapping, for a surface with principal curvature
values that are close to one another.

4. Collision Avoidance in 5-Axis Machining

LetM be our our target model, with a closed boundary that
is expressed as a set of regular C2 surfaces, O. Further, let S =165

{S 1, . . . S n}, be a subdivision of the boundary surfaces of M
into smaller sub-surfaces. We wish to generate a collision free
5-axis tool-path for moving a given tool T along a given cutter
contact (CC) curve C(t), t ∈ [t0, t1], on S.

To generate a locally as well as globally collision free 5-170

axis tool-path we use a configuration space (or C-space) based
method. For more information on the concept of C-space see
[16]. The C-space we use is three dimensional: t parametrizes
the motion of the contact point between the tool and the model,
along C(t), while Θ, and Φ parametrize the orientation of the175

tool (a direction on the unit sphere, S 2, along the axis of the
shank and away from the tip). Each single configuration, a
(t,Θ,Φ) point in the C-space, fully encodes the contact point
and orientation of the tool. We divide the C-space into small
3D sub-domains of the form: U = [ta, tb]× [Θc,Θd]× [Φe,Φ f ],180

to make collision testing more manageable. Each sub-domain,
that contains an infinite number of individual configurations, is
tested to see whether or not all of the included configurations
are collision free. The sub-domains that can be guaranteed to
contain only collision free configurations are marked as valid.185

The required collision free tool-path is generated by finding the
optimal path through the C-space (from plane t = t0 to plane
t = t1) that only passes through valid sub-domains, and thus
contains only collision free configurations.

In the following sections, we explain more thoroughly some190

of the steps in the above broad outline of our solution. In Sec-
tions 4.1, 4.2, and 4.3, we explain how to conservatively test a
given sub-domain, [ta, tb] × [Θc,Θd] × [Φe,Φ f ], in the C-space
for global and local collisions. Then, Section 4.4 explains how
the C-space and then the optimal path through the C-space are195

generated.

4.1. Local Collision Detection

In this section, we aim to present a method for conser-
vatively testing all surfaces in S for possible collisions with
the tip of the tool, for a given sub-domain of the C-space,200

U = [ta, tb] × [Θc,Θd] × [Φe,Φ f ]. For surfaces in S that are far
enough away from the tip, most collision detection tests [17],
will be sufficient. As stated before, the main difficulty, is elim-
inating possible collisions with surfaces that are close to, or in
contact with the tip. We denote by S̃ ⊂ S the set of surfaces in205

S that can not be eliminated as possible collisions using simple
(for example bounding box) collision tests. If we can somehow
guarantee none of them are penetrated by the tip of the tool,
then we can ensure no local collisions occur in the sub-domain.

Intuitively, the method we use to achieve this guarantee, is210

based on ensuring that a sphere that bounds the tip of the tool,
and is tangent to the surface at the contact point is more curved
(has a higher normal curvature) than an entire surface neigh-
borhood around the contact point. For example, as shown in
Figure 1, if the blue sphere has a higher normal curvature than215

the surface in a large enough neighborhood around the contact
point p, than anything inside the sphere does not penetrate the
surface. This specifically includes the tip of the tool, as well as
its circle shaped cutting profile.

More formally, the principles we use to achieve such guar-220

antees are those presented in [18]. To keep this paper self con-
tained we reiterate here the main result from [18]:

Theorem 4.1. Let S be a surface, which is represented as the
graph surface (or a height-field) z = f (x, y) of a compactly
supported, C0, piecewise C2 function f : R2 → R. If S is225

everywhere locally millable with a strictly convex C0, piecewise
C2, tool T with z-parallel axis, then S is globally millable with
T .

Proof. See proof of Theorem 3 in [18].

In the above theorem, a surface S is locally millable with230

T at a contact point p ∈ S ∩ T , if at p, the interior of the
signed Dupin indicatrix of S (elliptic or hyperbolic) contains
the signed Dupin indicatrix (see [18]) of a convex T (always
elliptic) [11]. The term ’millable’ as used above is equivalent
to the term ’collision free’, with respect to both the shank and235

the tip, when referring to a specific surface and tool configura-
tion, defined by a contact point and tool orientation. Note that
a point with a concave C1 discontinuity (that has unbounded
normal curvature) is not locally millable by any smooth tool.

We can now add the following:240

Corollary 4.2. Assume a ball-end tool T̊ , aligned to the z axis,
large enough to contain the tip of the original tool, T , and
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shares with T a tangential contact point with the model M.
Theorem 4.1 offers conditions that ensure T̊ does not collide
with the surfaces in S̃. If T̊ does not collide with S̃, then the tip245

of the original tool T does not collide with S̃ as well.

We can specify a containing tool T̊ , as described in the above
corollary, for a tip with any convex geometry that is in tangen-
tial contact with the model. The curvature of the tip of the tool,
T̊ , is defined as the effective curvature of the original tool T :250

Definition 4.1. Let S be a C2 surface, and T a tool that has a
tangential contact with S at a point p ∈ S . The effective cur-
vature of the tool is the normal curvature of the smallest sphere
that has a tangential contact with S at p, and fully contains the
tip of the tool. Refer to Figure 1 for an illustration of the above255

bounding sphere for the tip of a flat-end tool.

ω

n̂

R′t

Rt

p

q

Figure 1: Calculating the effective curvature of flat-end tool, for a single specific
orientation. The shank of the tool is shown in light red, the tip is the bottom
disc. The normal, n̂, at the contact point, p, is shown in green and the tangent
plane at p is shown in dark blue. A sphere that bounds the tip of the tool and is
tangent to the surface at p determines the effective curvature of the tool, and is
shown in blue.

We will use the following Lemma to ensure a set of surface
points can be represented as a graph surface (or a height-field)
z = f (x, y):

Lemma 4.3. Let S be a set of C2 surfaces, representing a260

closed 2-manifold boundary. Vc is a convex closed 2-manifold
boundary enclosing a volume V◦c . SI = S ∩ V◦c is the set of all
points on the surfaces S that are also inside V◦c . If the surface
normals (that point outward) at all points in SI have a positive
dot product with the ẑ direction, then SI can be represented as265

a graph surface z = f (x, y).

