
Piecewise Developable Surface Approximation
of General NURBS Surfaces,

with Global Error Bounds

Jacob Subag and Gershon Elber

Technion - Israel Institute of Technology, Haifa 32000, Israel
jsubag@cs.technion.ac.il

Abstract. Developable surfaces possess qualities that are desirable in the man-
ufacturing processes of CAD/CAM models. Specifically, models formed out of
developable surfaces can be manufactured from planar sheets of material without
distortion. This quality proves most useful when dealing with materials such as
paper, leather or sheet metal, which cannot be easily stretched or deformed during
production.

In this work, we present a semi-automatic algorithm to form a piecewise de-
velopable surface approximation of a general NURBS surface. These developable
surfaces are constructed as envelopes of the tangent planes along a set of curves
on the input surface. Furthermore, the Hausdorff distance between the given sur-
face and the approximating set of developables is globally bounded by a user-
provided threshold.

1 Introduction and Related Work

Developable surfaces are surfaces that can be unfolded to the plane (flattened) with
no distortion and are divided into three families of surfaces: cylinders, cones1 and en-
velopes of the tangent planes along curves on surfaces [3]. In many manufacturing
processes, specifically when dealing with sheet materials such as paper, leather or sheet
metal, developable surfaces are used to determine the actual regions to be cut from the
material in order to construct the final product. However, most freeform surfaces cre-
ated by CAD/CAM applications are not developable by design nor can they be divided
in such a way to produce parts that are all developable.

This modeling/manufacturing problem has been addressed by several approaches in
the past. One approach has been to model with developable surfaces to begin with. Au-
mann [1] provided necessary and sufficient conditions for Bézier surfaces, interpolating
two curves, to be developable and free of singular points. Pottmann and Farin [19] pre-
sented ways to represent and model developable Bézier and B-spline surfaces and Park
et al. [16] described an interpolative optimal control problem, generating a developable
surface from two points and a curve of tangent directions connecting them.

Another approach was to assume the existence of a developable surface and recon-
struct or approximate it. Peternell [17] [18] presented algorithms for reconstructing

1 By cylinders we refer to surfaces which can be represented as a one parameter family of
parallel lines and by cones we refer to surfaces which can be represented as a one parameter
family of lines that share an intersection point.

M.-S. Kim and K. Shimada (Eds.): GMP 2006, LNCS 4077, pp. 143–156, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

144 J. Subag and G. Elber

developable surfaces from point clouds. Hoschek and Pottmann [13] used samples of
tangent planes, on a developable surface, to find a developable B-spline surface which
interpolates/approximates them. Leopoldseder and Pottmann [14] approximated pre-
existing developable surfaces with (parts of) cones. Lastly, Pottmann and Wallner [20]
approximated a set of tangent planes with a developable surface, measuring the quality
of the approximation with a distance metric for tangent planes in a small region of inter-
est. While these two approaches circumvent some design problems, there are objects,
in everyday products, which cannot be modeled as a union of developable surfaces, as
they are inherently non-developable, i.e. they are doubly curved.

The third approach was the approximation of a freeform surface, or samples taken
from one, by a set of developable surfaces. Hoschek [12] presented algorithms to ap-
proximate surfaces of revolution with developable polygonal strips or cones while
bounding the Hausdorff distance with a predetermined threshold, by reducing the
problem to bounding the distance between a curve and a polyline, both in the plane.
However, surfaces of revolution are not expressive enough to be used exclusively
when modeling, in real life applications. Elber [8] approximated a general freeform
surface by generating developable surfaces that connect isolines on the input sur-
face and bound the Hausdorff distance with a predetermined threshold, by bound-
ing the magnitude of the surface-developables difference. However, this restriction
of the developable surfaces to be between isolines of the input surface, results in a
limited set of possible approximating developables for each approximated surface.
Over-segmentation of the original surface with the approximating set of developables
may result, in many cases. Finally, Chen et al. [4] approximated a set of sampled
points and accompanying normals with a set of smoothly joined cones and cylinders.
This algorithm performs well for samples on a developable (or nearly developable)
surface, but would require heavy segmentation of the samples to handle complex non-
developable surfaces. Furthermore, Chen et al. bound the approximation error only for
the sampled points.

Our proposed method subscribes to the latter approach. We approximate general
freeform surfaces unlike [12], which approximates only surfaces of revolution, and use
envelopes of the tangent planes along a set of curves on the input surface, which gen-
eralize cones and cylinders, rather than limit the output surfaces to cones and cylinders
such as in [14,4] or ruled surfaces between two isocurves on the input surface such as
in[8]. Furthermore, the approximation error is globally bounded with a user supplied
threshold, unlike in [17,18,13,20].

