Adaptive Isocurves Based Rendering
for
Freeform Surfaces *

Gershon Elber and Elaine Cohen
Department of Computer Science
University of Utah
Salt Lake City, UT 84112 USA

June 27, 1996

Abstract

Freeform surface rendering is traditionally performed by approximating the surface with polygons
and then rendering the polygons. This approach is extremely common because of the complexity in
accurately rendering the surfaces directly. Recently, several papers [1, 2, 15, 17, 22, 23, 25, 26] presented
methods that render surfaces as sequences of isocurves.

These methods each have deficiencies in their ability to guarantee a complete coverage of the rendered
surface, in their ability to prevent processing the same pixel multiple times, or in their ability to produce
an optimal surface coverage under some prescribed norm.

In this paper, an algorithm is introduced that alleviates the difficulties in all of these areas. This
algorithm can be combined with a fast curve rendering method to make surface rendering without
polygonal approximation practical.

Keywords: scan conversion, NURBs, surface coverage, direct freeform surface rendering

1 Introduction

Most surface rendering systems render a set of polygons that approximate the model representation instead
of rendering the surfaces directly. Polygon rendering is usually more efficient and numerically robust than
direct surface rendering. Unfortunately, the polygonized model is only an approximation to the real surface
and frequently aliasing can occur. Intensity (Gouraud) and normal (Phong) interpolation schemes [5] were
developed to overcome the visual effects caused by C'' discontinuities across boundaries between polygons.
The faceted appearance of the boundary and silhouette edges can be alleviated by increasing, as necessary,
the number of polygons along the silhouettes, making each one smaller, globally or adaptively [14]. Tt is
an even more difficult problem to subdivide trimmed surfaces into polygons for rendering [24, 27]. On the
other hand, rendering the surface as a set of isocurves is appealing since the representation of each curve
is exact, eliminating some of the need for the anti-aliasing techniques developed for rendering of polygonal
approximations. Furthermore, rendering surfaces as isocurves reduces the algorithmic complexity necessary
to support trimmed surfaces, as will be demonstrated, as well as reducing the complexity of the algorithms
involved in texture mapping computations. Several methods have been published in recent years to render

*This work was supported in part by DARPA (N00014-92-J-4113) and the NSF and DARPA Science and Technology Center
for Computer Graphics and Scientific Visualization (ASC-89-20219). All opinions, findings, conclusions or recommendations
expressed in this document are those of the authors and do not necessarily reflect the views of the sponsoring agencies.

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 2

() (b)

Figure 1: Scan converting complete isocurves can lead to an unbounded amount of redundancy when
surfaces are scan converted using isoparametric curves (a). Adaptive extraction of isocurves can introduce
much more optimal results (b).

surfaces using isocurves [1, 2, 15, 17, 22, 23, 25, 26]. However, many of the previous techniques assumed
the existence of the set of isocurves that covers the surface and do not automatically extract an optimal
or almost optimal set of isocurves from a surface S. Hence, rendering S with these techniques cannot be
guaranteed to include every pixel representing the surface in image space, nor can it guarantee optimality
under some prescribed norm.

In [1], the special case of direct rendering of sweep surfaces is considered. To partially address this
problem for arbitrary surfaces, a heuristic subdivision based approach was used in [22]. Since this method
subdivides the surface each time the spacing of the isocurves varies more than a specified tolerance, this
approach can lead to processing a large number of small patches. The adaptive forward differencing
algorithm in [25, 26] has a fixed initialization cost per isocurve so rendering a large number of small patches
means drawing an even larger number of isocurves, which would greatly increase the total rendering cost
of the complete surface. Isocurves at equally spaced intervals, v = ndu, are used in [25]. The use of
fixed spacing intervals for isocurves can result in pixels being missed, leaving holes in the image of the
surface. Alternatively, the rendering algorithm might end up processing identical pixels numerous times,
reducing the rendering efficiency. We refer to this last phenomena as redundancy in the coverage, as
is demonstrated in the middle of Figure 2 (a) and in the center of Figure 3 (a). In [26], the isocurves
are adaptively spaced using bounds extracted from the convex hull of the distance function between two
adjacent isocurves, d(v) = f(u + du,v) — f(u,v). Each isocurve spans the entire v domain of the surface.
Therefore, the redundancy demonstrated in Figures 2 (a) and 3 (a) would continue to reduce optimality
in [26]. A similar approach to that of [25] is taken in [23], which applies the mean value theorem. A
bound on the Euclidean distance resulting from a small & step in the parametric space of a Bézier curve is
computed as ||C'(u+h)—C(u)|| < n h maz|| P,y — P;||, where n is the degree of C'(u) and {F,} are its control
points. In [25] and [23] complete isoparametric curves are scan converted, were a complete isoparametric
curve is one that spans the entire parametric domain of the surface. There is no way to establish an upper
bound on the number of times the same pixel is actually drawn and hence on the amount of redundancy.
See for example Figure 1.

