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Abstract

Freeform parametric curves are extensively employed in various fields such as computer graphics, com-
puter vision, robotics, and geometric modeling. While many applications exploit and combine univariate
freeform entities into more complex forms such as sculptured surfaces, the problem of a fair or even optimal
relative parameterization of freeforms, under some norm, has been rarely considered.

In this work, we present a scheme that closely approximates the optimal relative matching between two
or even n given freeform curves, under a user’s prescribed norm that is based on differential properties
of the curves. This matching is computed as a reparameterization of n — 1 of the curves that can be
applied explicitly using composition. The proposed matching algorithm is completely automatic and has
been successfully employed in different applications with several demonstrated herein: metamorphosis of
freeform curves with feature preservations, key frame interpolation for animation, self intersection free
ruled surface construction, and automatic matching of rail curves of blending surfaces.

Key Words: Dynamic Programming, Tangent/Gauss Map, Feature Recognition, Fairness.

1 Introduction

The piecewise polynomial or rational parametric forms have gained a paramount position as a representa-
tion of choice in many applications of computer graphics, geometric modeling, and vision. Many freeform
parametric surface constructors are based on univariate primitives. Both the ruled and the blend or fillet
surface constructors expect two curves to operate on. It is also common to approximate or interpolate a
surface through several curves, two operations that are known as skinning or sweeping.

In this work, we consider the fairness of two or more different curves. The notion of fairness has
been extensively used a for single freeform curve. Fairness of the shape of a curve has been considered by
minimizing, for example, a thin plate spline functional [12]. One instance of a fairness consideration is a
fair parameterization, or a parametrization that carries certain properties such as constant speed or even

arc length [7], a parameterization that is important, for example, for constant speed motion in animation
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or in NC machining. Many other fairness criteria were considered in the representation of a single freeform
Bspline curve. See [12, 15].

Nevertheless, and while freeform curves are frequently employed in conjunction with other freeform
curves, the question of their relative fairness has been rarely considered. We distinguish between two

fundamentally different fairness problems,

Definition 1 Given a freeform curve, C, the intra-fairness of C' considers the fairness of C with respect
to some optimization function. Given n freeform curves, C;, the inter-fairness of C; considers the relative
fairness of curves C; with respect to some optimization function.

One example to inter-fairness of piecewise linear curves can be found in [2, 3], using the distance norm
between two curves in order to match the two curves. In [2], the Hausdorff metric is exploited. This metric
does not establish a one to one correspondence and in [3], the authors of [2] present the Frechet metric
that alleviates this lack of correspondence, and examine the application of “walking the dog”. The notion
of “walking the dog” is derived from seeking the minimal length of the leash that is required, when one
is walking on one curve while its dog is walking on the other curve. The need to match several different
piecewise linear curves emerged more than a decade earlier in [10] when a polygonal surface was sought
to fit contoured medical data. The work of [10] as well as [21] employ toroidal graphs, a two dimensional
data structure to allow the representation of matching of two discrete ordered sets. In this work, we would
like to exploit a similar data structure for the continuous case of freeform curves by employing differential
properties of the curves. The toroidal graph is employed in previous work in a greedy approach that does
not guarantee the detection of the globally optimal path while herein dynamic programming is used for the
same task.

In the area of vision [4, 19], matching plays a major role in the recognition of both two dimensional planar
shapes as well as three dimensional objects. Typical vision techniques [4] map the geometrical matching
problem into the matching of graphs, with a search for isomorphisms in graphs, employing decision and
search trees or other pruning methods. In [19], dynamic programming is exploited to match piecewise linear
contours at a sub pixel resolution, allowing for matching of vertices to interior locations on edges of the other
contour. In [16, 22], dynamic programming is employed for the purposes of matching of discrete sequence
in various applications such as signal processing speech recognition and DNA matching in biology.

We would like to examine the inter-fairness of n freeform curves in a larger framework that does not
necessarily employ the distance norm. A relative reparameterization will be computed for n — 1 curves, so
as to optimally match the entire set of n curves, under the user’s prescribed norm, in a global sense. The

simplest case of n = 2, or only two curves, will be of particular interest, for its frequent occurance. Consider
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the example of Figure 1, starting with the planar ruled surface in Figure 1 (a). Clearly, the ruled surface is
self intersecting. Nevertheless, by reparametrizing either one of the two boundary curves, it is possible to
prevent the self intersection. In Figure 1 (b), two rail curves [9] are selected to smoothly blend together two
different regions using cubic Hermite interpolation, with C'' continuity, following [14]. While the average
user should not be occupied with the parameterization of the two rail curves, the resulting blend surface
clearly twists, an undesired artifact that is resolved manually in contemporary systems, possibly by the non
trivial process of reparametrizing one of the curves. Finally, in Figure 1 (c), two outlines of a desk, C'(¢),

and a turtle, Cy(t), are metamorphed in the plane using the affine combination,
C(t) = (1=s)C(t) + sCa(t), 0 <s< 1, (1)

with shared features such as their legs vanishing only to reappear in a different parametric location. Equa-
tion (1) constructs a bivariate ruled surface between C'(t) and C5(t) that is parameterized by both t and s.
Parameterization as well as translational and rotational invariance and feature preservation are crucial com-
ponents for an intuitive and appealing self intersection free metamorphosis. The metamorphosis computed
in Figure 1 (c) is neither feature preserving nor is it rotational nor parameterization invariance.