The approximating developable surfaces are constructed by sampling specific lines,
on the envelopes, which are restricted to the minimal length needed for approximating a
calculated region on the input surface. By interpolating in-between these sampled lines,
a finite developable surface is formed, which is contained in the infinite envelope of
tangents. The computed approximation error is used to refine our developable surfaces
until the user threshold is achieved.

The rest of this article is divided as follows: Section 2 details our main algorithm.
Section 3 presents experimental results and in Section 4, we summarize and discuss
future work.

Piecewise Developable Surface Approximation of General NURBS Surfaces 145

2 Approximation Technique

In this section, the piecewise developable approximation algorithm is presented. Our
approximation errors are measured using the Hausdorff distance metric, which is de-
fined for two objects, O1 and O2, as:

DH(O1, O2) = max{ max
p1∈O1

{ min
p2∈O2

{‖p1 − p2‖}}, max
p2∈O2

{ min
p1∈O1

{‖p1 − p2‖}}},

where pi is a point on Oi.
The piecewise developable approximation algorithm comprises of several stages.

The specifics of each stage are given below. We now present a short overview of the
algorithm. Given a parametric curve, c = (u(t), v(t)), supplied by the user, generate
an infinite developable surface, E, as the envelope of tangent planes along S(c). Then,
calculate the region of S, which is approximated up to an ε by an individual line along
E. Using a sampled set of such lines, a new finite developable surface, ˜E ⊂ E, is in-
terpolated and the Hausdorff distance between ˜E and a relevant region in S, denoted ˜S,
is bounded. Then, the developable surface is subsequently refined, until the user sup-
plied threshold of approximation is met and its boundaries are smoothed. The user is
interactively prompted to continue and add curves over S, for which the above process
is repeated, until the union of the resulting developable surfaces forms a complete ap-
proximation of S. Possible ways of automating the process of adding the curves are
discussed in Section 4.

2.1 Envelope Surfaces

Given a C2 continuous surface, S(u, v), and a C2 continuous curve, c(t) = (u(t), v(t))
in the parametric domain of S. An envelope surface along C(t) = S(c(t)) is defined
as:

E(t, r) = C(t) + rŴ (t), r ∈ IR, (1)

where W (t) = N(t) ∧ N ′(t), N(t) is defined as the normal of S at point S(c(t)), ∧
denotes the cross product, and Â = A

‖A‖ .
E(t, r) is developable [3]. The definition presented by Equation (1) necessitates the

normalization factor of W , which is non-rational. We use normalized vectors for some
of the pointwise evaluations (denoted by Ŵ) and employ the unnormalized W , when-
ever possible. When C(t) passes through planar regions of S, N ′(t) vanishes and Ŵ is
undefined. This problem can be solved by trimming planar regions from S, being devel-
opable, before proceeding with our algorithm2. In the ensuing discussion, we assume
W is always defined.

Another problem that stems from Equation (1) is the order of curve W (t). Recall-
ing that N = ∂S

∂u ∧ ∂S
∂v , composed over c(t), we know that W (t) can frequently attain

extremely high orders. High order curves may produce numerical errors when evalu-
ated. In our implementation, we fit low order spline approximation [6] to W (t), while
bounding the error, a lower order representation used hereafter. See [5] for more details
on reducing degrees of symbolically computed curves.

2 This segmentation could be performed by trimming away from S all regions for which |K| <
ε, K being the Gaussian curvature, is computed symbolically [9].

146 J. Subag and G. Elber

2.2 Approximation by Ruling

A single ruling at parameter value t0 is an infinite line, Lt0(r) = E(t0, r), parallel to
W (t0) and incident on C(t0) (see Figure 1 (b)). The region of S that is approximated by
Lt0 is, therefore, all the points on S that are within some prescribed distance, ε, (in the
Euclidean sense) from Lt0 . In other words, all the points on S for which the following
equation holds:

‖S(u, v) − C(t0) − 〈S(u, v) − C(t0), Ŵ (t0)〉Ŵ (t0)‖ ≤ ε. (2)

Equation (2) can be reformulated as:

Ft0(u, v) = ‖S(u, v) − C(t0) − 〈S(u, v) − C(t0), Ŵ (t0)〉Ŵ (t0)‖2 − ε2 ≤ 0, (3)

in order to deal with a rational function. Furthermore, Ft0(u, v) = 0 defines an implicit
curve in the parametric domain of S, which bounds the region(s) of S that are within ε
from Lt0 . Geometrically speaking, Ft0 = 0 defines the intersection curve of an ε-radius
cylinder centered around Lt0 and the input surface S.