This paper presents an algorithm that colors all required pixels, yet the algorithm provides a bound on
the amount of pixel redundancy in the established coverage. The new algorithm adaptively extracts partial
isocurves and covers the entire surface in an almost optimal way. The polygon primitive is replaced by a
finite thickness isocurve.

In the ensuing discussion we will need the concept of valid coverage,

Definition 1 A set of isocurves C of a given surface S is called a valid coverage with respect to some
constant § if for any point p on S there is a point, q, on one of the isocurves in C, such that ||p— q||» < 6,
where || - || denotes Fuclidean distance.

Surface rendering algorithms using isocurves should comply with definition 1 where § is approximately

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 3

(a)

Figure 2: Isocurves are obviously not an optimal solution as a valid coverage for this surface (a). Adaptive
isocurves are more optimal and their coverage is valid as well (b).

half of the image pixel size. All pixels representing S in the image are then guaranteed to be covered
by at least one isocurve. In the ensuing discussion S will be assumed to be represented in the viewing
space. A surface in viewing space has its and y coordinates aligned with the image plane coordinates
iy, and 4,. That is, i, = = and i, = y. However, the z coordinate of the surface is still accessible. The
viewing space automatically accounts for distant and small surfaces that require less effort to render, since
the perspective transformation has already been applied. In many cases, it is sufficient to compute the
iso-distance using only the 2z and y surface components, since coverage of the image plane is the concern.
However, ignoring z may result in missed pixels when the surface is partially hidden. We will discuss this
issue further later.

Definition 2 A coverage for a given surface is considered optimal if it is valid and the accumulated pizel
drawing cost function is minimal over all valid coverages.

A pizel drawing cost function should weigh the initialization cost of drawing a curve amortized over the
length of the curve plus the actual cost of drawing each pixel.

If one could compute the parametric spacing required for a valid coverage of a given surface in a given
scene, extraction of all isocurves at that spacing might be suboptimal as can be seen from the middle of
the surface in Figure 2 (a) and the center of the surface in Figure 3 (a). Denote the isoparametric curves of
surface S(u,v) by C;(u). Because 22 is not a constant value across the parametric domain of the surface,
local dynamic change of the parameter spacing is required as seen in Figures 2 (b) and 3 (b), to improve
the optimality of the coverage.

Using isocurves as the coverage for a surface, we define adjacency and iso-distance between isocurves.

Definition 3 Two isocurves of surface S(u,v), Ci(u) = S(u,v1), u € [uf,uf] and Cy(u) = S(u,vy),
u € [ud, us], vi < vy, from a given set C of isocurves forming a valid coverage for S are considered adjacent
if, along their common domain U = [uf, u$]N[us, us], there is no other isocurve from C between them. That
is, there does not exvist Cs(u) = S(u,vs) € C, u € [uf, us] such that vi < vz < vy and [uf,us] U # 0.

Definition 4 The iso-distance curve Aj5(u) between two isocurves Cy(u) = S(u,v1), Cs(u) = S(u,vs), is

1€ (u) = Ca ()]

Section 2 provides the background for the algorithm developed in section 3. Rendered results using
this new isocurve based method are presented in section 4. The implementation uses the NURBs surface
representation in the Alpha_1 solid modeler.

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 4

Figure 3: Utah teapot lid. Constant parameter spacing causes redundancy in coverage (a) mostly elimi-
nated by adaptive extraction of isocurves (b). Both provide a valid coverage with respect to same 4.