Proof. Assume that SI can not be represented as a graph. This
means that there are two points p1, p2 ∈ SI , that have the same
(x, y) coordinate. The line segment p1 p2 is aligned with the

direction ẑ. Without loss of generality assume that 〈p1, ẑ〉 <270

〈p2, ẑ〉 (an equality would indicate S, the closed boundary of
the model, is self intersecting).

Consider the volume enclosed by S, S◦, and V◦c . Their in-
tersection, V◦I = S◦ ∩ V◦c , is a (possibly disjoint) volume as
well. By assumption the surface normal at p1 has a positive dot275

product with ẑ, and there must be a small neighborhood of p1 p2
around p1 that is outside V◦I . Similarly, because of the relation
between the surface normal at p2 and ẑ, there must be a small
neighborhood of p1 p2 around p2 that is inside V◦I . Therefore,
p1 p2 must transition from being outside V◦I to being inside V◦I .280

Such a transition can only happen at a surface point on the
boundary of V◦I (and inside V◦c ) at which the dot product of
the surface normal and ẑ is negative. By assumption, no such
point exists on SI . This means no such transition exist, and our
assumption that SI can not be represented as a graph, created a285

contradiction.

Figure 2, illustrates the main argument behind the above
proof: the existence of two points with upward (ẑ) pointing nor-
mals and the same xy location necessitates the existence of (at
least one) point with a downward pointing normal on the line290

between them.

S◦

S

Vc

V◦c

Vc

V◦c

ẑ

Figure 2: Illustration of the proof for Lemma 4.3. The volume S◦ is enclosed
inside the surface S (dark red outline). The intersection of a volume V◦c (for
example the two volumes shown as green rectangles) and S◦ cannot include
two points on S, that have the same x, y coordinate and a surface normal with
a positive dot product with ẑ, without including a third point at the same x, y
location with a normal that has a negative dot product with ẑ.

Algorithm 1 integrates the theoretical principles described
above, into a set of steps that can be used to test if a given sub-
domain in the configuration space is free of local collisions. In
other words, Algorithm 1 tests if the tip of a given tool T as it295

moves along a segment of the CC curve, C([ta, tb]), with an ori-
entation in the range [Θc,Θd] × [Φe,Φ f ] ∈ S 2, gouges a closed
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boundary made from a set of surfaces, S, that we assume are
all C2. Algorithm 1 has two main stages. First a bounding vol-
ume, V◦c that bounds the tip of the tool as it moves in the given300

sub-domain is calculated, and surfaces in S that fall completely
outside V◦c are eliminated as possibly colliding with the tip. In
the second step the surfaces that do intersect V◦c , are eliminated
as possibly colliding with the tip based on Corollary 4.2. Below
is a more detailed explanation of Algorithm 1.305

Algorithm 1 TestLocalCollsions
Input:

(1) S = {S 1, . . . S n}, a set of C2 surfaces;

(2) C(t), a CC curve, a parametric curve on S, t ∈ [t0, t1];

(3) U = [ta, tb] × [Θc,Θd] × [Φe,Φ f ], a C-space sub-domain;

(4) T , a convex tool, of a given type and radius;

Output:

(1) true/ f alse, no local collision in sub-domainU;

Algorithm:
1: Tcurvature := ToolE f f ectiveCurvature(U,C(t),S,T );
2: V◦c := ToolT ipConvexBoundingVolume(U,C(t),S,T );
3: S̃ := {S̃ 1, . . . , S̃ m} =

{
S j

∣∣∣ S̃ j ∈ S and V◦c ∩ S̃ j , ∅
}
;

4: C(d̂i, αi) := NormalCone(S̃ i);
5: C(d̂, α) := BoundingCone(

⋃m
i=1 C(d̂i, αi));

6: Q := EmptyQueue();
7: Visited := { f alse, . . . , f alse}; // A length m Boolean array
8: Visited[1] := true;
9: QueueInsert(Q, S̃ 1);

10: while QueueNotEmpty(Q) do
11: S̃ i := QueueRemove(Q);
12: if MaxNormalCurvature(S̃ i) ≥ Tcurvature or

arccos〈d̂i, d̂〉 + αi ≥
π
2 then

13: return f alse;
14: end if
15: for all

{
S̃ j ∈ S̃

∣∣∣∣ S̃ i ∩ S̃ j ∩ V◦c , ∅
}

and !Visited[ j] do
16: Visited[ j] := true;
17: QueueInsert(Q, j);
18: end for
19: end while
20: if Visited[i] = true ,∀i ∈ 1, . . . ,m then
21: return true;
22: end if
23: return f alse;

The first step in Line 1 of Algorithm 1 is calculating the min-
imal effective curvature of the tool, for all configurations inU,
using ToolE f f ectiveCurvature. The details of this calculation
can be found in Appendix A.1. The effective curvature depends
on the radius and orientation of the tool, as well as the surface310

normals along the CC curve.
Lines 2 to 5 in Algorithm 1, initialize the set S̃, and re-

lated information. We use S̃, rather than the more accurate

S I , to avoid (as much as possible) handling trimmed surfaces
in our actual implementation. The 3-manifold convex vol-315

ume, V◦c , computed using ToolT ipConvexBoundingVolume,
includes the entire volume covered by the tool-tip for any of
the configurations in the sub-domain. Full details of this com-
putation can be found in Appendix A.2. This bounding volume
depends not only on the radius and orientation of the tool, but320

also on the CC curve and the surface. The set of surfaces in S̃,
is then found by testing intersections between V◦c and S.

The last operation, in lines 6 to 23 in Algorithm 1, tests if
points in SI = S̃∩V◦c , are collision free, based on the conditions
of Theorem 4.1. If the conditions are met, then no collision325

occurs. Otherwise, we conservatively assume a collision does
occur. These tests were all integrated into a breadth first search
(BFS) [19] over SI .