The topology of implicit Equation (3) is analyzed by employing a modified version
of the algorithm presented by Hass et al. in [11], which provides the accurate topology
of an implicit curve. The result of Hass’ algorithm is a set of polygons, {P i

t0}, whose
vertices lie on Ft0 = 0 and are topologically equivalent to the implicit curve defined
by Ft0 = 0 (see Figure1 (c)). This result is insufficient for our purpose, as the edges of
{P i

t0} can be arbitrarily far from Ft0 = 0. More importantly, {P i
t0} may contain points

not approximated by the ruling to within ε, i.e., points for which Ft0 > 0. In order to
guarantee that ∀i, Ft0(P i

t0) ≤ 0, we enhanced Hass’ algorithm by sampling Ft0 = 0
up to a threshold, adding the inflection points of Ft0 = 0 (see [2] for an analysis of
inflection points of implicit curves) as vertices of the resulting polygons, and adding a
post processing refinement step, ensuring the result, {P i

t0} ⊂ (Ft0 ≤ 0). Due to space
limitations, the complete account of these modifications is omitted.

Only one polygon in {P i
t0} contains c(t0). Denote it as P 0

t0 (see Figure 1 (a)) and
denote its individual edges as {ej}. Since Ft0(c(t0)) = − ε2 and S (and therefore, F)
is continuous, there is an environment surrounding c(t0), for which Equation (3) holds
and which will be contained in {P i

t0}. This last step eliminates disjoint approximated
regions as they may result in undesirable disjoint developable surfaces.

Only P 0
t0 will be employed in the coming steps. The region S(P 0

t0) is approximated
to within ε by the infinite ruling Lt0 . However, there is a unique and minimal interval
along Lt0 that approximates P 0

t0 to within ε. We seek to derive this minimal interval by
calculating the minimal and maximal coordinate values of this interval, with respect to
Equation (1), parameterized by r.

Consider point (u0, v0) ∈ P 0
t0 . The r-coordinate value of (u, v) prescribes the point

on Lt0(r) closest to S(u, v) and equals,

rt0 (u, v) =
〈S(u, v) − C(t0), W (t0)〉

W (t0)2
, (4)

where the unnormalized W (t0) is used, resulting in r-coordinate values that counter its
magnitude’s effect in the upcoming construction of the developable surface.

Piecewise Developable Surface Approximation of General NURBS Surfaces 147

(a) (b) (c)

S

C
P 0

t0

S(P 0
t0)

C(t0)
c

c(t0)

Lt0

c′

c′(t0)
P 0

t0

P 1
t0

P 2
t0

Fig. 1. (a) The parametric domain of S with the parametric curve c(t) and the parametric region
approximated by the ruling Lt0 , i.e. P 0

t0 . (b) A single ruling along C(t) = S(c(t)). The thick
section of the ruling is the minimal interval needed to approximate P 0

t0 to within ε, i.e. Lt0(r).
Also shown, in (b), is the composition of S over P 0

t0 . (c) An example of several approximated
regions, {P i

t0}, for different surface and parametric curve.

Equation (4) can be evaluated for all (u, v) ∈ P 0
t0 . Since rt0 is continuous and P 0

t0
is a one connected region, in the parametric domain of S, the locus of r-coordinate
values over P 0

t0 and its interior, is a continuous interval. As such, we need only find the
minimal and maximal values of r. We do so by first solving for:

∇rt0(u, v) = 0, (u, v) ∈ P 0
t0 , (5)

finding interior local extrema. Then, the solutions of

∂rt0(ej(s))
∂s

= 0, ∀ej ∈ P 0
t0 , (6)

detect extrema along edges of ∈ P 0
t0 . Finally, endpoints of every edge ej (the vertices

of P 0
t0), are examined. This analysis is possible when S is piecewise C3 which results

in rt0(u, v) being differentiable. When this is not the case, we need to also examine
Equation (4) along the isolines corresponding to each knot. Denote these computed
minimal and maximal values of r by rt0

min and rt0
max. Since the r-coordinate value

for c(t0) is zero and P 0
t0 was chosen to include c(t0), rt0

min is negative and rt0
max is

positive.
We now consider the line segment:

Lt0(r) = C(t0) + rW (t0), r ∈ [rt0
min, rt0

max], (7)

as the ruling approximating P 0
t0 , see the thick segment along Lt0 in Figure 1 (b).