2 Background

Lemma 1 Let Cy(u) = S(u,vi) and Co(u) = S(u,vs) and let R(u,v) = Cy(u)xv+Co(u)* (1—v), v € [0,1].
Then, if Ajs(u) = ||C1(u) — Co(u)||s < & for all u, then C = {C(u),Cs(u)} is a valid coverage of R with

respect to %

Proof: Let p be an arbitrary point in R, p =]%(u*, v*). pis on the line connecting C(u*) to Cy(u*)
which is bounded in length to be not greater than 4, since, by hypothesis, Ajo(u*) < 6. In other words,
either ||C(u*) = p|[> < £ or [|Co(u”) — p||» < & (or both). W

Lemma 1 provides a condition on the validity of the coverage of a ruled surface, R=]A%(u7 v), by two of
its boundary curves, C(u) and Cy(u). One might need to further verify that R sufficiently approximates
R. This might necessitate the computation of a bound on the distance between R and R [9], curvature
analysis of R [7], or alternatively analysis of the speed variance of R [8]. We will refer to this approximation
validity condition as (R~+R).

For 6 = 1 pixel, the special rendering case, the surface is approximated by strips of ruled surfaces, each
approximately one pixel wide, usually a more accurate approximation than the polygons used for rendering.
Hence, unless subpixel results are required (in which case § can be made smaller), it is unnecessary to further
bound the distance between E and R.

As stated in lemma 1, this condition is sufficient, but is it necessary that Ais(u) < 67 For a very
skewed surface resulting from a non isometric mapping this condition could be too restrictive since the
isodistance could be much larger than the minimal distance between the curves. One might expect the
penalty for this assumption to be quite high. In practice, it was found that most surfaces are well behaved
and the Hausdorff distance between two adjacent isocurves is not much smaller than Ajy(u). Section 4
demonstrates many common cases where highly non-isometric mappings are infrequent and isolated in
small regions of the domain. Even at locations with highly non-isometric mappings the proposed algorithm
provides competitive results compared to previous methods that employ nonadaptive isoparametric curves.

The iso-distance function Aj,(u) between the two isocurves C(u) = (¢f(u), ¢ (u), ¢;(u)) and Cy(u) =
(c5(u), c5(u), c3(u)) in the surface S can be efficiently computed and is equal to:

Ava(n) = /(€ () = e (w))? + (¢4 () — ()2 + (¢ (u) — c3(w)*. (1)
The sum, difference, and product of two scalar curves are closed for polynomial (Bézier), piecewise
polynomial (B-spline), or rational representations (NURBs). Furthermore, efficient algorithms exist [3, 4,

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 5

10, 19, 16], for finding the form of the sum and product in the Bézier and NURBs representation as well
as its zero set. On the other hand, square roots are not representable, in general, and therefore, are not
closed under the above domains. Instead, one can find and use the representation for the square of the
iso-distance, as is done in section 3:

ATy (u) = (7 (u) = e5 (u)” + (ef (u) = ¢5(u)” + (] (u) = c5(u))”. (2)

3 Algorithm

Using the tools presented in section 2, we are ready to introduce the algorithm. Given two isocurves, C'y(u)
and Cy(u), on a surface S(u,v), one can symbolically compute the square of the iso-distance, AZ,(u),
between them. Furthermore, given some tolerance 8, one can compute the parameters along the curves
where they are exactly ¢ iso-distance apart by computing the zero set of (Af,(u) —). In practice,
(A%,(u)—46?) should only be bounded from above. That is, the exact zero set of (A%,(u) —4?) is unnecessary
as long as (A%,(u)—6%) < 0 for all adjacent isocurves forming the valid coverage. By subdividing € (u) and
Cy(u) at these parameters, the resulting set of pairs of curves, {C}(u), Ci(u)}, have the property that their
corresponding iso-distances are closer than § or entirely farther apart than that, over their open interval
domain. If the two curves have iso-distance less than ¢, then the Euclidean distance tolerance condition is
already met for that pair and the algorithm can terminate. If, however, the iso-distance between the two
curves is too large, a middle isocurve between them, C'5(u), is introduced and the same iso-distance test
is invoked for the pairs {C(t), C12(t)} and {C14(t), Cs(t)}.

Starting with the two u boundaries or two v boundaries of the surface, the algorithm invokes this iso-
distance test recursively and insures that two adjacent isocurves will always be closer than some specified
distance & by verifying the iso-distance is not greater than §. A middle isocurve is introduced only when
the iso-distance is larger than §, resulting with iso-distances between adjacent isocurves, as computed, will
rarely be closer than % Furthermore, since the resulting set of isocurves covers the entire surface 5, the
set of isocurves that result may serve as a valid coverage for S with distance 4.