The question of appealing metamorphosis of shapes has had the focused attention of numerous re-
searchers, in recent years. Recognizing the significant difficulties in the general freeform metamorphosis,
attempts were made to resolve the shape shifting in simpler domains such as piecewise linear approxima-
tions [11, 17, 18, 20]. Two fundamental issues need to be addressed. The first, known as the correspondence
problem, matches the source and target entities. The second consideration is the inbetweening interpolation
method that is employed, bridging between the source and target shapes. Here, we take a step toward the
construction of an automatic procedure for an appealing direct metamorphosis of freeform curves a feasible
option, by providing a method to automatically compute the correspondence, if such exists.

In this work, we present a matching scheme of freeform curves that produces in the three examples of
Figure 1, a non self intersecting, twist free, and feature preserving metamorphose, respectively. While we
present only a few applications for the proposed algorithm, the introduced inter-fairness matching scheme
can be equally and successfully applied to many other applications such as matching warped animation
curves [23] or reconstruction of freeform contoured data following [10].

This paper is organized as follows. Section 2 restates the problem of matching of freeform curves as
a continuous optimization problem. In Section 3, a discrete approximation of the continuous optimization
problem is employed. We demonstrate how one can overcome the problems in the three examples given in

this section in Figure 1 as well as present more examples in Section 4. Finally, we conclude in Section 5.
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Figure 1: Three examples of a mismatch between curves that creates undesired artifacts. In (a), a planar
ruled surface self intersects due to uncorrelated relative parameterization. In (b), the twist in the three
dimensional blend surface (thick lines) between the two three dimensional rail curves (thickest lines) is
clearly uncalled for. In (c), features like the legs of both the desk and the turtle disappear only to reappear
at a different (parametric) location. Compare with Figure 7.

All examples in the paper are the result of an implementation of the proposed algorithm in the solid mod-
eling environment TRIT [13] developed at the Technion. This algorithm was also successfully implemented

using the Alpha_1 [1] modeling environment developed at the University of Utah.

2 Background

Consider &, the shape of an engraving on a large planar stone. A plane can approximate S as closely as the
depth of the engravings, considering only the distance norm, while completely losing the engraving. The
distance norm is frequently exploited for the purpose of matching of piecewise linear curves [2, 3, 10, 21]. The
preservation of higher order differential properties of the shape while approximating & can alleviate some of
these difficulties. For a surface approximating S, the preservation of the Gauss map [5] is sometimes crucial
for a successful approximation. The Gauss map preserves the normal field of &, the cross product of the
first order derivatives of §, while ignoring the magnitude of the derivatives, which is highly parameterization
dependent.

Let C1(u), ug < u < uy and Cq(v), vy < v < vy be two regular C' parametric curves in IR", n > 0, that
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is || > 0. Let,
dCy (u) C/ dC3(v) C/
Ti(u) = dcdléu) » = }(U) ) Ty(v) = dCdU(v) = %(v) 7
[ty O (u)] 4] T [y (v)]]

be the unit tangent fields of C(u) and Cs(u).
Consider the inner product of (T} (u), T>(v)) (See Figure 2). If (T’ (uo), T (vo)) = 1, T1(uo) and Ts(vg) are
parallel and in fact they are equal. Assume two allowable changes of parametersf : t+—uwand V : t+— v

that yield regular parameterizations [5], that is ¢’(¢),V’(¢) > 0. Then,

Definition 2 if (T1(U(t)),T-(V(t))) = 1, Vto <t < t;, we we say that a complete match of the tangent
maps has been established for that domain.

If we assume a complete match for C'y (U(t)) and C5(V(t)) throughout the domain of t, substitute C'; (U(t))
and Cy(V(t)) into Equation (1), and differentiate with respect to ¢,

Cy(u) n SCQ(U)
dt dt
Ci @) V()
( i@ @
= (1= s)TaU)[IC ()| (t) 4+ sTo(V ()| Co(v) [[V'(t)
(

) = (1-s)

1—3s)

1= )Ty (O][C ()L (1) + sT3 (1)]|Cy (0) V' (8)
= (1= s)ICT ' (1) + sl[C) V(1) Ta (1), (2)

where we use T (t) = T, (U(t)) = T>(V(t)) since the two unit vectors are equal in a complete match. Hence,
in a linear interpolation between two completely matched curves, for each sy between zero and one, the

intermediate curve

C(t,s0) = (1 = s0)C1{U(t)) + 50C2(V(1)), 0 < s <1,

is also completely matched with the two curves, C(t) and Cs(t).
Let T'(t) be the unit tangent field of C'(¢), in Equation (2). Then, it is clear that T'(t) = Ty (t) = Ts(t).
Armed with this motivation, one can define the following function to be maximized over all reparametriza-

tions of Cy(v) of the form v(u) = V(U™ (u)),

Hta))( /ujl (Ty(u), To(v(u))) du, v(ug) =vg and v(uy) = vy, (3)

subject to v(u) being an allowable change of parameter. In some applications, like [23] where back and forth

motion is constructed using animation curves, non regular curves might be important. However, from now

on we only consider the case of regular curves which is far more frequent. The reparameterization of Cy(v),
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Figure 2: By matching the directions of the tangent fields of two curves, freeform features like legs can be
preserved in operations like ruling, sweeping, or morphing.

while asymmetric, can be equally applied to C(u), reversing the roles of C (u) and Cy(v). Hence, hereafter,
we consider only v(u).