The first requirement for Theorem 4.1, is that the surfaces
in SI are everywhere locally millable. This requirement is ful-330

filled because the test in line 12 will classify (conservatively)
as a possible collision any situation in which the maximal nor-
mal curvature value of any relevant surface is greater than the
minimal effective curvature value of the tool.

The second requirement in Theorem 4.1, is that the surfaces335

in SI can be represented as a C0 and piecewise C2, graph sur-
face z = f (x, y). The piecewise C2 requirement is an assump-
tion (or precondition) of Algorithm 1. The C0 continuity of SI

is tested by a BFS. The BFS ensures all surfaces in SI are con-
nected, and so form a single C0 neighborhood inside V◦c . In340

general, SI would not be a z = f (x, y) graph for the original z
axis. However, we can often select an (x, y, z) coordinate sys-
tem, in which SI can be represented as a graph. The direction
d̂, the axis of the global bounding cone for S̃, computed in Line
5 in Algorithm 1, is a natural choice for the ẑ direction in the345

new coordinate system. The x and y directions can be any two
directions orthogonal to both d̂ and each other. If the test in
Line 12 indicates all surfaces in S̃ face toward some direction
d̂, then in this new coordinate system (where d̂ = ẑ) the points
in SI can be represented by a graph z = f (x, y), as shown in350

Lemma 4.3.
We implemented Algorithm 1 for ball-end and flat-end tools.

However, it is applicable to other convex tool types like bull-
nosed (toroidal) and various types of tools with conic shanks,
with some adaptations. The adaptations needed are the imple-355

mentation of the functions ToolT ipConvexBoundingVolume,
and ToolE f f ectiveCurvature (described in Appendix A.1, and
Appendix A.2) for these other types of tools.

4.2. Global Collision Detection
To confirm no global collisions occur for a given sub-domain360

of the C-spaceU = [ta, tb]×[Θc,Θd]×[Φe,Φ f ], we use an adap-
tation of the approach presented in [20]. Let Vm be a conical
frustum that bounds the shank of the tool for all configurations
in U. For a cylindrical or conical shank, and sub-domain U,
no global collisions occur if no collisions between the model365

M and the shank occur inside Vm. The algorithm in [20] al-
ready shows how we can ensure no collisions occur inside a
rectangular frustum between a tool’s shank and a model. The
adaptation to a conical frustum is straightforward. Note that any
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global collision avoidance algorithm can be used to preform the370

above task. The only requirement is that it can ensure no global
collisions occur in the given sub-domain.

4.3. Balancing Global and Local Collision Detection

For flat-end tools, the shank is in contact with the model dur-
ing the machining process. This may force the shank to be close375

to surfaces that are back-facing in relation to the tool direction.
Such a situation often occurs near sharp corners. Unfortunately,
the method we use to eliminate global collisions (adapted from
[20]) is overly conservative when the shank is close to surfaces
that are back-facing with respect to the direction of the tool.380

Figure 3 illustrates such a situation.

Ht

t̂

p

Figure 3: The tool is in contact with the surface in green, but is close to the sur-
face in blue that is back-facing in relation to the tool direction (t̂). The method
we use to eliminate global collisions (adapted from [20]) is overly conservative
in such situations. Extending the tip of the tool to include not only the bottom
disk (marked as a thick brown line), but also an extended cylindrical tip (in yel-
low) will often solve the issue, as the remaining portion of the shank considered
for global collisions will be moved sufficiently away from the blue surface.

We would like to avoid the overly conservative behavior de-
scribed above. Fortunately, we can do so by taking advantage
of the cylindrical geometry of flat-end tools. The division be-
tween the shank and the tip in flat-end tools can be relaxed, and385

a cylinder near the tip of the tool can be defined as the new tip.
This allows us to define an extended tip:

Definition 4.2. The union of the disc tip of a flat-end tool, with
an adjacent small cylindrical section of the shank, is denoted
as an extended tip. The height of the cylindrical addition to the390

tip, is Ht ≥ 0. See also Figure 3.

The larger the value of Ht the longer the extended tip is,
shrinking the other portion covered by the shank. This has two
effects: first, it distances the shank from the contact point, re-
ducing the possibility of overly conservative behavior in our395

global collision detection. Second, it changes the geometry of
the tip, meaning the approach presented in Section 4.1 must be
applied to a larger geometry. While a larger tip geometry may
produce more local collisions, in practice setting Ht to some
small (relative to the tool radius) non-zero value, allows for400

more sub-domains to be recognized as valid. This, in turn, leads
to overall better machining solutions.

4.4. C-Space Path Generation
Sections 4.1 and 4.2 explain how a given sub-domain of the

C-space, U = [ta, tb] × [Θc,Θd] × [Φe,Φ f ], can be guaranteed405

to be collision free (for both local and global collisions). In
this section, we present how the approaches presented in these
sections can be combined to produce a tool-path that is globally
collision free.

The first task we undertake is the subdivision of the bound-410

ary surfaces of the model, O, into as set of smaller sub-surfaces
(patches), S. Following the subdivision scheme presented in
[20], we recursively subdivide the boundary surfaces ofM until
every surface has a bounding sphere with a radius smaller than
some predetermined value, rmax, and a normal cone with an an-415

gular span smaller that some predetermined value, αmax. This
ensures S only includes surfaces that are small and flat enough.
While we subsequently only test collisions against the patches,
these patches are a subdivision of the original model surface,
and completely cover the model. This means that in terms of420

collisions, not colliding with any of the patches guarantees no
collisions with the whole work-piece, globally.