Assuming isocurves are generated as constant v isoparametric curves, we can now formally state the
algorithm. Algorithm 1 is the complete algorithm for an almost optimal extraction of isocurves to form
a valid coverage. Line (1) in Algorithm 1 is the isodistance square computation as of definition 4 and
computed using equation (2). If Z is empty, a single test at a single point may classify the pair, as is done
in line (2) of Algorithm 1. If the pair is found to be close enough, no new curve is introduced and the empty
set is returned in line (3). Otherwise, a new curve between the two curves is created and the algorithm
is invoked recursively in lines (4) and (5). Alternatively, when Z is not empty, we subdivide C(u) and
Cy(u) at all w € Z in line (6) of the algorithm. The iso-distance between the sub-curve pairs resulted from
the subdivision is always less than ¢ or always more than that in their entire domain. Therefore, each
pair in the recursion in line (7) is classified into the Z empty cases above. Although omitted for clarity in
Algorithm 1, the recursions invoked at line (7) of Algorithm 1 should provide A},(u) so it would not be
computed again. The union set returned in line (7), is the coverage set for the domain between the two
curves.

The fact that the output consists of isocurves only simplifies further computation such as trimming the
isocurves according to surface trimming curves, as is shown in section 4.

The resulting set of isocurves computed with this algorithmic process forms a valid coverage. The
variation of the speed in the v direction (ruled direction of]A%)7 95 between two adjacent isocurves, C'j(u)
and Csy(u), decreases as § becomes smaller and the coverage becomes more dense. Hence, an isocurve
introduced in the middle of the parametric domain of R, will be almost half way between C'(u) and Cs(u).

In the limit, as 6 approaches zero, and since an isocurve is introduced between ' (t) and Cy(t) only if

Adaptive Isocurves Based Rendering G. Elber and E. Cohen

Algorithm 1

Input:
S(u,v), input surface.
&, maximum distance between isocurves.

Output:
S, the set of constant v isocurves of S(u,v) adjacent within §, covering S.

Algorithm:
adapIsoCrvs(S, 4)
begin
Cy(u), Cy(u) < isocurves of S in u direction at VMin, VMaz.
return
{ Ci(w) } U
adapIsoCrvsAux(S, 6, u, VMin, VMaz, Ci(u), Co(u)) U
{ Cao(u) 3.
end
end

adapIsoCrvsAux(S, 6, VMin, VMaz, Ci(u), Csy(u))

begin
UMaz, UMin < C;(u), C3(u) common u domain.
(1) Al,(u) < squared iso-distance between C(u) and Cs(u).

Z <« zero set of (Al,(u)—4%).
if Z empty then
R < S subsurface between C(u) and Chy(u).
R < Cy(u)xv+Cou) x (1 —v), ve(01).
(2) if AL ((UMaxz + UMin)/2) < §? and (R~R) valid then
(3) return ¢.
else
VMid < (VMin+VMaz)/2.
Ci2(u) < isocurve of S at VMid from UMin to UMaz.

return
(4) adapIsoCrvsAux(S, 6, VMin, VMid, Ci(u), Cis(u)) U
{ Cia(u) } U
(5) adapIsoCrvsAux(S, &, VMid, VMax, Cis(u), Ca(u)).
end
else
(8) Subdivide C)(u), Cy(u) at all u' € Z into {Ci(u), Ci(u)} pairs.
(7) return J; adapIsoCrvsiux(S, §, VMin, VMaz, Ci(u), Ci(u)).

end
end

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 7

Ai; > & no two isocurves will have iso-distance less than % In practice, ¢ is in the order of a pixel size
and is much smaller than the surface size. The vast majority of the isocurves in the computed coverages
were found to be within A, > % of their neighbors. Therefore, the redundancy in the computed coverage
is bounded.

There are some subtleties that have not yet been considered. If the surface V Min boundary is the same
as the V. Maz boundary, the algorithm will find their (zero) iso-distance below the distance tolerance &
and quit immediately. A cylinder is one such example in which the V Min and V Max boundary seams are
shared. One should guarantee such cases are detected before invoking Algorithm 1. One way to guarantee
the prevention of such cases is to insure the surface is silhouette free from the rendering direction (See [6, 11]
for silhouette detection). A surface is silhouette free if its normal is never perpendicular to the viewing
direction. An alternative may be to use a heuristic that always enforce at least one subdivision of the
surface, which solves the problem for surfaces such as cylinders. Another consideration is determination
of which parametric direction should be used for isocurves extraction, u isocurves or v isocurves. In
our implementation, we compute the maximum iso-distance between the u surface boundaries and the v
surface boundaries, and prefer the direction with the smaller maximum. This heuristic promotes fewer,
longer isocurves over numerous shorter ones in the hope that it will minimize the number of curves to be
drawn.