We consider two types of self intersection in the affine combinations,

Definition 3 An affine combination of the form of Fquation (1) is said to be locally self intersection free if
C(r) =1 =980 (1) +sCy(1), 0<s< 1, TE[t—€,t+ ¢

is self intersection free for all s and t values in the domain, and a sufficiently small c.

In other words, a locally self intersection free affine combination guarantee that C'(1 + ¢) # C(1), for a
sufficiently small e.
Nonetheless as will be shortly demonstrated, a locally self intersection free affine combination can create

intersecting curves, globally,

Definition 4 An affine combination of the form of Equation (1) is said to be globally self intersection free
if
Ct)y=(1—=9s)C(t) +sCa(t), 0<s< 1

is self intersection free for all s and t values in the domain.

Clearly, globally self intersection free is more strict, yet and unsurprisingly, it is more difficult to achieve.
Under certain considerations, we will require (T’ (u), T5(v(u))) > 0, Vu, a less strict constraint than that

of a complete match,

Definition 5 if (T} (u), To(v(u))) > 0, Yuy < u < uy, we we say that a valid match of the tangent maps has
been established for that domain.
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It is clear that it is not always feasible for (T (u), T5(v(u))) to be positive throughout. Consider, for
example, two parallel parametric lines with one line with a reversed parameterization. While failing to
achieve a valid match, one might maximize the prescribed global function of Equation (3), in a hope that
the resulting invalid match will at least lead to an improved match, compared to the original, unmatched,
curves. Moreover, in Section 4, we will present several refinements to the proposed techniques that will
result in a possibly complete match in cases such as the reversed parameterization.

A valid match can help in the prevention of local self intersection in the metamorphosis process between
C4(t) and Cy(t),

Lemma 1 The affine combination of (1 — s)C(u) + sCsy(v(u)), 0 < s < 1 is locally self intersection free
provided that v(u) is a valid match with (T (u), To(v(u))) > 0.

Proof: Because both curves are C, a first order approximation of C(u) and C(v(u)) at u = ug can be

written as C(u) = Cy(ug) + C1(ug)u and Cs(u) = Co(v(ug)) + Co(v(ug))|v'(uo)|u. Then,
Clu) = (1 = 8)Ci(u) + sCs(v(u)) & (1 = $)(Cr(uo) + Ci(uo)u) + s(Cs(v(uo)) + Co(v(uo))[v" (uo) u)-

Now consider the projection of C'(u) on vector Cf(ug), (C'(u),C1(ug)). Because (C(ug), Ch(v(ug))) > 0, the
value of this projection is increasingly monotone as a function of u, in the local neighborhood of u,. Hence,

a local self intersection cannot occur at a sufficiently small neighborhood of C'(u,). B

Corollary: By maximizing Equation (3) self intersections in metamorphosis of freeform curves can be

alleviated and locally eliminated, provided a valid match is established.

We will demonstrate the capabilities of the maximized function in the coming sections. The result is
indeed self-intersection free in the local if the match is valid because then both curves advances forward with
respect to each other. While holding for an arbitrary dimensionality, Lemma 1 is unable to guarantee a self
intersection free planar ruled surface, in IR?, as it cannot prevent a curve at s = so from intersecting a curve
at s = s;. Consider the example of Figure 3. While (T (u), To(v(u))) > 0 throughout, the ruled surface self
intersects. The following modified function for the case of self intersection prevention in planar ruled surface

constructors is employed instead,

/“1 {T1(u) x (C1(u) = Co(v(u)), Ta(v(u)) X (C(u) = Cs(v(w))) ,
o [H(C () = Co(v(u))) |2

u, v(ug) =vy and wv(uy) = vy,

(4)

subject to v(u) being an allowable change of parameter. The motivation for the function of Equation (4)

v(u)

stems from the need to coerce both planar curves C(u) and C5(v) to advance into the same half-plane as is
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T1 (Uo)

Figure 3: While preserving features, the function of Equation (3) cannot prevent from self intersection in
freeform planar ruling operations, as can be seen in this figure. While (T (uo), To(v(u0))) > 0 throughout,
and no intermediate curve intersects with itself, the planar ruled surface does self intersect. A different
function (Equation (4)) must be employed.

determined by the ruling line C(u) Cs(v(u)) (See Figure 3). The expression of T (u) x (Cy(u) — Cy(v(u)))
will point in the negative or positive Z direction depending upon the direction of vector T} (u) with respect to
the two half spaces of the XY plane split by the line through ' (u) —C5(v(u)). Then, the self intersection free
constraint can be reformulated as the need for (T} (u) x (Cy(u) — Ca(v(u))), To(v(u)) x (Cy(u) — Cy(v(u))))
to be positive, resulting in T} (u) and T5(u) pointing into the same half plane. The denominator of the term

inside the integral in Equation (4), is a normalization factor only.

Definition 6 A point of mutual tangency in a match of two curves Cy(u), and Cy(v(u)) satisfies either
(Cr(u) = Co(o()[[Ti(u) or (Ci(u) = Ca(v(u)))|[To(v(u)),
where || denotes the parallel constraint.

