
Self-Intersection Computation for Freeform Surfaces
Based on a Regional Representation Scheme for Miter Points

Youngjin Parka, Q Youn Hongb, Myung-Soo Kima, Gershon Elberb

aDept. of Computer Science and Engineering, Seoul National University, Seoul 08826, South Korea
bComputer Science Department, Technion, Haifa 32000, Israel

Abstract

We present an efficient and robust algorithm for computing the self-intersection of a freeform surface, based
on a special representation of miter points, using sufficiently small quadrangles in the parameter domain.
A self-intersecting surface changes its normal direction quite dramatically around miter points, located at
the open endpoints of the self-intersection curve. This undesirable behavior causes serious problems in the
stability of geometric algorithms on the surface. To facilitate a stable detection of miter points, we employ
osculating toroidal patches and their intersections, and consider a gradual change to degenerate intersections
as a signal for the detection of miter points. The exact location of each miter point is bounded by a tiny ball
in the Euclidean space and is also represented as a small quadrangle in the parameter space. The surface
self-intersection curve is then constructed, using a hybrid Bounding Volume Hierarchy (BVH), where the
leaf nodes contain osculating toroidal patches and miter quadrangles. We demonstrate the effectiveness of
our approach by using test examples of computing the self-intersection of freeform surfaces.

Keywords: Surface self-intersection, miter point, Bounding Volume Hierarchy (BVH), osculating toroidal
patches, miter quadrangles

1. Introduction

In geometric and solid modeling, Boolean operations support the construction of complex solid models
from simple primitives. To convert the solid models to their boundary representations, we need to use
an intersection algorithm for freeform surfaces. In the majority of previous algorithms for intersecting
two surfaces, the input surfaces are usually assumed to be self-intersection-free. However, there are some
cases where we need to consider the possibility of self-intersecting input surfaces, in particular, when the
surfaces are given as offset or sweep surfaces. Compared with the previous work on the surface-surface-
intersection (SSI) problem [6; 12; 19; 20; 21], the self-intersection problem has received considerably less
attention [3; 5; 8; 9; 10]. Moreover, the self-intersection problem for offset or sweep surfaces usually solves
a simplified subproblem [11; 25], where the most complicated self-intersections are trimmed away. In this
paper, we consider the self-intersection problem without assuming any prior knowledge on the applications
of this unary geometric operation on freeform surfaces. The main focus of this work is on the local changes
needed to the spatial data structures (such as Bounding Volume Hierarchy) for freeform surfaces.

The self-intersection of a freeform surface S(u, v) is formally defined as the following set:

SI = {S(u, v) | S(u, v) = S(s, t), (u, v) 6= (s, t)} ,

which contains all surface locations S(u, v) shared with some other-parameter points S(s, t) of the same
surface. The required condition for different parameters, (u, v) 6= (s, t), makes the self-intersection problem

∗Corresponding author
Email address: mskim@snu.ac.kr (Myung-Soo Kim)

Preprint submitted to Elsevier March 12, 2021



Figure 1: Miter points on a surface self-intersection curve: (a)–(b) in the Euclidean xyz-space, (c) in the (u, v)-parameter
domain, and (d) bounding a miter point using a quadrangle.

considerably more difficult than the usual case of intersecting two non-identical surfaces. The difficulty is
mainly due to the existence of miter points, in the neighborhood of which the two different parameters can
be arbitrarily close to each other [8; 9; 10].

Figure 1(a) shows an example of two miter points (in black) on the self-intersection curve of a freeform
surface. They appear (in this example) as the terminal endpoints of the self-intersection curve. In Figure 1(c),
the corresponding points in the parameter domain are shown (in black) as the common endpoints of two
curve segments (in red and blue). These two (u, v) and (s, t)-parameter curves are the solution curves for
the surface self-intersection problem: S(u, v) = S(s, t). When we glue the two parameter curves together,
according to the same-location condition: S(u, v) = S(s, t), the final result will be the self-intersection curve
in the Euclidean xyz-space. Moreover, the folding endpoints (in the glue operation) correspond to the two
miter points. In another physical analogy, we assume a walking along the loop composed of the red and blue
solution curves. When we walk along the blue (or red) curve counterclockwise in the parameter space, the
self-intersection curve in the xyz-space is traced in the rightward (or leftward) direction. In the right half of
the loop, walking from the blue curve below to the red one above passing through the black dot on the right,
the corresponding tracing on the self-intersection curve (in the xyz-space) approaches to the miter point on
the right in a slower and slower speed, finally stops at the miter point momentarily, and then suddenly flips
to the opposite direction and moves away from the miter point gradually speeding up the tracing. The miter
points are thus non-regular on a freeform surface [4]. In this paper, we address the representational issue
for the miter points, as a crucial step towards a stable solution for the surface self-intersection problem.