2.3 Inter-ruling Interpolation

Consider a set of rulings {Lti}, sampled along C(t) at {ti}n
i=0, n ≥ 1. Without loss

of generality, assume ti < ti+1. Analyzing each ruling’s approximated region, P 0
ti

(see
Figure 2 (a)), we seek to interpolate a complete developable surface along C(t). As

148 J. Subag and G. Elber

a first step, interpolate two scalar curves, rmin(t) and rmax(t), such that: rmin(ti) =
rti

min and rmax(ti) = rti
max, ∀i. Then, we proceed by creating two new curves:

C1(t) = C(t) + rmin(t)W (t), C2(t) = C(t) + rmax(t)W (t). (8)

Finally, construct the local developable surface, as a ruled surface between C1(t) and
C2(t):

˜E(t, r) = (1 − r)C1(t) + rC2(t), r ∈ [0, 1], t ∈ [t0, tn], (9)

(see Figure 2 (b)). ˜E ⊂ E (recall Equation (1)) and is hence developable.
So far, this construction guarantees nothing with regard to the approximating quali-

ties and quantities of ˜E at t /∈ {ti}n
i=0. The next section provides such bounds.

(a) (b)

c(t)

{P 0
ti

}

C(t)

C1(t)

C2(t)

Fig. 2. (a) The individual regions approximated by a set of sampled rulings in the paramteric
domain of S, {P 0

ti
}n

i=0. (b) The developable ruled surface �E and curves C1(t) and C2(t), which
are used to generate it.

2.4 Bounding the Hausdorff Distance Between the Developable and Input
Surface

In this section, we bound the Hausdorff distance between ˜E (recall Equation (9)) and
the relevant region of S, which is approximated by ˜E and denoted as ˜S. Construct
a “matching” function T (t, r) → (u, v) that assigns to each point in the parametric
domain of ˜E, a point in the parametric domain of S. Then, globally bound ‖S(T (t, r))−
˜E(t, r)‖. If this bound is found to be smaller than or equal to ε, clearly DH(˜S, ˜E) =
DH(S(T (t, r)), ˜E(t, r)) will also be bounded by ε.

Thus, we seek a matching function T (t, r) = (tu(t, r), tv(t, r)), which reparameter-
izes S so as to diminish:

max
t,r

‖S(T (t, r)) − ˜E(t, r)‖. (10)

Therefore, an ideal T would assign to each point on ˜E, the parametric coordinates of the
closest point on S. We compromise by constructing T as a piecewise bilinear mapping,
which interpolates solutions of Equation (10) for a set of (initially) three points for each
ruling, corresponding to the ruling’s start, incidence and end points. Specifically,

Piecewise Developable Surface Approximation of General NURBS Surfaces 149

T (t, r) =
n

∑

i=0

2
∑

j=0

Qi,jBi,1(t)Bj,1(r), (11)

where Bi,1 is the linear i’th B-spline basis function and where

{Qi,j}n,2
i=0,j=0 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

argmin
u,v

‖S(u, v) − ˜E(ti, 0)‖, j = 0,

c(ti), j = 1,

argmin
u,v

‖S(u, v) − ˜E(ti, 1)‖, j = 2.

(12)

Having constructed T , we are ready to bound ‖S(T (t, r)) − ˜E(t, r)‖ with the user
supplied ε. As before and in order to deal with rational functions, we bound the follow-
ing against ε2:

‖S(T (t, r)) − ˜E(t, r)‖2 � ‖˜S(t, r) − ˜E(t, r)‖2. (13)

Consider the original surface S(u, v) =
∑N

i=0
∑M

j=0 Pi,jBi,n(u)Bj,m(v), where
Pi,j are the control points of S and Bi,n is the i’th B-spline basis function of degree
n. In order to calculate S(tu(t, r), tv(t, r)), divide S at all its internal knots into Bézier
patches, {Sk}, Sk(u, v) =

∑n
i=0

∑m
j=0 P k

i,jθi,n(u)θj,m(v), where P k
i,j are the control

points of Sk and θi,n is the i’th Bézier basis function of degree n. Now composing Sk

over T , one gets,

Sk(tku(t, r), tkv(t, r)) =
n

∑

i=0

m
∑

j=0

P k
i,jθi,n(tku(t, r))θj,m(tkv(t, r)),

where tku(t, r) = tu(t,r)−uk
min

uk
max−uk

min

and tkv(t, r) = tv(t,r)−vk
min

vk
max−vk

min

and where uk
min, uk

max,

vk
min, vk

max are the knot values that bound the region in the parametric domain of S,
from which Sk was extracted.