We are now ready to formulate the conditions for locally no self intersection in the ruled surface,
Lemma 2 If (T)(ug) X (Cy(ug) — Ca(v(ug))), To(v(ug)) x (Ci(ug) — Co(v(ug)))) > 0 the ruled surface of
R(s,u) = (1 = s)Ci(ug £ u) + sCy(v(ug £ u)), |u| < € is self intersection free, for a sufficiently small
€.

Proof: Because both curves are C, a first order approximation of C(u) and C(v(u)) at u = ug can be
written as C'y (u) = C(ug) + Cf(uo)u and Cy(u) = Co(v(ug)) + Ch(v(ug))|v'(uo)|u. Because, the four corners
of Cy(ug) — C1(ug)d, Ca(v(ug)) — Ch(v(ug)) v (o) |0, Ci(ug) + C'(ug)d, Co(v(ug)) + CH(v(uo))|v'(ug)|d define
a non self intersection quadrilateral and since the ruled surface R(s,t) converges to this quadraliteral as

€ — 0, R(s,t) will not self intersect for a sufficiently small ¢. B

Special care should be taken at points of mutual tangency where the function of Equation (4) vanishes

to zero, rendering the constraint of Lemma 2 unsatisfied.
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Figure 4: A planar ruled surface might be self intersection free locally, satisfying Lemma 2 at all points
except the points of mutual tangency on the left side. The self intersection in the left is a result of a mutual
tangent point. On the right, the self intersection occurs when the two end regions overlap. In both cases, it
is impossible to construct a self intersection free ruled surface. This entire scene is planar.

N

Intuitively, Lemma 2 states that as long as both planar curves advance in the same half plane that

is defined using the line C4(u) Cy(v(u)), the ruling will be regular without any self intersection in the
neighborhood of C(ug) and Cy(v(ug)). One might argue that if Lemma 2 holds for all points in the
parametric domain of the curve, the ruled surface will never self intersect in the global. Nevertheless,
disjoint regions of the ruled surface might self intersect as is demonstrated in Figure 4.

The constraint imposed by Equation (4) is stronger than the constraint imposed by Equation (3). Equa-
tion (3) and Lemma 1 guarantee that no blended curve C'(t) in Equation (1) will locally self intersect.
Equation (4) and Lemma 2 also guarantee that planar curve C'(t) at blended value s, of Equation (1) will
not intersect planar curve C'(¢) at blended value s; of Equation (1), 0 < s5 < s < 1.

There exist pairs of curves that no reparameterization can be found that will satisfy the constraints of
either Lemma 1 or Lemma 2 for the entire parametric domain. The parallel lines with a reversed parametriza-
tion is one example we have already encountered. However, if there is a reparameterization that satisfies
and /or maximizes either function, one would like to be able to find and compute it. Further, it is desired
to be able to find the optimal parameterization under the prescribed function out of the space of all repa-
rameterizations with a valid match. In Section 3, a discrete space solution that provides an approximation
to these optimality goals is considered for the continuous functions of (3) and (4). This discrete solution
is then mapped back to a piecewise polynomial reparameterization curve, v(u), that may be symbolically

composed with C'(v).
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3 Algorithm

While it is clear that an analytic solution to either optimization problems of Equations (3) or (4) is too
difficult in the general case, one can provide an approximated solution in polynomial time complexity
exploiting dynamic programming over the discrete sample sets of the two curves and their unit tangent
vector fields. This approximation can be made more precise by increasing the size, m, of the discrete
approximation present in this section.

Let ¢, 0 < i < m, and C4, 0 < j < m, be two sequences of m uniform samples in the parametric
spaces of (' (u) and Cy(v), respectively. Let T?, 0 < i < m, and T, 0 < j < m, be two sequences of m unit
tangent vectors similarly sampled along C(u) and Cy(v), respectively. Consider the two problems over the

discrete matching j(¢) of,

m—1

max S (YY), j(0)=0 and j(m-1)=m-1, (5)
72 i=0

met (T x (Cf = 49), 189 x (i = i)

max E

Jj(@) =0 1C] — Cg(i)Hz

, j(0)=0 and j(m—-1)=m -1, (6)

subject to j(i) < j(i+ 1). These two optimization problems are discrete approximations of the continuous
optimization problems defined in Equations (3) and (4). The monotonicity constraint j(z) < j(i41) is equiv-
alent to the monotonicity constraint on v(u), making it an allowable change of parameter in Equations (3)
and (4).

The discrete optimization problems of Equations (5) and (6) can now be efficiently solved:

Definition 7 Let Cost(i,j) be the optimal cost of matching the first i samples of C\(t) with the first j
samples of Cs(t).

Assume that Cost(i,j) = 0 for i = 7 = —1 and Clost(i,j) approaches infinity for all other cases for
which ¢ < 0 or j < 0. This initial condition forces the selection of first edge to be from 2 = 0 to j = 0.

