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Abstract

The problem of computing the minimum-angle bounding cone of a set of

three-dimensional vectors has numerous applications in computer graphics and

in geometric modeling. One such application is bounding the tangents of space

curves or the vectors normal to a surface in the computation of the intersection

of two surfaces.

Surprisingly, no optimal-time exact solution to this problem has been yet

given. This paper presents a road-map for a few strategies that provide optimal

or near-optimal solutions to this problem, which are also simple to implement.

Speci�cally, if a worst-case running time is required, we provide an O(n log n)-

time Voronoi-diagram-based algorithm, where n is the number of vectors whose

optimum bounding is sought. Otherwise, if one is willing to accept an in average

eÆcient algorithm, we show that the main ingredient of the algorithm of Shir-

man and Abi-Ezzi [8] can be implemented to run in optimal �(n) expected time.

Furthermore, if the vectors are known to occupy no more than a hemisphere,

we show how to simplify this ingredient (by reducing the dimension of the prob-

lem) without a�ecting the asymptotic expected running time. Both versions of

this algorithm are based on computing (as an LP-type problem) the minimum

spanning circle (resp., ball) of a 2D (resp., 3D) set of points.

Keywords: Curves and surfaces, minimum spanning cone, minimum span-

ning circle, maximum empty circle.

1 Introduction

A three-dimensional cone B = [~v; �] has an axis ~v and angular span �. A cone whose

opening angle is �=2 is a plane. A cone whose angular span is between �=2 to � is

called a \re
ex" cone.
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Given a set of spatial vectors, we seek their minimum bounding cone, that is,

the cone with minimum angular span, that contains all the vectors. Bounding cones

are employed in computer graphics and geometric modeling for bounding entities in

vectors spaces, most noticeably tangents and normals of free-form shapes [2]. Other

applications of bounding cones are found in the computations of illumination and

radiosity [9] and of visibility maps [3].

Two near-optimal iterative algorithms (but with no proven quality) are given by

Sederberg and Meyers [7] and by Meenakshisundaram and Krishnan [4]. Given a set of

n vectors fDig, both algorithms start with some initial bounding cone B1 = [V1 = D1; 0]

and re�ne it in each iteration i (for 2 � i � n) by computing a new (but not necessarily

the minimum) cone Bi = [Vi; �i] which contains Bi�1 and Di.

Shirman and Abi-Ezzi [8] use bounding cones for bounding the normal �elds of

free-form curved patches. They present an exact method that is based on �nding the

minimum spanning sphere of the vectors represented as points on the unit sphere S2,

and then intersecting this sphere with S2. The resulting spherical circle de�nes the

bounding cone. This method gives the optimal cone, but is not time-wise optimal

(at least as it is stated). The authors say it could use the rather slow algorithm of

Lawson [6] for computing the minimum spanning sphere. Instead, to get a practical

running time, Shirman and Abi-Ezzi used a bounding-box heuristic, which is very

fast in practice but not accurate. As will become apparent later in the paper, the

sphere computation could be performed in expected linear time, yielding an on-average

optimal-time algorithm. Nonetheless, there is no need to solve this problem in three

dimensions when the minimum bounding cone is known in advance to be nonre
ex.

That is, when the corresponding spherical points occupy at most one hemisphere.

Finding the minimum spanning spherical circle of such a set of spherical points is a

two-dimensional problem, as we also show below.

In the �eld of computational geometry, �nding the minimal spanning circle (MSC)

of a given set of points in the plane is considered a classical problem [1]. (The original

reference goes back to [10]. The optimal solution (minimum-radius circle) can be

found in �(n) expected time, where n is the number of points. This can be done by

representing the problem as an LP-type (linear-programming-like) problem. In fact,

the minimum enclosing sphere of n points in any dimension can be found in expected

�(n) time by using the same method.