Recalling that, θi,n(t) =
(

n
i

)

(1 − t)n−iti, we end up with

Sk(tku(t, r), tkv(t, r)) =
n

∑

i=0

m
∑

j=0

P k
i,j

(

n

i

)(

m

j

)

(1 − tku)n−itku
i
(1 − tkv)m−jtkv

j
. (14)

In the last expression, tku and tkv may exceed the domain of Sk. While this limitation
prevents us from computing the complete composition of S over T , it is sufficient for
the error bound analysis we require. Interested in the maximal value of Equation (13),
instead of trimming tku and tkv to fit each of the Sk’s domains, we leave them “as is”
and evaluate each Sk composition formula (14). The resulting set of surfaces Sk ◦ T ,
denoted as ˜Sk, are each identical to S ◦ T for their shared domain. Therefore, only
extremums inside the domain of {Sk}, are considered in:

(kmax, tmax, rmax) = argmax
k,t,r

‖˜Sk(t, r) − ˜E(t, r)‖2.

Now, the evaluation of ‖˜Skmax(tmax, rmax) − ˜E(tmax, rmax)‖2 provides a bound on
Expression (13) and, hence, a bound for the squared Hausdorff distance between ˜E
and ˜S.

150 J. Subag and G. Elber

2.5 Refinement of the Approximated Region

If the bound calculated in the previous subsection, is smaller than or equal to ε2, then
our approximation is sufficiently accurate. Otherwise, we must refine T and ˜E until the
bound is smaller than or equal to ε2. Refinement can be achieved by three complemen-
tary methods, along the t and r parametric directions of ˜E (see Figure 3).

The first method of refinement adds more rulings. This method improves T and ˜E,
when the extremum (tmax, rmax) lies in-between two consecutive rulings correspond-
ing to ti and ti+1, which means that either T performs poorly when interpolating the
bilinear region between said rulings or ˜E is too far from S at that point. In such cases,
we add a new ruling at ti+ti+1

2 , update ˜E and T and re-analyze expression (13), see
Figure 3 (b) for an example of the first method of refinement.

The second method of refinement adds control points to T , for each ruling. This
method is meant to handle cases when T interpolates poorly on or near a specific rul-
ing. In such cases, tmax ≈ ti and the former refinement method would require many
iterations to reduce the bound or even fail. Thus, when tmax ≈ ti, we apply both the first
and the second refinement methods. Recall Equation (12), in which we constructed T
with three control per ruling. In this second refinement method, we generalize Equation
(12) with:

{Qi,j}n,2m

i=0,j=0 =

������
�����

argmin
u,v

‖S(u, v) − (1 − αj) �E(ti, 0) − αjC(ti)‖, j < 2m−1,

c(ti), j = 2m−1,

argmin
u,v

‖S(u, v) − (αj − 1) �E(ti, 1) − (2 − αj)C(ti)‖, j > 2m−1,

(15)

where αj = j
2m−1 .

Then, the meaning of the second refinement method is to increment m in Equation
(15) by one, (almost) doubling the amount of control points corresponding to each
ruling. After applying this method of refinement we, again, need to update T , re-analyze
expression (13) and apply further refinements as needed. See Figure 3 (c) for an example
of the second method of refinement.

The third method of refinement shrinks ˜E towards C(t) and T towards c(t) and
is applied when a pre-determined number of refinements, max refinements, fails to
reduce the bound for the Hausdorff distance. This shrinkage is attained by halving the
values of rti

min and rti
max, for every sampled ruling and reconstructing ˜E and T . This

step is taken to ensure convergence of the refinement algorithm, when

∀(t, r), ∃(u, v) ∈ Image(T) such that ‖S(u, v) − ˜E(t, r)‖ ≤ ε, (16)

while
∃(u, v) ∈ Image(T) such that ∀(t, r), ‖S(u, v) − ˜E(t, r)‖ > ε. (17)

Meaning that ˜E is approximated well by ˜S (Equation (16)) while some points on ˜S are
too far from ˜E (Equation (17)). See Figure 3 (d) for an example of the third method of
refinement.

Piecewise Developable Surface Approximation of General NURBS Surfaces 151

(a) (b) (c) (d)
Fig. 3. Different refinements of the image of the bilinear mapping, T . (a) Initial T (4 rulings, 3
samples per ruling). (b) After applying the first refinement method to (a) (having now, 5 rulings,
3 samples per ruling). (c) After applying the second refinement method to (b) (having now, 5
rulings, 5 samples per ruling). (d) After applying the third refinement method to (c).