Denote the (7, j) entry of the matrix of all possible combinations of inner products, Inner Product Matrix,

by IPM(i,j). 1PM(i,j) = (Tj,T{) if employing Equation (5), or IPM (i, j) = (rix(Ci=c3) mix(ci=c2))

llei-czl®

employing Equation (6). Then,
Lemma 3

Cost(i,j) = min (Cost(t — 1,7 — 1),Cost(i — 1,7),Cost(i,j — 1)) + IPM(i, j), (7)

Proof: By induction. Cost(0,0) is clearly equal to I PM (0,0) since Cost(—1,—1) is equal to zero. Now

for the step of the induction, assume that Cost(i — 1,7 — 1), Cost(i — 1, j), and Cost(i,j— 1) are all known.
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When computing C'ost(i, j), the i’th edge of € must be connected to the j’th edge of C4, contributing
ITPM(i,7) to the cost. There are three possibilities for the previous edge to edge (i,7): (i—1,7—1), (i—1,j)

or (7,7 — 1). Of these three possibilities the minimum is selected. W

Direct recursive solution of Equation (7) is exponential. However, Equation (7) can be clearly computed
more efficiently,

Lemma 4 Cost(m-1,m-1) can be computed in a quadratic time complezity of O(m?)

Proof: By employing a dynamic programming solution to Cost(m — 1,m — 1). The Inner Product
Matrix has O(m?) entries, each can be computed in a constant time (the inner product). With the TPM
available, a C'ost matrix can be computed row by row, from left to right as each element Cost(, j) depends
on only three of its neighbors Cost(i —1,j—1), Cost(i—1,j), and Cost(i,j— 1), that are already computed,

resulting in O(m?) computations. W

In Figure 5, a simple example for m = 4 and discrete function (5) is provided. In Figure 5 (a), the IPM
matrix is precomputed. In Figure 5 (b), the Cost matrix is derived with the optimal path in bold. Finally,
in Figure 5 (c), the final and optimal match for the discrete problem is presented. The number of edges in
the established match can not exceed 2m — 1. Inspecting the matrix of Figure 5 (b), the established path is
formed of motion edges in the right, down, or down-right diagonal directions only, starting from the top left
corner of the matrix all the way to the bottom right corner of the matrix. The shortest path will include
only the diagonal motions with j(¢) = ¢ with m edges in all. The longest path will include m down edges
following by m — 1 right edges, 2m — 1 edges in all. Hence, the maximal cost possible for an optimal match is

less than 2m, since the value of the inner product functions in both Equations (5) and (6) cannot exceed one.

At invalid locations for which <Tf,Tg> < 0 (Equation (5)) or <T11X(C{_H2%!§ﬁ2(ci_cg)>

< 0 (Equation (6)),
we set [PM(i,7) to 2m, signaling an invalid match. In Figure 5 (b), 2m is 8. As a result, if at the end
of the dynamic programming process, C'ost(m — 1,m — 1) > 2m, then no valid match, with positive inner
products only, exists.

Once the discrete optimal match, j(i), has been computed, one needs to reconstruct a continuous repa-
rameterization function v(u) as in Equations (3) and (4) from j(¢) (Equations (5) and (6)). j(¢) is a discrete
approximation of v(u) that is not even one to one. Hence, one can interpolate or approximate v(u) from
j(7) using an interpolation or approximation method that preserves the monotonicity.

A least squares approximation approach that is based on piecewise polynomial Bspline representations

has been exploited [12]. The approximation does a least squares fit on the j(i) data, creating the piecewise

polynomial Bspline approximation of v(u). The fact that j(i) is not even one to one stems from the
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Figure 5: The Inner Product Matrix (/PM) (a) for m = 4 is employed to compute the optimal discrete
matching cost (b) and its associated optimal path (c). In bold, is the optimal path.

fact that several edges in the discrete approximation of the first curve can be connected to one point in
the discrete approximation of the second curve and vice versa. because, v(u) must be a continuous and
monotone function, the interpolation problem of k different j’s for the same ¢ is converted into a sequence
v(w)=wv, 1 =0,...,k—1 with the u; values close to each other, 0 < |u; — u;_| < €.

The control polygon is then verified to be monotone, making sure v(u) is an allowable change of param-
eter, by the variation diminishing property. The loss of monotonicity can occur regardless of the degree of
the least squares fit, yet it was found to be less severe as the reduction rates increase. Nevertheless, the
error introduced by the correction of a non monotone curve into a monotone one can be clearly bound by
the maximal perturbation of the control points.

Hereafter, we refer to this least squares fit as a reduction because the number of control points in the
Bspline curve is typically much smaller than the discrete match j(i). The higher the order of the least
squares that is selected, the smoother the computed reparameterization is, since a higher level of continuity
is gained. Because v(u) can only affect the speed and parametric continuity of Cy(v) but not its shape
and geometric continuity, orders of v(u) as low as two had very little effect on the final result, in all tested
applications. Figure 6 (a) shows one example of a reparameterization curve v(u), derived from the discrete
approximation j(i).

With the computed function v(u), the explicit composition of Cs(v) o v(u) = Cy(v(u)) constructs a new,
possibly higher order, curve with the exact same geometry as Cy(v), but with a different first order derivative
or speed. If both Cy(v) and v(u) are piecewise polynomials or rationals as is the case at hand, the resulting
composition will also be a piecewise polynomial or rational, respectively.