In this paper we show that the optimal bounding cone of a set of n vectors can be

solved in a worst-case O(n logn) time by using the spherical Voronoi diagram of a set

of n points. We show that when only the average-case time is of interest, the algorithm

of Shirman and Abi-Ezzi [8] can be implemented to run in expected �(n) time by

computing the minimum bounding sphere of a set of n (spherical) points. Finally, we

show that if the vectors are known to span a nonre
ex cone, the latter algorithm can

be simpli�ed so as to require the computation of the minimum spanning (spherical)

circle of n (spherical) points. All these solutions are exact (unlike those of [4, 7]) and

are far simpler than the solution o�ered in [8].
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2 Algorithm Road-Map

Our goal is then is to compute the optimum (minimum angle) cone bounding a given

set of vectors. Consider �rst the situation in which the algorithm is expected to run

eÆciently in the worst case. To this aim we apply a Voronoi-diagram approach. Since

this technique is quite standard, we provide here only a high-level description of it.

We represent all the vectors as points on the unit sphere S2. In O(n logn) time we

compute the spherical Voronoi diagram of these n points. Then, we compute in �(n)

time the maximum empty spherical circle. (That is, the spherical circle whose interior

does not contain any of the points.) This can be done in �(n) time by considering

sequentially all the vertices of the diagram, whose number is �(n), and picking up

the vertex that is the center of the largest empty circle. Irrespective of whether the

original vectors span a cone with opening angle which is less or greater than �=2 (that

is, whether or not the minimum spherical disk containing all points is smaller or larger

than hemisphere), the complement of this disk is the intersection of the sought cone

and the sphere. Therefore, we can compute in O(n logn) time the minimum bounding

cone of any set of n vectors.

Consider next the situation in which the algorithm is expected to run eÆciently in

the average case. We distinguish here between two cases:

1. The input vectors are known in advance to span a nonre
ex cone. In this case all

the corresponding spherical points lie in a hemisphere, and we apply the algorithm

described in Section 3. In a nutshell, this is a randomized algorithm for computing

the minimum spherical circle that contains a set of spherical points. The running

time of the algorithm is linear in the number of points. This computed circle is

the intersection of the bounding cone and the sphere, thus it de�nes uniquely the

sought cone.

2. Otherwise, the input vectors span a re
ex cone (or it is unknown a priori whether

the minimum cone is re
ex of not). In this case the corresponding spherical points

may lie in more than a hemisphere, and we apply the implementation of the al-

gorithm of Shirman and Abi-Ezzi [8] described in Section 4. Our implementation

replaces the computation of the minimum bounding sphere of a set of points by

a randomized algorithm which is essentially identical to the �rst algorithm but

in one higher dimension. The intersection of the latter sphere with the sphere

containing the points is the circle that de�nes uniquely, as before, the sought

cone.

Both versions of the randomized algorithm run in expected �(n) time. On one hand,

the 3-dimensional version (that is used to improve on [8]) solves all instances of the

problem. On the other hand, the 2-dimensional version (that is restricted nonre
ex

cones) runs in one lower dimension, and is thus easier to implement and faster in

practice. Therefore, when the vectors are known to span a small (nonre
ex) cone, it is

worth applying the �rst version of the randomized algorithm.
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(a) (b)

Figure 1: Two views of an instance of the problem and of its solution

3 A Nonre
ex Cone

For ease of exposition, we �rst describe the algorithm for computing the the minimum

bounding cone of a set of vectors which are known a priori to span a nonre
ex cone. As

before, we represent all the vectors as points on the unit sphere S2. (According to the

assumption about the vectors, the points span at most a hemisphere of S2.) Our goal

is thus to �nd the minimum-radius spherical circle c (embedded in S2) that encloses

all the points. Then, the cone whose apex is the origin and whose intersection with S2

is c is the minimum-angle cone that contains all the original vectors. See Figure 1 for

an illustration of this method.