In summary, the algorithm used to refine T and ˜E is:

Refine(S, ˜E, {ti})
1: m ← 1;
2: num refinements ← 0;
3: Construct T , using the current value of m;
4: Find the point of maximal difference, (tmax, rmax);
5: while ‖˜S(tmax, rmax) − ˜E(tmax, rmax)‖2 > ε2 do
6: num refinements ← num refinements + 1;
7: Find i such that ti ≤ tmax ≤ ti+1;
8: Add ruling at ti+ti+1

2 ; {refinement of the first kind}
9: if tmax � ti or tmax � ti+1 then

10: m ← m + 1; {refinement of the second kind}
11: if num refinements = max refinements then
12: num refinements ← 0;
13: for all ruling ti do

14: rti

min ← r
ti
min

2 , rti
max ← r

ti
max

2 ; {refinement of the third kind}
15: Reconstruct ˜E;
16: Reconstruct T , using the current value of m;
17: Find the point of maximal difference, (tmax, rmax);
18: End

Using the combined application of the first and second methods of refinement, T
converges to a mapping function, which solves Equation (10) for every point (t, r)
in the domain of ˜E. This process is usually sufficient. However, in cases identified
by Equations (16) and (17), the third method of refinement ensures convergence, as
it shrinks ˜E to C(t) and T to c(t). In summary, the Hausdorff distance between the
limit developable surface and the composition of S over the limit matching function is
bounded by ε and the refinement algorithm stops.

The parametric region of S we approximated is Image(T). Notice that as T is
piecewise bilinear, Image(T) is a polygon. Specifically, it is the polygon {Q0,j}2m

j=0,

{Qi,2m}n
i=0, {Qn,j}0

j=2m , {Qi,0}0
i=n, where {Qi,j}n,2m

i=0,j=0 is the set of control points
of T .

152 J. Subag and G. Elber

2.6 Smoothing the Approximated Region

As the boundary of Image(T) is piecewise linear, depending on the amount of rulings
sampled, these boundaries may be jagged. In order to avoid these jagged boundaries
which, in turn, lead to jagged developables, we smooth the boundaries of Image(T).

Image(T) is comprised of the control points {Qi,j}n,2m

i=0,j=0, of T . As n + 1, the
number of rulings, is typically significantly larger than 2m + 1, the number of sampled
control points along a ruling, we opt to smooth the boundary polylines: {Qi,0}n

i=0 and
{Qi,2m}n

i=0, which are, therefore, more prone to jagged features.
This smoothing problem is defined as follows: Let c(t) be a curve in the parametric

domain of S, as described in Section 2.1 and {Qi,j}n,2m

i=0,j=0 be the set of control points
of the piecewise bilinear surface defined in Section 2.4 as T . Then, we wish to find
two new sets of control points { ˜Qi,0}n

i=0 and { ˜Qi,2m}n
i=0, which satisfy the following

expressions:
˜Qi,j = (1 − βi,j)c(ti) + βi,jQi,j, 0 ≤ βi,j ≤ 1, (18)

for 0 ≤ i ≤ n, j ∈ {0, 2m}, such that the following expression is minimized:

γ

n−1
∑

i=1

∑

j∈{0,2m}
‖ ˜Qi−1,j − 2 ˜Qi,j + ˜Qi+1,j‖2 +

n
∑

i=0

∑

j∈{0,2m}
‖ ˜Qi,j − Qi,j‖2, (19)

where γ is a user selected smoothness weight. The left-hand side of Expression (19)
penalizes (curved) jagged edges and the right-hand side penalizes large changes.

This problem is linear with regards to βi,j and we solve it as an over-determined,
linearly constrained, least squares problem. See Figures 4 and 5 for an example of the
smoothing algorithm.

After smoothing the edges of Image(T), we recalculate for every ruling, rti

min and
rti
max over the smoothed approximated region, and then reconstruct ˜E and T (with the

same values of n and m as in the last version) and re-analyze the Hausdorff distance. If
the Hausdorff distance is bounded by ε without additional refinement, we stop. Other-
wise, we refine T and ˜E, as needed, and repeat the smoothing algorithm and so on.

Note that as each smoothing only diminishes the magnitudes of rti

min and rti
max, i.e.

shrinks ˜E towards C(t), bounding the Hausdorff distance would require a less refined
T . In all our experiments, we never needed to apply further refinement after applying
the smoothing algorithm.

2.7 Adding Developables

So far, we handled one user supplied curve, c over S, which we used to create the first
developable surface. In order to generate a complete piecewise developable approxima-
tion of S, we need to add more developable surfaces along additional curves on S. Our
algorithm provides the user with the boundary of the already approximated region as a
candidate curve, which he can accept or modify using the GUI. Alternatively, the user
can provide an entirely new curve by drawing it on S, which we project to the paramet-
ric domain of S for our algorithm to use. Alternatively, a greedy scheme that uses the
boundary of an approximated region to construct one developable surface after another
can be used, until all the domain of S is covered.