In [6, 14], methods to compute the symbolic composition of univariate functions represented as polynomial
or rational Bézier and Bspline curves are discussed. The algorithmic approach of [14] for the explicit
computation of the composition was exploited in this work. Appendix A provides a short description of the

composition of two Bézier curves. Finally, it should be recalled that the degree of a composition operation
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Figure 6: In (a), a piecewise linear reparameterization curve with 30 control points, v(u), in gray, for
Cy(v(u)), is least squares reduced from an optimal discrete solution with 143 sample points, j(¢), in dashed
black, of a discrete optimization problem of m = 100 samples. In (b), the same example demonstrates the
possible result when shifting is employed.

of two curves is the product of the degrees of the two composed curves. if one of input curves is linear, the
degree of the result will equal the degree of the other input curve. The resulting curve, even with v(u) being
linear, is likely to experience an increase in the size of the resulting curve.

Several examples that employ the proposed inter-fairness matching algorithm with both optimization

functions (3) and (4) are presented in Section 4.

4 Examples

In Figure 1, three examples of artifacts resulting from improper relative parameterization between curves
were presented. The function of Equation (6) was used to derive a proper reparameterization, v(u), to
C5(v) so no self intersection can occur in the planar ruled surface. The corrected ruled surface is shown in
Figure 7 (a). The same matching approach was also exploited to remove the undesired twist shown in the
naive Hermite blend of Figure 1 (b). The two rail curves are in three dimensional general positions and the
matching of the tangent field is successfully performed in three space. Moreover, nothing in the presented
approach prevents the matching from taking place in R® or even R", for any n, with one exception - the
function to optimize must support the dimensionality of the problem. The matching for morphing function
(Equation (3)) can clearly match two curves in R” while the matching for self intersection free ruled surface
function (Equation (4)) is only valid in IR*. The expected blend is automatically derived, requiring no
knowledge of the internal parametric representation from the user. See Figure 7 (b). In Figure 1 (c),
an improper parameterization has led to an obviously unappealing metamorphosis between two freeform

curves. The metamorphosis has been computed explicitly as an affine symbolic combination of the source
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Figure 7: Three examples of an automatically recovered match between freeform curves (Compare with
Figure 1). In (a), the ruled surface does not self intersect any more due to the introduced reparameterization
computed using the discrete function of Equation (6). In (b), the twist has been completely eliminated with
the aid of the reparameterization of v(u), computed with shifting and using Equation (6). In (c), the legs
of the desk and the turtle as well as other features are completely preserved throughout the metamorphosis
process using the function of Equation (5).

and target curves following Equation (1), once C(t) and C5(t) are brought to the same function space [8].
With the matching computation employing Equation (5) and applying the computed reparameterization
using composition, one is able to drastically improve the result that is presented in Figure 1 (c), employing
the same affine combination of Equation (1). See Figure 7 (c).

This matching algorithm has been extensively tested on a variety of metamorphosis examples. See
Figures 8, 9, 11, 12, and 13 for several more metamorphosis sequences. Several additional optimization
techniques were applied in these examples to the basic matching algorithm that was presented in Section 3.
We have already considered two parallel parametric lines but with one with a reversed parameterization.
Clearly, by reversing the parameterization of one of the curves, one can converge to a much better match.
Hence, we apply the discrete matching algorithm twice, once with the given parameterization and once with
one of the curves with a reversed parameterization.

In Figure 9, the letter E is metamorphed to the letter F, following [17]. Both letters are quadratic Bspline
curves with 24 (for the E) and 20 (for the F) control points. The letter E was interactively derived from

the letter F by modifying the control polygon of the F, hence changing the correspondence between the



Matching of Freeform Curves Cohen, Elber, Bar-Yehuda

(K443DDD-
i3 00p)

Figure 8: The matching algorithm can be employed when the two blended shape are quite different geo-
metrically. The naive metamorphosis of (a) does quite poorly compared with the results after the matching
computation in (b). Notice the preservation of the mouth feature in (b) using discrete matching i(j) with
m = 100 reduced to a piecewise linear v(u) with 20 coefficients.

two characters for the entire domain of the letters, as seen in Figure 9 (a). The matching algorithm that
is presented is able to completely compensate for this mismatch, resulting in a much better metamorphosis
that is seen in Figure 9 (b). Figure 10 also shows the two three dimensional ruled surfaces describing the
metamorphosis process of the letters, before and after the matching process.

Consider two linear curves, one is horizontal and one is vertical. While the curves are identical up to rigid
motion, tangent fields are invariant to translation only. Hence, one can rotate the curve (' (u), so that 7} is
aligned with a tangent of curve Cy(v), T4, where (i, §) is assumed to be in the output sequence of the discrete
matching algorithm. A second additional optimization technique can be applied to closed curves. While for
open curves the end points of the source curve must match the end points of the target curve, this constraint
must be relaxed for closed curves. Therefore, given the two sequences of m tangent vectors sampled from
two closed curves, we introduce an arbitrary k-shift of the tangents, 70 — Ti™* in a cyclic mode where
T7"~% — TP, While this extension requires one to test for an optimal solution over all 0 < k& < m and
hence increases the expected computational complexity to O(m?), we eliminate by this generalization the
algorithmic dependency on the artificial location of the end points of the specific parametric representation
of the closed curve. Moreover, combined together, the rotation and the shifting generalizations allow one to
find the best relative orientation of the two curves, C;(¢), making the matching almost independent to rigid
motion, with accuracy that is up to the discrete nature of the approximation. It should be recalled that
complete rigid motion independence can be achieved only for a complete match, and as the quality of the

match is decaying, the rotational independence is lost. Figure 6 (b) shows an example of the constructed
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Figure 9: A matching of the letter E to the letter F, both represented as quadratic Bspline curves. In (a),
naive metamorphosis is shown, while in (b) the metamorph031s is computed after the matching Computatlon

and reparameterization. See also Figure 10.

reparameterization after shifting is applied.