3.1 The Algorithm

In order to �nd the minimum circle enclosing a set of points on a sphere, we use the

same algorithm for the planar case, with a few minor modi�cations. The algorithm is

taken almost literally from [1, x4.7, pp. 85{88].

In the upper level of the algorithm, we iteratively compute the minimum enclosing

circle of the �rst i points, where i goes from 3 to n (see function MinSphericalCircle in

Figure 2). The minimum enclosing circle of the �rst two points is the circle for which

the two points are its spherical diameter. In the ith step, we check whether the ith

point lies inside, on, or outside ci�1, the minimum spherical circle of the �rst i � 1

points. In the �rst two cases ci = ci�1. Only in the third case we need to recompute

ci, but now it is guaranteed that the ith point is found on ci. (The proof of this fact is

identical to that of the planar case; see [1, x4.7, p. 86]).
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Accordingly, we now invoke a secondary function that performs the same task

(namely, �nding the minimum enclosing circle of a set of points), with the only restric-

tion that one speci�c point q is known to be on the sought-after circle. (See function

MinSphericalCircleWithPoint in Figure 2.) Again, we add one point at a time, and

check whether the newly-added point is inside or on the previously computed circle. If

it is in neither place, we need to recompute the circle, but this time we are guaranteed

that both q and the newly-added point are on the new circle.

Finally we invoke a tertiary function that performs the same task, this time with the

restriction that two speci�c points q1; q2 are known to be on the sought-after circle. (See

Function MinSphericalCircleWithTwoPoints in Figure 2). Again, we add one point at a

time, and check whether the newly-added point is inside or on the previously computed

circle. If not, we need to recompute the circle, this time with the knowledge that all of

q1, q2, and the newly-added point are found on the new circle. We use simple geometry

to �nd the unique circle that ful�lls this requirement.

The entire algorithm is shown in Figure 2. The algorithm was broken into three

levels only for clarity of exposition. In fact, the three functions can be implemented

as a single function which also receives an input parameter that speci�es how many

points are �xed on the spanning circle at the current level of calling to the function.

3.2 Correctness

The correctness of the algorithm is shown in an identical manner to the correctness of

the algorithm for the planar case [1, x4.7, p. 86], in which the minimum spanning circle

is sought for a set of points in the plane. We note that the fact that the points occupy

no more than a hemisphere is crucial for the proof. Otherwise the main inductive claim

breaks down and the algorithm is not valid any more.

Speci�cally, the planar algorithm relies on the fact that if pi, the point handled in

the ith iteration, is outside ci�1, the minimum spanning circle of the �rst i� 1 points,

then pi must be on ci. In the spherical case we need to be more careful while using the

terms \inside" and \outside" a circle. We follow the straightforward de�nition that

the inside of a spherical circle is the disk that is the smaller out of the two portions

of the sphere delimited by the circle. Then, as long as the points occupy less than a

hemisphere, the inductive step holds using the same argument as in the planar case.

It is rather easy to construct a set S of spherical points that occupy more than a

hemisphere and an ordering of S that will result in a nonoptimum bounding cone. The

reason for the wrong result is that for such a set S the solution is actually de�ned by

the minimum empty circle, for which the inductive claim (that the new circle contains

the current point) is false.1

1We are indebted to an anonymous referee who pointed out this fact and provided a simple two-

dimensional example that demonstrates it. In two dimensions we seek a minimum-length circular arc

that fully contains a set of points on a circle. For clarity we represent such points as the hours on a
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Algorithm MinSphericalCircle (S)
Input: A set S of n points on S2.