Other image rendering aspects should be considered as well. The valid coverage is only one necessary
condition. The surface normal for each pixel is also required for shading. An unnormalized representation

of the surface normal, #(u,v) = 22 x %, can be computed symbolically [10], and represented as a vector

surface whose coordinate functior?; are products and differences of surface partial derivatives.

Each isocurve output from Algorithm 1 is then piped into the curve renderer and is accompanied by the
associated isocurve from the normal surface n. The curve renderer uses the normal curve to compute the
normal at all required locations. It is evident that the order of the normal curve is usually higher than that
of the shape curve. Some curve renderers that use (adaptive) forward differencing [2, 15, 17, 25, 26] are
implemented in hardware and are tuned to certain, usually low, orders. In such a case, the normal curve
could be approximated as a sequence of lower (cubic) splines using known techniques for approximating
higher order splines as lower order ones [10, 12, 13].

So far, we considered the iso-distance computed in coverage validation (definition 1) as the Euclidean
distance in the viewing space. Under some conditions, it is sufficient to consult just the 2 and y components
of the surface. If the projection of the surface in viewing space to the zy image plane is silhouette free or
locally one to one, then only = and y need to be consulted. By ignoring z, two isocurves in S can have zero
distance in the image plane (That is, they intersect in the image plane as can be seen in Figure 4 (a)), while
distant apart in the viewing or object space (as seen in Figure 4 (b)), violating the one to one mapping
requirement. For example, a planar surface, almost perpendicular to the image plane should be drawn
with many fewer isocurves if only = and y coefficients are considered. If a surface has silhouette curves in
the image plane, using only = and y in the computation of A?,(u) for two isocurves could result in invalid
coverage, as would be the case in Figure 4, if Af,(u) were computed without using z. Therefore, one can
easily determine if the iso-distance should be computed using z or without it by determining if the surface
is silhouette free.

4 Results

Several results are presented in this section, in addition to a discussion of some considerations on the
complexity of the algorithm.

Figure 5 presents the well known Utah teapot model and a chess set rendered using the adaptive
isocurve extraction algorithm.

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 8

Cy(u)

(a) (b)

Figure 4: If S has silhouettes (dotted) in image plane, and only z and y are consulted in Ay5(u) compu-
tation, Ajs(u) may be found by Algorithm 1 to be wrongly zero, terminating prematurely.

Figure 5: Utah teapot and a chess set adaptive isocurves rendered images.

Most techniques developed for enhancing image rendering quality can be applied to curve rendering.
For example, Figure 6 shows a wood texture mapped version of the teapot. The fact that an isocurve is
rendered only simplifies the texture mapping computation since one of the surface parameters (and the
corresponding texture parameter) is fixed.

Surface isocurves are rendered into the Z-buffer one at a time with minimal memory overhead so
complex scenes introduce no difficulties. Figures 5 and 6 show a complex chess scene rendered using this
new algorithm.

Figures 7 and 8 demonstrates the use of solid texture to define a virtual planet and a camouflaged
plane, using techniques presented in [20, 21], rendered using this isocurve based renderer.

The use of polygons for displaying sculptured surfaces requires the generation of a large number of
small polygons from compact surface forms. This intermediate polygonal data set is used for the sole
purpose of displaying the surface. In contrast, the extraction of isoparametric curves from a freeform
surface is a simple task. It is hoped that the intermediate polygonal representation could be eliminated
by providing dedicated real time isocurve extraction capabilities, perhaps in hardware. One could extract

the isoparametric curves only at parameter values of the form -, 0 < ¢ < 2" (assuming a v-domain from

zero to one). Then, the coefficients that blend the control mesh of the surface, and are used to extract

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 9

Figure 7: A virtual planet texture image using isocurves rendering.

the 2" + 1 isoparametric curves, could be precomputed into a table. Therefore, isoparametric curves could
be extracted on the fly and scan-converted in real time. Given a surface S, approximating S into a set
of polygons for rendering is not only difficult but is also a time consuming process. Moreover, further
impediments to rapid rendering of trimmed surfaces are posed because of the necessity to clip the polygons
against the trimming curves [18, 24, 27]. However, since the algorithm presented herein produces only
isocurves, the clipping process is significantly simplified. The isoparametric curve is a horizontal or a
vertical line in the parametric space and hence the clipping problem is reduced to finding the intersection
between an axis parallel line and a planar trimming curve.