This task also includes calculating the maximal normal cur-
vature bound (as described in Section 3) and normal cones of
the surfaces in S. Following the requirements of the computa-425

tions in Section 4.1, the surfaces in Smust be C2 surfaces. Any
C2 discontinuities in the original model must be located on the
boundaries of surfaces in S. However, these C2 discontinuities
should be taken into account when computing the maximal nor-
mal curvature bound.430

In practice, calculating normal curvature bounds, as de-
scribed in Section 3, even for the subdivided surfaces in S, may
be too inaccurate. To achieve better accuracy we first specify
the accuracy goals using a range of normal curvature values
[κmin, κmax] for the tool (for a ball-end tool κmin = κmax), and a435

desired normal curvature accuracy κres: the maximal acceptable
size of the resulting normal curvature intervals. If the calculated
normal curvature intervals do not overlap [κmin, κmax], or are
smaller than κres, then our normal curvature bounds are accu-
rate enough. Otherwise, we can recursively subdivide the sur-440

face (along alternating parametric axes) and calculate bounds
for the sub-surfaces. The normal curvature bounds for a sur-
face will be a union of the normal curvature bounds for its sub-
surfaces. The recursion is terminated when the bounds are ac-
curate enough (as defined before) or when a preset number of445

recursions occur. Setting a maximal number of recursions elim-
inates the possibility of an unbounded number of subdivisions
that may occur at singularities (like cusp points).

The second task is the construction of the C-space. Recall
that the C-space is three dimensional: t parametrizes the motion450

of the contact point between the tool and the model, along C(t),
while Θ, and Φ parametrize the orientation of the tool (a direc-
tion on the unit sphere, S 2). The subdivision of the C-space is
achieved by subdividing the full C-space [t0, t1]×[0, 2π]×[0, π],
into smaller sub-domains. The rectangular orientation domain455

[0, 2π]×[0, π] is divided into a grid with a given bound on its an-
gular resolution Anglemax. The CC curve C[t0, t1] is subdivided
at any points where it intersects the boundaries of surfaces in S,
while it can also, optionally, be further subdivided as desired.
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Both of the above tasks are performed to make the bounds we460

often use in conservative computations tighter. The smaller the
values of Anglemax, rmax, and αmax are, the tighter the bounds
become. At the limit, when these values approach zero, the
conservative computations become exhaustive tests, for every
point along the CC curve, and every possible tool orientation.465

The third task is recognizing which of the sub-domains of
the C-space are collision free and thus valid. This is done by
applying the results of Sections 4.1 and 4.2 to each of the sub-
domains and marking those without global or local collisions as
collision free (valid).470

It is necessary, either before or after the above step, to exam-
ine sub-domains based on the angles between the surface nor-
mals and the tool directions. Performing these tests before the
actual collision testing would improve performance, as it would
eliminate more costly collision tests for some sub-domains.475

For all tool types, it is desired to exclude sub-domains that
include configurations in which the surface normal and tool di-
rection have an angle between them that is too large (for ex-
ample greater than 90◦). Excluding these sub-domains would
result in a more stable algorithm480

For a flat-end tool we also exclude (mark as invalid) any
sub-domain that includes a configuration in which the surface
normal and tool direction perfectly align. In such a configura-
tion, the flat-end tool’s bottom disc is in the surface’s tangent
plane, and there is no longer a single tool position associated485

with every (three dimensional) point in the configuration space.
Resolving this issue would require either a higher dimensional
configuration space, or equivalently, to take the previous con-
figuration into account. To simplify our configuration space
traversal, we chose in our solution not to consider these config-490

urations.
At this point, we have a C-space that is divided into sub-

domains, each marked as valid or invalid. All that remains is
finding an optimal path through the C-space (from the t = t0
plane to the t = t1 plane) that only passes through valid sub-495

domains, and thus contains only collision free configurations.
We do so by converting the C-space into a graph, and employ-
ing the same graph search approach as in [20].

The optimal path obviously depends on the costs we assign
to the edges of the graph. The costs should be set to optimize500

the machining process. The costs presented in [20], like penal-
izing for ball-end tools configurations in which the tool axis and
surface normal are too close, to avoid a contact point with zero
cutting speed, remain unchanged. We add to them costs specific
for flat-end tools. These costs are meant to minimize the angle505

between the tool axis and surface normal direction (while still
avoiding zero angles), which would minimize scallop heights.
We would also set costs to make the tool axis remain, as much
as possible, in the plane defined by the CC curve (tangent) di-
rection, and the surface normal, at the contact point.510

The valid sub-domains of configurations are given as a set of
volumes in the C-space, and every configuration can be directly
translated to a specific tool position (using C(t)) and orientation.
We can use this to apply global continuous optimizations to the
path, while ensuring the path remains collision free. For exam-515

ple, the path created by the graph algorithm can be smoothed

using some global filter, as is shown in [20].

5. Experimental Results

We implemented the algorithm described in Section 4 as a
C/C++ single threaded program. All tests ran on an Intel i7-520

4770 3.4 GHz windows 7 machine. To validate our results,
using CNC simulations, we use the machining Verifier Appli-
cation by ModuleWorks (https://www.moduleworks.com).

Throughout the following experiments, we use a tool with
a unit (1) radius, regardless of type. For the normal curvature525

bounds calculation the maximum number of recursions is set to
8, and the accuracy value is set to κres = 0.005. Unless noted
otherwise, rmax is set to 0.4, αmax = 0.05π, and Anglemax =

0.01π. In all of our experiments we use an extended tip for flat-
end tools. The default value for the length of the extended tip,530

Ht, is set to 0.4. Experimentally, the ratio we found Ht = 0.4Rt,
gave a good balance between the need to avoid spurious global
collision detections, and possibility of additional spurious local
collision detection.

The most critical of the above parameters are rmax and αmax,535

as they determine the number of patches. Smaller values for
rmax will create more, but smaller, patches while smaller val-
ues for αmax will create more, but flatter, patches. There is
of course a certain overlap between these values as smaller
patches will often be flatter and vice versa. In general, more540

patches require greater computation times, but also make the
conservative bounds used in these computations much tighter,
potentially exposing additional valid solutions. Another im-
portant parameters is Anglemax that determines the number of
orientation ranges that are considered. Again, smaller values545

would mean more orientation ranges, and longer computations
times, but tighter bounds that potentially identify more valid
tool-paths. Let no be the number of orientation ranges and let
np the number of patches. Then, in our implementation, compu-
tation times would depend linearly on the number of orientation550

ranges, or O(no), and will have O(np log np) complexity in the
number of patches. The linear dependence on no is because we
test for collisions for each orientation range, while the compu-
tation cost per orientation is fixed. O(np log np) is due to the
requirement for the patches to be ordered in a BVH (bounding555

volume hierarchy [21]).
The first model we use is designed to test the quality of the

achieved curvature matching for a flat-end tool. The model has
a large developable area (shaped like a subtraction of a cylin-
der) with constant (κmin = 0, κmax = 0.05) parabolic normal560

curvature. The optimal curvature matching would occur if the
angle between the surface normal and tool direction would be
arcsin 0.05 ≈ 0.05 radians, resulting in an effective tool curva-
ture that perfectly matches the normal curvature of the surface.
In the generated tool-path, the angle between the tool direction565

and surface normal is about 0.078738 radians. The difference
is smaller than the theoretical limit for the difference in this
case (in radians): Anglemax = 0.01π ≈ 0.0314 > 0.028738 =