The proposed matching algorithm is not only capable of eliminating self intersection in the local for
metamorphosis applications but is also parameterization independent due to the shift optimization and is
translational invariant since only first order differential properties participate in the match. Furthermore,
in practice, the matching algorithm can be made rotationally invariant for similar shapes, because of the
rotational optimization that can be applied. Finally, features are clearly detected and preserved using the
matching of the tangent fields, in the provided examples.

In Figure 11, two different parameters of the proposed algorithm are compared. The number of tangent
vectors sampled along the curve, m, and the degree of the least squares reduced reparameterization curve
v(u). The lowest degree reparameterization curve v(u) (Figure 11 (b)) performs better than the higher order
v(u) (Figure 11 (c)), possibly because the higher order approximation filters out necessary high resolution
details in the speed. Further, insufficient degrees of freedom manifested as too low value of m (Figure 11 (d))
can also lead to unsatisfactory result. Significant deficiencies in degrees of freedom can be detected by
the algorithm when it fails to find a valid match between two curves, when one exists. Nevertheless, in
Figure 11 (d), a valid match has successfully been computed while the result which is obviously better than
Figure 11 (a) is not as appealing as one might desire.

The presented inter-fairness matching algorithm, matches the tangent fields and hence it preserves fea-
tures with similar tangent fields of parametric curves. As such, the algorithm can also be employed in the
detection or recognition of features. By ranking the match of a give shape, F, against a finite set of rec-

ognizable shapes according to the optimal Cost(m — 1, m — 1) computed using Equation (7), one is able to
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Figure 10: A ruled surface between the letter E and the letter F. In (a) the ruling is computed naively, while
in (b) the matching algorithm was first applied. See also Figure 9.
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Figure 11: A metamorphosis between a wolf and a turtle. In (a), a metamorphosis with no inter-fairness
matching is shown using a simple affine combination. In (b) through (d), matching enhanced by shifting
is employed. In (b), matching is established with m = 100 and v(u) being piecewise linear reduced to 20
control points. In (c), matching is established with m = 300 and v(u) being piecewise quadratic reduced to

50 control points. In (d), matching is established with m = 20 and v(u) being piecewise linear reduced to
10 control points.
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Figure 12: The matching algorithm can also be seen as a feature detector or a feature recognizer. In

this metamorphosis sequence, a wave feature is simply translated (compare extreme drawing). The naive
metamorphosis of (a) does not preserve the wave feature, while after the matching computation in (b) the
wave is completely preserved throughout the sequence, resulting in the expected translational metamorphosis.

recognize F as the shape with the best C'ost(m — 1, m — 1) from the set of recognizable shapes. In Figure 12,
a sine wave feature is completely matched and hence detected in the source and target curves, converting
the metamorphosis into a translational process.

Another application that is closely related to morphing is key-frame interpolation for animation. Two
outlines of an animal in two different time frames can be inbetweened in time if a proper correspondence can
be established. In Figure 13, two outlines of an oryx are shown. The left most sketch was derived from the
right most sketch, using a freeform curve editing tool. While the shapes are similar and with similar starting
and end locations (near the mouth), the shrinkage of the horn has a devastating influence on the quality
of the interpolation as seen in Figure 13 (a). In Figure 13 (b), the established matching clearly eliminates
these artifact and vastly improves the quality of the result.

While metamorphosis of freeform curves is an obvious application of the proposed matching algorithm,
we have also shown applications in freeform surface modeling. Figure 10, in addition to conveying the proper
matching between the letter E and F, also shows a naive ruled surface construction as well as a proper one
using matching between the two curves of the E and the F. An additional modeling application for more
than two curves is seen in Figure 14. An approximation surface is fitted or skinned through a set of curves,
each is mostly linear with a single bell shape feature at a different parameter value. In Figure 14 (a), a
naive surface approximation is generated, ignoring the question of inter-fairness relative parameterization,
resulting in a surface with several uncorrelated and disjoint features. In Figure 14 (b), using the matching
algorithm to match all curves in a sequence, a surface that preserves the feature of the bell shape throughout
its parametric domain is automatically created. Given n curves, C;(t), 0 <17 < n, a matching is computed
between C;(t) and Cjy4(t), reparametrizing C;1q(t), for ¢ goes from 0 to n — 2.

We summarize this section with a hint on the computational costs. A matching with a piecewise linear
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Figure 13: The matching algorithm is applied here to two outlines of an oryx. The left oryx was edited from
the original right one and hence these are quite close. Yet the modifications, most noticeably in one of the
horns, can have grieving results as seen in (a). In (b), the matching with m = 100 reduced to a piecewise
linear v(u) with 20 coefficients significantly improves this result.