A model consisting of trimmed surfaces is rendered in Figure 9. A piston bridge model from a Diesel
engine consisting of 27 trimmed NURBs surfaces was rendered while using wood texture mapping.

One might also consider rendering the surface adaptively using variable width curves. Starting with
very few but widely drawn isocurves, one could immediately provide a coarse shape of the surface which
could be refined hierarchically into a more accurate image using more isocurves. Figure 10 shows six steps

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 10

Figure 8: A camouflage texture using isocurves rendering of an F16 model.

of such a process.

Consider the computational complexity of Algorithm 1. Let the number of isocurves in the output
be N. For each isocurve in the output set, Algorithm 1 computes an iso-distance curve in line (1), for
each of his neighbors when recursion occurs in lines (4) and (5). Since all but the first boundary curves
have two neighbors, the number of iso-distance computations between curves is equal to 2N — 2. Each iso-
distance curve computation of a polynomial curve exploits three scalar curve subtractions, three scalar curve
products and two scalar curve additions (equation (2)), using the Bézier or the B-spline representation.
Hence, an O(N) output sensitive complexity is expected. The number of addition, subtraction and products
for rational curves is somewhat higher because of the more complex addition and subtraction required, but
is still linear in the output size.

Timing comparisons are difficult since they strongly depend on the complexity of the images and the
realism that is attempted. All images throughout this paper have been created using a simple curve
rendering technique that renders piecewise linear approximations to each curve. Without any special
optimization, our implementation was time competitive with a regular adaptive polygonal based renderer
which is part of the Alpha_1 solid modeler and produced equal quality imagery in approximately the
same time. Furthermore, while curves were rendered as piecewise linear polylines in our implementation,
the computed highlights and shading have more realistic appearance, as is demonstrated by the images
throughout this paper, due to using accurate surface normals for each individual pixel that is delivered
by this algorithm. This, in contrast to the Gouraud and Phong methods that interpolate colors and/or
normals within polygons. Usage of (adaptive) forward differencing might improve the overall algorithm
performance, and further remove aliasing introduced by the employed piecewise linear approximation of
the isocurves.

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 11

»

*

Figure 9: Trimmed NURBs model using adap. isocurves.

5 Conclusion

A new algorithm is presented that automatically computes an adaptive valid coverage of a surface using
isocurves. The existing capability to efficiently render curves combined with the almost optimal isocurves
extraction method presented here makes isocurves rendering of surfaces a feasible alternative to polygon
based rendering of surfaces. The simplicity of the algorithm, compared to the complexity involved in
polygonal approximation of surfaces and especially, trimmed surfaces, and the need to deal with two
dimensional polygonal entities during the scan conversion process, could make the isocurve rendering
approach even more attractive in hardware based systems. The algorithm presented here efficiently reduces
the problem of surface rendering to a simpler problem of curve rendering.

References

[1] W. F. Bronsvoort A Surface-Scanning Algorithm for Displaying Generalized Cylinders. The Visual
Computer, Vol 8, pp 162-170, 1992.

[2] S. Chang, M. Shantz and R. Rocchetti. Rendering Cubic Curves and Surfaces with Integer Adaptive
Forward Differencing. Computer Graphics, Vol. 23, No. 3, pp. 157-166, Siggraph Jul. 1989.

[3] G. Farin. Curves and Surfaces for Computer Aided Geometric Design Academic Press, Inc. Second
Edition 1990.

[4] R. T. Farouki and V. T. Rajan. Algorithms For Polynomials In Bernstein Form. Computer Aided
Geometric Design 5, pp 1-26, 1988.

[5] J. D. Foley and A. Van Dam. Computer Graphics, Principles and Practice, Second Edition. Addison-
Wesley Systems Programming Series, Jul. 1990.

[6] G. Elber and E. Cohen. Hidden Curve Removal for Free Form Surfaces. Computer Graphics, Vol. 24,
No. 4, pp. 95-104, Siggraph Aug. 1990.

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 12

Figure 10: Six steps in coarse to fine rendering using adaptive isocurves.