0.078738 − 0.05. The normal curvature bounds calculated for
the relevant area are very accurate (less than 0.01 between the570
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maximal and the minimal values). A still frame from the simu-
lation can be seen in Figure 4. To simulate the machining pro-
cess we offset the generated tool-path toward the surface (the
direction opposite the surface normal) by 0.1. Using this offset
a small amount of material would be removed and the machin-575

ing result can be observed.

Figure 4: A model with a constant mean curvature (0.05) area being machined.

The second model is designed to examine the interplay be-
tween global and local considerations. This model, shown in
Figure 5, is created by sweeping a closed curve (shown in green
at the bottom of Figure 5) along a 3D knot curve. We will refer580

to this model as the knot model.

Figure 5: The knot model, with a radius one ball-end tool. The cross-section
of the model is shown in green. The CC curve used in our experiments is also
shown (in red).

In the following scenario, the entire surface of the knot model
is machined in a simulation, ignoring fixture considerations.
The CC curve we use goes along the length of the model several
times, shifting a bit each time in the perpendicular direction, to585

cover the whole surface. We do not make modifications to the
CC curve (or the traveling direction along it) in any way, even
though such modifications may reduce the number of extrac-
tions and re-insertions, as this is not the focus of this research.
Additionally for performance reasons, we only consider extrac-590

tions and re-insertions of the tool when no other way to proceed
exists, so our solution may not find the optimal extractions and
re-insertion locations. In the parametric domain of the surface,
this takes the form of straight line that cyclically loops around
the domain 40 times. The stock (or initial model) used in our595

simulations is the knot model offset outward in the normal di-

rection by 0.1.
Figures 6 and 7 show the results of this machining process. In

Figure 6, the model was machined using a ball-end tool. Local
collision detection in this case simply checks no gouging oc-600

curs along the tool-path, as orientation does not affect the local
behavior of the tool. In Figure 7, a flat end tool was used to ma-
chine the model. In some places the surface finish achieved by
the flat-end tool is better than that achieved by the ball-end tool,
while in others the ball-end tool gives better performance. The605

difference stems from places where global accessibility consid-
erations prevent optimal local placement of the flat-end tool,
degrading performance. The local performance of a ball-end
tool on the other hand is unaffected by global considerations,
and its performance in terms of surface finish remains relatively610

constant.

Figure 6: The knot model (for comparative tool size see Figure 5). Machined
with a ball-end tool. A video of this machining process can be viewed at can be
viewed in https://youtu.be/VuNdxDkJspk.

To get a quantitative measurement of the above (qualita-
tive) result, we compare the simulation’s result to the original
knot model. To minimize the effect of the chosen CC curve
(whose generation is not a part of the algorithms we present) er-615

rors are normalized using the performance of the ball-end tool,
which is constant for a given CC curve. For mesh comparison
we used the (approximated) Hausdorff distance computation in
[22], based on 16.2 million sampled points on the surface of
the original model and their distance to the simulation result.620

The measured distances are shown in Table 1. The best (low-
est) maximal distance is achieved by the ball-end tool, whose
local behavior is unaffected by global considerations, whereas
the flat-end tool, with local behavior that is determined by the
tool orientation, achieves better average (mean) performance.625

Links to videos of the above machining tasks, can be found
in the captions of Figures 6 and 7.

The next example uses a more realistic model: a bladed disk,
possibly a turbine component. The model is shown in Figure 8.
To accommodate the smaller scale of this model, for example630
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Figure 7: The knot model (for comparative tool size see Figure 5). Machined
with a flat-end tool. A video of this machining process can be viewed at can be
viewed in https://youtu.be/XE7Dy39 bHU.

Table 1: Distance, or error, between the simulation results and the original knot
model. See Figures 6 and 7. The distances given relative to the mean error for
a ball-end tool of 4.5e−3.

Simulation Relative Relative
Scenario Max Distance Mean Distance

Figure 6, Ball-end tool 6.7 1.0
Figure 7, Flat-end tool 13.6 0.88

the thin trailing and leading edges of the blades, we changed
rmax to 0.2. The CC curve we use goes back and forth along
(both sides of) the blade 80 times, shifting a bit each time in the
perpendicular direction to cover the whole surface. In the para-
metric domain of the surface, this takes the form of 80 cycles635

of a square wave. As the base of the blade actually includes
normal curvature values that are much higher than the maximal
effective curvature of the tools, we avoided a small area near the
base of the blade. To create the stock model we added a ruled
volume, between most of the machined surface area and a (nor-640

mal) offset by 0.1 of the same surface, to the original model.
Note that a small part of the machined area, near the base of the
blade, was left uncovered by the added ruled volume so we can
observe the effect of machining on the original surface as well.
The machined area can be observed in Figure 9.645

Figures 9 and 10 show the results of machining a blade using
a ball-end and flat-end tools respectively. Figure 11 shows the
result of machining a single blade model, without considering
the rest of the model using a flat-end tool. Links to videos of the
related simulations can be found in the captions of the figures.650

As with the knot model, we use an approximated Hausdorff
distance computation to evaluate machining performance. This
time the comparison is based on 15 million sampled points on
the target model: a single blade without the added ruled vol-
ume. Distance is measured from these points to the mesh of the655

simulation results, which are machined from the model with the

Figure 8: A model of a bladed disk, with a radius 1 ball-end tool. The CC curve
used in our experiments is also shown (in red).