Figure 14: A Bspline surface approzimation through five curves (thick lines) with each curve with one bell
shape feature, at a different location. In (a), the naive fit is shown to clearly ignore the bell shape feature

in-between the five cross sections. In (b), after proper relative matching and reparameterization with m = 50
and with v(u) least squares reduced to 20 control points, the surface preserves the feature of the bell shape
throughout, while approximating the curves.
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v(u) function and reparameterization with m < 100 can be completed in about a second on an SGI 150MHz
R4400. Once completed, animating a metamorphosis sequence between the two curves (Equation (1)) can
be accomplished in an interactive speed of several frames a second. Going to higher orders or resorting to
a larger m will obviously have its impact on the computation time. In practice, we found that a piecewise

linear reparameterization v(u) and m < 100 successfully covers all the tested applications demonstrated.

5 Conclusions

We have presented an inter-fairness method to match the relative parameterization of two or more freeform
parametric curves, using first order differential properties. We have shown that the proposed method can
be useful in a variety of applications from computer graphics’ metamorphosis of freeform curves to better
modeling constructors of freeform geometry.

While it is clear that the matching algorithm can benefit other areas such as feature recognition, there
are several open questions to be resolved, whose answers will result in a better algorithm. In the approach
taken in this work, the m unit tangent vectors were sampled uniformly in the parametric space of the two
curves. While it is clear that better sampling can result in a better matching, some sort of curve interrogation
techniques must be employed, hindering the efficiency of the algorithm, and possibly eliminating its almost
interactive capabilities. Either arc length sampling or curvature based adaptive sampling can be suggested
while both necessitate significant overhead of analysis of freeform curves. It is questionable and probably
application dependent whether such a preprocessing analysis is desired or necessary.

The presented algorithm can also be extended in various domains. The algorithm guarantees not only to
find a match if one exists, but also to compute the best match out of the set of valid matchings. Unfortunately,
the algorithm can provide less aid if no valid match can be established. The latter can occur in cases of
different topology, where, for example, one closed loop should be matched against several disjoint closed
loops. It is a plausible to assume that while the algorithm proposed herein cannot resolve these topological
differences, it can serve as a low level geometrical matching tool for a higher level topological matching
paradigm.

This work has exploited first order derivatives in the form of unit tangent fields. However, it is clear
that other differential forms can be exploited as part of the general framework presented, with equal success.
Matching second or third order differential properties can find correspondence between inflection points or
points of extreme curvature.

In this work, we matched the two given curves with no filtering. It is expected that in some applications

a prefiltering process might be beneficial. If one is attempting to match an outline of a fish to a curve
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representing a bird, high resolution details in both curves might disrupt the matching process that only
attempts to match the tail of the bird to that of the fish. In this case, a low pass filter can alleviate these
difficulties. Taking this idea a step forward, it might be useful to consider the matching of two shapes at
some prescribed resolution level, once a multi-resolution decomposition of the two Bspline curves have been
computed.

Throughout this paper, we have employed an affine combination (Equation (1)) between the source and
target curves. Clearly this approach is improper in many instances. While one can establish a matching
between the two curves that is guaranteed not to self intersect in the local, this is not the case globally [8].
Furthermore, if the matching cannot be established, affine combinations can fail miserably and self intersect.
Lacking more information, the affine combination is a reasonable method of choice. However, better, higher
order, blending schemes must be investigated. A similar pursuit for proper interpolation methods for n
curves should also be conducted.

Being able to employ dynamic programming opened the way to the efficient computation of the globally
optimal inter-fairness match of the discrete problem. Extending this notion to bivariate surfaces or even
higher dimensional varieties is difficult. The first order derivatives can be expressed via the Gauss or normal
map of the surface as suggested in the discussion on the engraving on a stone. Nevertheless, there is no
simple remedy in the form of dynamic programming, anymore. While the global optimum cannot be found
in an efficient way, greedy methods that seek local extrema of the prescribed function can be employed,
yielding heuristic answers to the matching problem that may be sufficient. These extensions are under

current investigation.
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A Composition of Bézier Curves

Let v(u) be a scalar Bézier curve such that v(u) € [0,...,1],Vu. Let C'(v) be a Bézier curve. Then,
C(v(u)) =Y BB} (v(u)), (8)
i=0

where BJ'(v) is the ¢’th Bézier basis function of degree n, B} (v) = (7)v'(1— v)"~".

The composition is now narrowed to the problem of computing the composition of B} (v(u)). Assuming
one can compute and represent the composition B]'(v(u)), the curve C'(v(u)) is also representable as a
polynomial because it involves the scaling, addition and multiplication of only polynomial varieties of the
form of B (v(u)).

n

) (0(u))"(1.0 = v(u))"~". (9)

B (u(u)) = (
Here again, Equation (9) contains the product and difference of polynomial varieties, that can only result
in a polynomial form, and therefore representable as a scalar Bézier curve.
If either C'(v) or v(u) is rational, the result of the composition would be rational. If C'(v) is rational,

the P; control points in Equation (8) would simply be treated as in projective space. If v(u) is rational,

Equation (9) now becomes
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Equation (10) should then be substituted into Equation (8) in a similar way to Equation (9). If now
C'(v) is also rational, the denominator term in Equation (10), (w(t))", is canceled out because it appears in

both the numerator and the denominator.