Output: A minimum-radius spherical circle on S2 that fully contains S.
begin

Compute a random permutation p1; : : : ; pn of the points in S.
Let c2 be the smallest spherical circle enclosing fp1; p2g.
for i = 3; : : : ; n do

if pi 2 ci�1

then ci := ci�1;

else ci := MinSphericalCircleWithPoint (fp1; : : : ; pi�1g, pi).
end if

end for
return cn.

end MinSphericalCircle

Function MinSphericalCircleWithPoint (S, q)
Input: A set S of n points on S2, and a point q s.t. there exists an

enclosing spherical circle of S that passes through q.
Output: The minimum-radius spherical circle on S2 that fully contains

S and that passes through q.
begin

Compute a random permutation p1; : : : ; pn of the points in S.
Let c1 be the smallest spherical circle enclosing fp1; qg.
for i = 2; : : : ; n do

if pi 2 ci�1

then ci := ci�1;

else ci := MinSphericalCircleWithTwoPoints (fp1; : : : ; pi�1g, pi, q).
end if

end for
return cn.

end MinSphericalCircleWithPoint

Function MinSphericalCircleWithTwoPoints (S, q1, q2)
Input: A set S of n points on S2, and two points q1; q2 s.t. there exists an

enclosing spherical circle of S that passes through q1 and q2.
Output: The minimum-radius spherical circle on S2 that fully contains

S and that passes through q1 and q2.
begin

Compute a random permutation p1; : : : ; pn of the points in S.
Let c0 be the smallest spherical circle enclosing fq1; q2g.
for i = 1; : : : ; n do

if pi 2 ci�1

then ci := ci�1;

else ci := the circle passing through q1, q2, and pi.
end if

end for
return cn.

end MinSphericalCircleWithTwoPoints

Figure 2: Computing the minimum-radius spherical circle containing a set of spherical

points (following closely the algorithm of [1] for the planar case)
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3.3 Complexity Analysis

The main algorithm, MinSphericalCircle, performs n iterations, in each of which it ei-

ther decides in constant time that the minimum-radius circle (so far) does not have to

change, or calls the function MinSphericalCircleWithPoint. In the worst case, the main

algorithm can call the latter function �(n) times, in case all of the third through the

nth points require an update of the enclosing circle. Similarly, the function MinSpher-

icalCircleWithPoint performs k = O(n) iterations (where k is the size of the point set

it receives as a parameter). In each iteration it either decides in constant time not to

update the enclosing circle or to call the function MinSphericalCircleWithTwoPoints.

As in the main procedure, calling the latter function can occur in �(n) iterations. The

running time of the function MinSphericalCircleWithTwoPoints is O(k) = O(n), where

k is the size of the point set it receives as a parameter. Overall, in the worst case, the

entire algorithm requires �(n3) time.

The average case is much more favorable: we will now show that the expected

running time of the algorithm is only �(n), which is optimal. We already know that the

expected running time of the lowest-level function MinSphericalCircleWithTwoPoints

is O(k), where k is the size of its �rst parameter (the point set). Let us then estimate

the expected running time of the function MinSphericalCircleWithPoint. Assume that

its �rst parameter is also a set of k points. Then it performs k � 2 steps, in each of

which it either spends a constant time on checks and assignments, or calls the function

MinSphericalCircleWithTwoPoints. At the ith step (for 2 � i � k) the probability of

the latter event to occur is at most 2=i. This is veri�ed by a simple backward-analysis

argument: Let ci be the circle after the ith step. Discard the point pi and run the

algorithm backward. The circles ci and ci�1 are di�erent only if pi was one of the

three points de�ning ci. One of the three points is known (q), so the probability is

at most 2=i. (Equality would hold if it was known in advance that no four points are

cocircular. Otherwise the probability that ci 6= ci�1 is strictly less than 2=i.) Now, the

total expected running time of the function is at most
P

k

i=2
((2=i)O(i)) = O(k).

A similar analysis holds for the expected running time of the main algorithm,

MinSphericalCircle. This time the probability of calling the function MinSphericalCir-

cleWithPoint is at most 3=n, following a similar argument. The total expected running

time of the algorithm is thus at most
P

n

i=3
((3=i)O(i)) = O(n).