Figure 9: The model from Figure 8 after machining one of the blades, using a
ball-end tool (for comparative tool size see Figure 8). A video of the related
simulation can be viewed at https://youtu.be/HGtkAU2c3sA.

added ruled volume. The results are shown in Table 2. These re-
sults again confirm what Figures 9, 10, and 11 showed earlier:
in areas where global considerations limit the placement of a
flat-end tool ball-end performance (in terms of surface finish) is660

better, but in areas where optimal placement of the tool is pos-
sible, the flat-end outperforms the ball-end tool. This effect is
especially apparent in the result shown in Figure 10: the area of
rectangle (a), which is difficult to reach (due to the neighboring
blade) has worse surface finish than the very accessible area of665

rectangle (b). In Figure 11, on the other hand, the surface finish
is very good (smoother) everywhere. This is because global ac-
cessibility is no longer a factor, and the mild normal curvature
in the machined area of the blade can be very well matched by
the tool. On a related note relating to the discussion in Section670

4.3, if Ht is set to 0, the sharp trailing edge of the blade can
only be machined from a very limited set of directions. This, in
turn, creates a noticeable degradation in the surface finish near
the trailing edge when it is machined using a flat-end tool.

In the next examples, we take a closer look at the perfor-675

mance of our algorithms. We do so for three presented models
and specified CC curves. The first model and CC curve are
shown in Figure 12 (b). In Figure 12 (b), to generate the perfor-
mance data only the hub and three blades were used: the blade
with the CC curve and the two adjacent blades. The generated680
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(a)

(b)

Figure 10: The model from Figure 8 after machining one of the blades, using a
flat-end tool (for comparative tool size see Figure 8). Note the smoother finish
in the rectangle (b), that is more accessible, relative to the rectangle (a) marking
a less accessible location. A video of the related simulation can be viewed at
https://youtu.be/vNCdcS3wyrY.

Figure 11: A single blade from the model in Figure 8 machined using flat-
end tool (for comparative tool size see Figure 8). The tool-paths were gener-
ated without considering global collisions with the rest of the model, result-
ing in a smoother finish. A video of the related simulation can be viewed at
https://youtu.be/yHve2Mgk9QU.

performance data does not account for the other blades. The
second model is a single blade shown Figure 12 (a), and using
the same CC curve. The third model is the knot model, with a
single iso-parametric curve along the length of the knot as a CC
curve, shown in Figure 13.685

The first thing we evaluate is the computation time for the
normal curvature bounds. The results for the various models
can be seen in Table 3. As these results show, the computation
time greatly depends on the geometry of the model. This re-
sult holds even if the times are normalized for the number of690

sub-surfaces in the model. Additionally, the computation times
are consistently higher for a flat-end tool than a ball-end tool.

Table 2: Distance, or error, between the simulation results and the theoretical
result. The distances given relative to the mean error for a ball-end tool of
2.4e−3.

Simulation Relative Relative
Scenario Max Distance Mean Distance

Figure 9, ball-end tool 9.7 1.0
Figure 10, flat-end tool 13.9 0.63
Figure 11, flat-end tool 4.4 0.25

(a)
(b)

Figure 12: A single turbine blade is shown in (a). In (b) the hub and two
adjacent blades are also shown. In both cases, a portion of the middle blade
is rendered as semi-transparent to show the CC curve as it loops around the
blade. Note that in (b) only the hub and three of the blades, the blade with the
CC curve and the two adjacent blades, are accounted for in the accompanying
performance data.

Figure 13: The knot model, with a single iso-parametric curve used in our
experiments highlighted.

For a ball-end tool, it is enough to classify normal curvature
bounds as greater or lesser than the constant effective curvature
value of the tool. In this case, greater accuracy is only needed695

for curvature bounds (intervals) that contain the single effective
curvature value of the tool. On the other hand, for a flat-end
tool the effective curvature has a range of possible values (de-
pending on the orientation), and so a longer computation time
is needed to more accurately calculate normal curvature bounds700
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that overlap the given range. The number of sub-surfaces for
which normal curvature bounds are needed may be relatively
small compared to the total number of sub-surfaces. Hence,
using a lazy evaluation strategy, for example, should improve
the computation time of the whole turbine scenario (with about705

50K sub-surfaces in the hub alone) to less than that of the single
blade scenario.

Table 3: Computation times for the normal curvature bounds for several mod-
els, and the number of sub surfaces the models were divided to. The number in
parenthesis in the computation time column is the number per sub-surface.

Scenario Sub-Surface # Normal
Curvature
Bounding
Time [s]

Figure 12 (a), ball-end 6671 0.47 (7.02e−5)
Figure 12 (a), flat-end 5.7 (8.5e−4)
Figure 12 (b), ball-end 71117 86.1 (1.2e−3)
Figure 12 (b), flat-end 375.1 (5.3e−3)

Figure 13, ball-end 20128 575.4 (2.82e−2)
Figure 13, flat-end 620.4 (3.1e−2)

Table 4 lists computation times for producing valid (optimal)
orientations for the tool-paths. These times include all steps ex-
cept the initial subdivisions to sub-surfaces (which are negligi-710

ble), and the normal curvature bounds computations presented
earlier. Each column in Table 4 includes the times in subsequent
columns. The Local Collision Time column lists computation
times for local collision detection (for flat-end tools), while the
Global & Local Collision Time column also includes global715

collision times. In addition to the time listed in the Global &
Local Collision Time column, the Total C-space Time column
also accounts for the time it takes to generate the C-space and
find the optimal path through it. As these results show, for large
models, the dominant factor in these times is global collision720

detection. This is not surprising as global collision detection
must consider the entire model. On the other hand, local col-
lision detection is more localized, involving a smaller number
sub-surfaces near the tip (or extended tip). Comparing the re-
sults of the single blade, to those of the three bladed turbine,725

for the flat-end tool, illustrates this point: the local collision
time remains more or less the same, as it involves the same CC
curve on the same sub-surfaces. The global collision time how-
ever, increases dramatically, as the model with the hub and three
blades contains more than ten times the number of sub-surfaces730

in a single blade model.