Piecewise Developable Surface Approximation of General NURBS Surfaces 153

(a) (b)

c c

Qi,0 �Qi,0

Qi,2m �Qi,2m

Fig. 4. (a) The polylines {Qi,0}n
i=0, and {Qi,2m}n

i=0 in the parametric domain of S prior to and
(b) after smoothing, see also Figure 5

(a) (b)

Fig. 5. (a) The developable ruled surface �E before smoothing and (b) after smoothing the para-
metric edges, see also Figure 4

An obvious difficulty to overcome, when more than one developable is present, is
the problem of overlaps between adjacent envelope surfaces, i.e. having the coverage
of S being mutually exclusive. We’ve used three approaches to solving this problem.
Due to lack of space they are only briefly described. The first approach limits the r-
values generated in the analysis of Expression (4). This is achieved by subtracting
the already approximated regions from the region approximated by each sampled rul-
ing, P 0

ti
. The second approach constructs each developable surface independently, then

projects boundaries of the already approximated regions as trimming curves of the new
developable surface. The third approach uses a triangulation of the developables, cre-
ated by either the first or the second approach, followed by a merge process of vertices
on adjacent developables’ boundaries.

3 Results

Figures 6 and 7 show experimental results of our algorithm. In Figure 6 we show an ap-
proximation of a bi-cubic B-spline surface (not a surface of revolution), bounded by the
unit cube and modeling half of a fruit bowl shown in Figure 6 (a). The approximation

154 J. Subag and G. Elber

(a) (b) (c)

Fig. 6. Approximation of a bi-cubic surface bounded by the unit cube. (a) The input surface. (b)
Approximation with tolerance of ε = 10−2 (11 developable surfaces needed). (c) Approximation
with tolerance of ε = 10−3 (27 developable surfaces needed).

(a) (b) (c)

Fig. 7. Approximation of a bi-quadratic surface bounded by a 10 × 1 × 1 box. (a) The input
surface. (b) Approximation with tolerance of ε = 10−3 (33 developable surfaces needed).

shown in Figure 6(b) is up to ε = 10−2 and required 11 developables. The approxima-
tion shown in Figure 6 (c) is up to ε = 10−3 and required 27 developables. In Figure 7
we show an approximation of a bi-quadratic B-spline surface, bounded by a (10×1×1)
box and modeling part of a jet fighter’s fuselage shown in Figure 7 (a). The approxi-
mation shown in Figure 7 (b) is up to ε = 10−3 and required 33 developables, some of
which are too small to notice in the figure (see Figure 7 (c)). All of these examples were
executed on a P-IV 2.8Ghz with 512mb of RAM and required, on average, 20 seconds
were needed to generate each developable surface (aside from the time it took the user
to add each curve).

In our implementation, we used MATLAB [15] to solve the constrained linear least
squares problem defined in Section 2.5 and the IRIT solid modeler [7] as the GUI and
as our symbolic computational environment (for more details on symbolic multivariate
computations see [10]).

Piecewise Developable Surface Approximation of General NURBS Surfaces 155

4 Conclusions and Future Work

In this paper, we presented an algorithm capable of approximating a general NURBS
surface with a set of developable surfaces, constructed as envelopes of tangents of
curves along the input surface and whose Hausdorff distance to the input surface
is bounded by a user defined threshold. Currently, the algorithm suggests boundary
curves to the user, who can accept, modify or ignore these suggestions and draw
completely new curves. The presented procedure is time consuming and requires a
certain expertise from the user. However, we feel this investment is justified, as this
semi-automatic development process will be performed only once, and with typically
better results than a completely automatic process, which can then be manufactured,
in any quantity. The selection of curves greatly affects the number of developables
needed to approximate the input surface as well as the size of developables. Clearly,
the question of which parametric curves would yield the best results needs to be
further explored.

Furthermore, we experimented with a completely automatic method of curve gener-
ation. This method uses one of the input surface’s (trimmed) boundaries as the initial
curve and creates an initial developable. Then, the boundary of the region approximated
by the generated developable is used as the next curve and so on. This greedy “advanc-
ing front” process, when repeated, can generate a complete approximation with no user
intervention. However, the resulting developable surfaces are not visually pleasing and
are certainly not optimal, in the number of developables. We feel that a completely au-
tomatic process is the next logical step and intend to improve or extend this method to
generate better results.

We also intend to further investigate the stitching problem of adjacent developables.
Intersecting adjacent developables can be stitched, and sometimes trimmed, along the
intersection curve. However, adjacent developables do not always intersect and sim-
ply connecting boundary sections of adjacent developables with new surfaces results in
many small additional surfaces. Regardless, in real life, the developable surfaces, cut
from the manufacturing material, have non-negligible thickness and therefore by se-
lecting an error threshold smaller than the manufacturing tolerance, the user can ensure
proper contact between adjacent developables.