[7] G. Elber and E. Cohen. Second Order Surface Analysis Using Hybrid Symbolic and Numeric Opera-
tors. Transaction on Graphics, Vol. 12, No. 2, pp 160-178, April 1993.

[8] G. Elber and E. Cohen. Hybrid Symbolic and Numeric Operators as Tools for Analysis of Freeform
Surfaces. Modeling in Computer Graphics, B. Falcidieno and T. L. Kunii (Eds.), Working Conference
on Geometric Modeling in Computer Graphics (IFIP TC 5/WG 5.10), pp 275-286, Genova, June-July
1993. Also technical report UUCS-92-023, University of Utah.

[9] G. Elber. Model Fabrication using Surface Layout Projection. CAD, Vol. 27, No. 4, pp 283-291, April
1995.

[10] G. Elber. Free Form Surface Analysis using a Hybrid of Symbolic and Numeric Computation. Ph.D.
thesis, University of Utah, Computer Science Department, 1992.

[11] G. Heflin and G.Elber. Shadow Volume Generation from Free Form Surfaces. Communicating with
Virtual Worlds, Nadia Magnenat Thalmann and Daniel Thalmann (Eds.), Computer Graphics Inter-
national 1993 (CGI 93), pp 115-126, Lausanne, Switzerland, June 1993.

[12] J. Hoschek. Approximate Conversion of Spline Curves. Computer Aided Geometric Design 4, pp
59-66, 1987.

[13] J. Hoschek, F. J. Schneider, and P. Wassum. Optimal approximate conversion of spline surfaces.
Computer Aided Geometric Design 6, pp 293-306, 1989.

[14] B. V. Herzen and A. H. Barr. Accurate Triangulations of Deformed, Intersecting Surfaces. Computer
Graphics, Vol. 21, No. 4, pp. 103-110, Siggraph Jul. 1987.

[15] R. V. Klassen. Integer Forward Differencing of Cubic Polynomials: Analysis and Algorithms. ACM
Transaction on Graphics, Vol. 10, No. 2, pp 152-181, Apr. 1991.

Adaptive Isocurves Based Rendering G. Elber and E. Cohen 13

[16] J. M. Lane and R. F. Riesenfeld. Bounds on a Polynomial BIT 21 (1981), 112-117.

[17] S. Lien, M. Shantz, and V. Pratt. Adaptive Forward Differencing for Rendering Curves and Surfaces.
Computer Graphics, Vol. 21, No. 4, pp. 111-118, Siggraph Jul. 1987.

[18] T. McCollough. Support for Trimmed Surfaces. M.S. thesis, University of Utah, Computer Science
Department, 1988.

[19] K. Morken. Some Identities for Products and Degree Raising of Splines. To appear in the journal of
Constructive Approximation.

[20] D. R. Peachey. Solid texturing of Complex Surfaces. Computer Graphics, Vol. 19, No. 3, pp. 279-286,
Siggraph Jul. 1985.

[21] K. Perlin. An Image Synthesizer. Computer Graphics, Vol. 19, No. 3, pp. 287-296, Siggraph Jul. 1985.

[22] A. Rappoport. Rendering Curves and Surfaces with Hybrid Subdivision and Forward Differencing.
ACM Transaction on Graphics, Vol. 10, No. 4, pp. 323-341, Oct. 1991.

[23] A. Rockwood. A Generalized Scanning Technique for Display of Parametrically Defined Surfaces.
IEEE Computer Graphics and Applications, Vol. 7, No. 8, pp 15-26, Aug. 1987.

[24] A. Rockwood, K. Heaton, and T. Davis. Real-Time Rendering of Trimmed Surfaces. Computer
Graphics, Vol. 23, No. 3, pp. 107-117, Siggraph Jul. 1989.

[25] M. Shantz and S. L. Lien. Shading Bicubic Patches. Computer Graphics, Vol. 21, No. 4, pp. 189-196,
Siggraph Jul. 1987.

[26] M. Shantz and S. Chang. Rendering Trimmed NURBS with Adaptive Forward Differencing. Computer
Graphics, Vol. 22, No. 4, pp. 189-198, Siggraph Aug. 1988.

[27] X. Sheng and B. E. Hirsh. Triangulation of Trimmed Surfaces in Parametric Space. Computer Aided
Design, Vol. 24, No. 8, pp 437-444, August 1992.