6. Future Work

One additional feature that can be added to the calculation
presented in Section 3, for bounds on principal curvature val-
ues, is the computation of bounds on the principal curvature735

directions as well. Once the intervals for the principal curva-
tures are known, bounds on the principal curvature directions
can also be calculated using interval arithmetic. The bounds for
the two principal curvature directions will take the form of two

Table 4: Tool-path orientation computation times. Local collision times are
only listed for flat-end tools. For ball-end tools these times do not depend on
the tool-orientation, and are are negligible. Note that each column includes the
times listed in subsequent columns (to the right).

Simulation Total Global & Local
Scenario C-space Local Collision

Time [s] Collision Time [s]
Time [s]

Figure 12 (a), ball-end, 15.8 13.4 N/A
Figure 12 (a), flat-end, 26.7 25.3 11.2
Figure 12 (b), ball-end 217.4 215.8 N/A
Figure 12 (b), flat-end 247.7 246.3 13.5

Figure 13, ball-end 75.05 58.7 N/A
Figure 13, flat-end 122.3 99.8 38.7

cones, with perpendicular axes, that will encompass all possible740

principal curvature directions for a given surface. Knowledge
of the principal curvature directions can be used to optimally
align tools: given a flat end tool, we can position the tool even
in surface regions with very high normal curvature values by
aligning the sharp corner of the tool with the maximal principal745

curvature direction. By using Euler’s Theorem [11], knowl-
edge of the principal curvature directions can also be used to
optimally align tools in flank machining, or even possibly align
hyperbolic cutters (tools).

Recall that higher values of Ht are more likely to cause fail-750

ures in local gouging tests. In our experiments, Ht was set
to a single constant value. It is possible however to dynami-
cally (and optimally) set Ht for every sub-domain: starting with
Ht = 0 for a given sub-domain, then incrementing it by some
small value if Algorithm 1 indicates no local collision. The755

largest value of Ht where no local collision is detected can then
be used when testing for global collisions, without potentially
compromising the local collision tests.

Corollary 4.2 can be used in many different ways, not just
the one presented in Section 4.1. For example, it is possible to760

apply Corollary 4.2 to both local and global collisions. This can
be done in two steps: first finding all surfaces that are partially
inside some bounding volume for the whole tool (a frustum),
and are not completely back-facing with regard to the tool di-
rection. The second step is to ensure all of these surfaces are in765

a single C0, piecewise C2, neighborhood of the contact point.
Since a collision (global or local) can only occur if a collision
with one of the surfaces found in the first step, eliminating such
collisions using corollary 4.2 in step two, eliminates all colli-
sions.770

7. Conclusion

Bounding surface positions using the control mesh, and sur-
face normals using normal cones, are both well known proce-
dures. In this paper, we add to these, a procedure to bound the
(normal) curvature values of a surface. In the context of ma-775

chining, normal curvature bounds allow the second order be-
havior of a surface to be conservatively approximated by that

11



of the tool, without resorting to point sampling. The methods
presented in this work show that collision free tool-paths can
be generated efficiently using information based on bounding,780

rather than sampling of the model surface, ensuring the acces-
sibility of the tool, globally.
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Appendix A. Bounding the Tool Behavior855

In this Appendix, we go into some of the details related to
the computations of bounding volumes and effective curvature
of the tool (as in Definition 4.1), for a given sub-domain of the
configuration space. For a single configuration, the tool posi-
tion and effective curvature depend on three factors: the contact860

point, p, the surface normal at that point, n̂, and the tool axis di-
rection, t̂. These factors in turn are determined by the C-space
coordinates (t,Θ,Φ), C(t), and S.

For a range of configurations (a sub-domain) U = [ta, tb] ×
[Θc,Θd]× [Φe,Φ f ], we can bound the behavior of p, n̂, and t̂. p865

is bound in the convex hull of the control polygon of C([ta, tb]).
t̂ is bound inside a cone, Ct(d̂t, αt), which in turn is determined
by [Θc,Θd]× [Φe,Φ f ]. Similarly, by performing a composition
[23, 24], between the relevant segment of the CC curve in the
domain of S, c([ta, tb]), and the normal surfaces of S, Sn, the870

normal cone of n̄(t) = Sn(c([ta, tb])), Cn(d̂n, αn), that bounds all
n̂ (normal) directions can be found. In the following sections,
we will make use of these bounds.

Appendix A.1. Calculating the Effective Curvature in a Sub-
Domain875

In this section, we discuss calculating, Tcurvature, the effective
curvature for a tool, as defined in Definition 4.1.

Algorithm 2 summarizes the steps needed to calculate the ef-
fective curvature for a given sub-domain. For a ball-end tool,
the effective curvature is determined by the tool radius, Rt, and880

is equal to the curvature of the hemispherical tool-tip: 1
Rt

. For
a flat-end tool, we can calculate the effective curvature accord-
ing to Figure 1. As Tcurvature depends monotonically on ω, we
can calculate the minimal effective curvature for a whole sub-
domain based on the minimal value of ω (Line 6 in Algorithm885

2). Recall that we a priori mark any sub-domain that contains a
configuration with ωmin = 0, as invalid.