Finally, some materials, such as cloth, latex etc., can be deformed (stretched) during
the manufacturing process. These qualities result in relaxed demands on the developa-
bility of the approximating surfaces. An interesting subset of these materials can even
handle anisotropic deformation, such as fabrics which can be stretched to different de-
grees in different directions. We hope to enhance our algorithm in order to exploit these
qualities, thereby, generating a better approximation.

Acknowledgments

This work was partially supported by European FP6 NoE grant 506766 (AIM@SHAPE)
and in part by the Minerva Schlesinger Laboratory for Life Cycle Engineering.

156 J. Subag and G. Elber

References

1. G. Aumann. Interpolation with developable Bezier patches. Computer Aided Geometric
Design, 8(5):409–420, 1991.

2. J. Bloomenthal and B. Wyvill, editors. Introduction to Implicit Surfaces. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1997. Section 2.6.4.

3. M. P. D. Carmo. Differential Geometry of Curves and Surfaces, pages 195–197. Prentice-
Hall, 1976.

4. H.-Y. Chen, I.-K. Lee, S. Leopoldseder, H. Pottmann, T. Randrup, and J. Wallner. On sur-
face approximation using developable surfaces. Graphical Models and Image Processing,
61(2):110–124, 1999.

5. X. Chen, R. F. Riesenfeld, and E. Cohen. Degree reduction for NURBS symbolic computa-
tion on curves. In preparation.

6. E. Cohen, R. F. Riesenfeld, and G. Elber. Geometric Modeling with Splines, chapter 9. A K
Peters, 2001.

7. G. Elber. Irit solid modeler. http://www.cs.technion.ac.il/˜irit
8. G. Elber. Model fabrication using surface layout projection. Computer-aided Design,

27(4):283–291, April 1995.
9. G. Elber and E. Cohen. Second-order Surface Analysis Using Hybrid Symbolic and Numeric

Operator. ACM Trans. Graph, 12(2):160–178, 1993.
10. G. Elber and M.-S. Kim. Geometric constraint solver using multivariate rational spline func-

tions. In The Sixth ACM/IEEE Symposium on Solid Modeling and Applications, Ann Arbor,
Michigan, pages 1–10, June 2001.

11. J. Hass, R. T. Farouki, C. Y. Han, X. Song, and T. W. Sederberg. Guaranteed consistency
of surface intersections and trimmed surfaces using a coupled topology resolution and do-
main decomposition scheme. To appear in Advances in Computational Mathematics, 2005.
http://mae.ucdavis.edu/˜farouki/index.html

12. J. Hoschek. Approximation of surfaces of revolution by developable surfaces. Computer-
Aided Design, 30(10):757–763, 1998.

13. J. Hoschek and H. Pottmann. Interpolation and approximation with developable B-spline
surfaces. In M. Dæhlen, T. Lyche, and L. L. Schumaker, editors, Proceedings of the first
Conference on Mathematical Methods for Curves and Surfaces (MMCS-94), pages 255–264,
Nashville, USA, June 16–21 1995. Vanderbilt University Press.

14. S. Leopoldseder and H. Pottmann. Approximation of developable surfaces with cone spline
surfaces. Computer-Aided Design, 30(7):571–582, 1998.

15. Matlab c©, copyright 1984-2002, The Mathworks, Inc.
See also http://www.mathworks.com/.

16. F. Park, J. Yu, C. Chun, and B. Ravani. Design of developable surfaces using optimal control.
Journal of Mechanical Design, 124(4):602–608, December 2002.

17. M. Peternell. Developable surface fitting to point clouds. In Computer Aided Geometric
Design, pages 785–803, 2004.

18. M. Peternell. Recognition and reconstruction of developable surfaces from point clouds. In
GMP, pages 301–310, 2004.

19. H. Pottmann and G. E. Farin. Developable rational Bézier and B-spline surfaces. Computer
Aided Geometric Design, 12(5):513–531, 1995.

20. H. Pottmann and J. Wallner. Approximation algorithms for developable surfaces. Computer
Aided Geometric Design, 16(6):539–556, 1999.

	Introduction and Related Work
	Approximation Technique
	Envelope Surfaces
	Approximation by Ruling
	Inter-ruling Interpolation
	Bounding the Hausdorff Distance Between the Developable and Input Surface
	Refinement of the Approximated Region
	Smoothing the Approximated Region
	Adding Developables

	Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