Obviously the running time of the algorithm is also 
(n) (that much time is required

for just reading the input). Therefore, this algorithm runs in expected optimal �(n)

time.

clock. Consider the sequence (6,9,10:30,12,1:30,3,4:30). Processing the points in this order results in

the clockwise arc (6,4:30) (whose length is 7�=4), while the optimum is the clockwise arc (9,6) (whose

length is 3�=2). The error occurs while processing the last point 4:30; it is outside the spanning arc

at that stage (6,3), yet it is wrong to look for a new spanning arc with 4:30 as an endpoint. It is quite

easy to generalize this example to three dimensions.
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4 A General Cone

For a general set of vectors, for which the minimum bounding cone can be re
ex, we

use the algorithm of Shirman and Abi-Ezzi [8] but modify its main ingredient to use

the same idea as in the previous section.

The algorithm of Shirman and Abi-Ezzi also represents the vectors as points on

the unit sphere S2, and proceeds by computing S 0, the minimum bounding sphere of

these spherical points. This avoids the problematic step of computing the minimum

spherical circle that contains a set of points. It is always true that the intersection of

S2 and S 0 is the circle that de�nes the minimum bounding cone of the original set of

vectors.

Shirman and Abi-Ezzi suggested an ineÆcient method for computing S 0. However,

using the algorithm described in Section 3, one can perform this step in time which

is expected to be linear in the number of points. Consider again the algorithm in

Figure 2. It is easy to modify the algorithm to have four instead of three levels. The

running-time analysis remains unaltered. It can be shown, using identical arguments,

that each of the four levels still runs in O(n) time in average, where n is the number

of points.

Since both versions of the randomized algorithm run in time which is asymptotically

linear in the number of vectors, it is the user's choice (or trade-o�) to apply the version

that �ts the a priori knowledge about the vectors.

5 Experimental Results

We have implemented the simple algorithm described in this paper (see Figure 2) for

computing the minimum-angle cone that encloses a set of vectors. The software was

implemented in IRIT [5]. It consists of about 100 lines of code. The running times

for all our experiments (up to 100,00 vectors) were negligible (below one second) on a

modern Windows-based system and are thus omitted here.

To assess the quality of our optimal-cone solution, we also implemented the simplest

averaging heuristic, in which the axis of the bounding cone is set to the average of the

(normalized) input vectors, and its angular span is the largest angle between the axis

and any of the given vectors. Clearly, this heuristic always runs in �(n) time, but it is

biased by large clusters of vectors.

Our implementation did not need to treat in any special manner circles \larger"

than a great circle on the sphere (in which case the problem was actually to compute

the largest empty circle). This was because spherical circles were measured by the

cosine of their angular span, which is monotone in the range [0; �]. This function is

evaluated as the inner product between the cone's axis vector and the examined vector.
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(a) (b)

Figure 3: Two instances of the minimum-enclosing-cone problem

Here are two representative examples of the performance of the optimal algorithm

compared to the simple heuristic. Figure 3 shows two sets of vectors and their bounding

cones. The smaller cone (shown in darker grey) is the optimum (minimum angle)

enclosing cone, while the larger cone (shown in lighter grey) is the solution obtained

by the heuristic method. The di�erence between the solution is clearly visible in both

examples.

6 Conclusion

In this paper we present an optimal-time (expected case) solution for the problem of

computing the minimum-angle bounding cone of a set of vectors in three dimensions.

The solution is inherently the same as for computing the minimum spanning circle

(or sphere) of a set of points. The expected running time of the algorithm is linear

in the number of input vectors. We provide two versions of a randomized algorithm,

one of which is simpler but �ts only sets of vectors whose minimum bounding cone is

nonre
ex.

For users who require that the worst-case instance of the problem be solved eÆ-

ciently, we provide a completely di�erent solution based on a spherical Voronoi diagram

of a set of spherical points. This algorithm runs (for all inputs) in O(n logn) time,

where n is the number of input vectors.
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