For a flat-end tool, if R′t <
√(

Ht
2

)2
+ R2

t then the calculations
for a normal tip, and an extended tip (as in Definition 4.2), di-
verge. In this case, the effective curvature is no longer inde-890

pendent of the chosen value of Ht. This is because the radius
of the sphere that determines the effective curvature cannot be
smaller than the radius of the minimal sphere bounding the ex-
tended tip. While the effective curvature can still be determined
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Algorithm 2 ToolEffectiveCurvature
Input:

(1) c(t), a CC curve, a parametric curve on S, t ∈ [ta, tb];

(2) U = [ta, tb] × [Θc,Θd] × [Φe,Φ f ], a C-space sub-domain;

(3) T , a convex tool, of a given type and radius, Rt. Ht, the
extended tip length for a flat-end tool, should also be spec-
ified;

Output:

(1) Tcurvature, the effective tool curvature in the sub-domainU;

Algorithm:
1: if BallEndTool(T ) then
2: Tcurvature := 1

Rt
;

3: else if FlatEndTool(T ) then
4: Cn(d̂n, αn) := NormalCone(Sn(c([ta, tb])));
5: Ct(d̂t, αt) := BoundingCone(S 2([Θc,Θd] × [Φe,Φ f ]));
6: ω := max

(
arccos 〈d̂t, d̂n〉 − αn − αt, 0

)
;

7: R′t := Rt
sinω ;

8: if R′t ≥
√(

Ht
2

)2
+ R2

t then
9: Tcurvature := 1

R′t
;

10: else
11: Tcurvature := −∞; // fail, no curvature matching
12: end if
13: else
14: Tcurvature := ConvexCurvature(C(t),U,T );
15: end if
16: return Tcurvature;

in these cases using Definition 4.1, it will no longer perform895

curvature matching. This situation is tested in Line 8 in Algo-
rithm 2. For the Ht = 0.4Rt value chosen in Section 5 this will
only occur if ω is about 10 degrees away from being a right
angle, which should occur rarely in practice.

Line 14 in Algorithm 2, which we did not implement, would900

find the minimal effective curvature in the sub-domain (accord-
ing to Definition 4.1) for other types of convex tools (such as
toroidal).

Appendix A.2. Finding The Convex Bounding Volume for the
Tip of the Tool in a Sub-Domain905

Here we discuss ways to find a convex bounding volume for
the tip of the tool for all configurations in a sub-domain. The
main consideration in picking the approach used to find the con-
vex bounding volume, is the tightness of the bound, versus the
required computational effort. While it is possible for very ac-910

curate sweeps to be generated (such as in [25]), we chose to use
a less computationally intensive approach that still produces re-
sults that are quite tight, using a bounding sphere.

Algorithm 3 summarizes the steps needed to calculate a
bounding sphere for the tip of the tool in a given sub-domain915

U. Line 8 in Algorithm 3 performs the main calculation for

Algorithm 3 ToolTipConvexBoundingVolume
Input:

(1) c(t), a CC curve, a parametric curve on S, t ∈ [ta, tb];

(2) U = [ta, tb] × [Θc,Θd] × [Φe,Φ f ], a C-space sub-domain;

(3) T , a convex tool, of a given type and radius, Rt;

Output:

(1) B, a sphere bounding the tip of the tool inU;

Algorithm:
1: Cn(d̂n, αn) := NormalCone(Sn(c([ta, tb])));
2: Ct(d̂t, αt) := BoundingCone(S 2([Θc,Θd] × [Φe,Φ f ]));
3: if BallEndTool(T ) then
4: pm := C( ta+tb

2 ); // center point of C(t)
5: Rp := max

p∈C([ta,tb])
‖p − pm‖; // bounding radius of C(t)

6: Rn := max
n̂∈Cn

Rt‖n̂ − d̂n‖; // bounding radius of n̂ ∈ Cn

7: B.center := pm + d̂nRt;
8: B.radius := Rt + Rp + Rn;
9: else if FlatEndTool(T ) then

10: [n̂] := BoundingInterval(n̂ ∈ Cn(d̂n, αn));
11: [t̂] := BoundingInterval(t̂ ∈ Cn(d̂t, αt));
12: [p] := BoundingInterval(p ∈ C([ta, tb]);

13: [c] := [p] +

(
[n̂]×[t̂]
‖n̂]×[t̂]‖

)
× [t̂]Rt +

(
Ht
2

)
[t̂];

14: B1 := BoundingS phere([c]);
15: B.center := B1.center;

16: B.radius :=
√(

Ht
2

)2
+ R2

t ) + B1.radius;
17: else
18: B := BoundingVolume(C(t),U,T );
19: end if
20: return B;

a ball-end tool, adding together, Rt, the radius of the tool, Rp,
the radius for the bounding sphere of the contact point, and Rn,
the radius of the bounding sphere for the surface normal at the
contact point, multiplied by Rt. In Lines 10 to 13 in Algorithm920

3, the main calculation for a flat-end tool is performed, based
on interval arithmetic. The calculation starts by setting, [n̂],
[t̂], and [p], each a vector interval that bounds (like a bounding
box) the possible values of the respective vector (n̂, t̂, and p)
in the sub-domain U. In Line 13, [c], the vector interval for925

the center of the extend tip of the tool, is similarly calculated.
The calculation is essentially the same as calculating the center
of the extended tip, given specific n̂, t̂, and p, only performed
for the intervals of these values: starting with the possible loca-
tions of the contact point, [p], we add the possible distances to930

the bottom disc of the tool,
(

[n̂]×[t̂]
‖n̂]×[t̂]‖

)
×[t̂]Rt, and then the possible

distances to the center of the extended tip,
(

Ht
2

)
t̂.

Finally, Line 18 in Algorithm 2, which we did not implement,
would find the bounding sphere in the sub-domain for other
types of tools (such as toroidal).935
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Figures A.14 and A.15 illustrates some of the elements in-
volved in Algorithm 3. Note that for a flat end tool we account
for an extended tip with its larger bounding sphere radius.

n̂

Cn(d̂n, αn)

p
C([ta, tb])

Figure A.14: The calculation of the bounding volume for the tip of a ball-
end tool, in a sub-domain of the C-space, is based on bounding all contact
points p ∈ C([ta, tb]), and the surface normal direction at all contact points
n̂ ∈ Cn(d̂n, αn). In this case the tool orientation is irrelevant.
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n̂

Cn(d̂n, αn)

Ct(d̂t, αt)

p
C([ta, tb])

Figure A.15: The calculation of the bounding volume of the extended tip for a flat-end tool, in a sub-domain of the C-space, is based on bounding all contact points
p ∈ C([ta, tb]), the surface normal direction at all contact points, n̂ ∈ Cn(d̂n, αn), and the orientation of the tool t̂ ∈ Ct(d̂t , αt). The tool orientation is bounded based
on based on S 2([Θc,Θd] × [Φe,Φ f ])).
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