The miter points play an important role in the determination of the correct topology for a self-intersection
curve, in particular, when we deal with the trimming problem for self-intersecting offset surfaces [9; 10; 11].
Once all the proper neighborhoods of miter points are successfully detected and separated from other
(u, v)-subdomains, the self-intersection problem is essentially reduced to a rather conventional problem of
intersecting two non-adjacent subpatches of the same surface S(u, v), the solution of which is known to be
relatively stable. Ho and Cohen [9; 10] detected the miter point locations based on a necessary condition:
Su × Sv = 0, where Su and Sv are the partial derivatives of S(u, v). Galligo and Pavone [8] constructed
the self-intersection curve using a triangular mesh approximation to the freeform surface. As shown in an
example of Galligo and Pavone [8], the curve approximation near a miter point is highly unstable, producing
a curve approaching to a miter point in a zigzag fashion. Near a miter point, the approximating triangles
become almost coplanar and their intersections will inevitably produce unstable results.

In a recent work on the offset self-intersection trimming problem, Hong et al. [11] approximated the
offset self-intersection curve near a miter point (on an offset surface) by intersecting an osculating toroidal
patch (which is almost identical to other osculating toroidal patches nearby) with a normal plane in the
direction of the curve tracing. They have observed that the location of a miter point in the xyz-space is
stable; however, the corresponding location in the (u, v) or (s, t)-parameter domain is numerically unstable
to detect in a high precision. In the current work, we take a practical approach to the detection of miter point

2



locations, by representing the location in the (u, v)-parameter domain as a bounding quadrangle Q(α, β),
0 ≤ α, β ≤ 1, that contains the exact miter point somewhere inside the quadrangle Q. The reparameterized
surface subpatch Ŝ(α, β) = S(Q(α, β)) is guaranteed to contain the exact location of the miter point in the
xyz-space. We bound the subpatch Ŝ in a tiny ball of radius ε > 0. As shown in Figure 1(c), the size of Q
is considerably larger than the ε-ball, in particular, along the tangent direction of the red and blue solution
curves at their junction point in the parameter domain.

For the acceleration of computing speed, recent algorithms [13; 18] for surface intersection often employ
the spatial data structure of Bounding Volume Hierarchy (BVH), specially designed for freeform surfaces,
where each leaf node represents a small surface patch that can be approximated by simple primitives such
as triangles, rectangles, toroidal patches, etc. It has been implicitly assumed that the surface patches in
the leaf nodes have no local self-intersections. Nevertheless, the existence of miter points means that this
assumption is no longer valid and we need to fix the structure of leaf nodes to a more general form so that
the local surface geometry can be represented more precisely. There are certain technical issues that we need
to address for different cases of miter point locations, the details of which we discuss in Section 3. Another
technical issue is in the geometric computations with the leaf nodes containing miter points. This is a more
difficult problem than the representational issue for leaf nodes – we need to deal with an unusual geometric
behavior of the surface normal directions near miter points. (Note that the surface normal direction turns
around more than 180◦ in the neighborhoods of miter point, which makes the normal cone tests fail and
subdivision-based SSI algorithms never ending [23; 24].) Using the ε-ball that bounds the surface patch
itself in the Euclidean xyz-space, we can control the influence of miter points within certain error bounds
of the geometric operations needed for an application. We discuss the details of these special treatments of
the miter points in Section 4, regarding the surface self-intersection problem. Other geometric operations
(mainly dependent on the surface normals) would require considerably more sophisticated handling of the
special geometric features of miter points even though we may also expect reasonably good solutions to
these problems thanks to the geometric nature of ε-bounding for the miter points.

The algorithmic flow for computing a surface self-intersection is related to, but somewhat different from,
that of intersecting two different surfaces. As shown in Figure 2(a), when we split a surface S into two
smaller pieces S = S1 ∪ S2, the self-intersection of S can be computed by the recursive self-intersections
of S1 and S2, followed by a global intersection between S1 and S2. There is one serious problem in this
simple approach – the global intersection S1 ∩ S2 may include the common boundary of S1 and S2 in
the solution, which is different from what we have intended to compute. It is computationally expensive
to decide whether the two surfaces S1 and S2 are smoothly connected or locally intersecting along their
common boundary. The conventional subdivision-based intersection algorithms are usually slowed down by
recursively subdividing the surface into smaller and smaller pieces along the common boundary. A simple
(but incomplete) remedy may be to include the self-intersection test for a marginal surface Sm that covers
the common boundary curve (Figure 2(b)). And then we may replace the global intersection S1 ∩ S2 by
a new version of (S1 \ Sm) ∩ (S2 \ Sm). (But, this is incomplete as there are some parts missing from the
solution – (S1 \ Sm) ∩ (S2 ∩ Sm) and (S1 ∩ Sm) ∩ (S2 \ Sm) should also be included.) A correct version
(suitable for a BVH-based implementation) is a bit more complicated. As shown in Figure 2(c), we can split
the surface S into three pieces S = S1 ∪Sc ∪S2, where the boundary curve is replaced by a surface patch Sc

in the center. The marginal surface Sm now covers Sc, again with some overlaps with S1 and S2. Then we
do recursive self-intersections on S1, S2, and Sm. The global intersections are then computed for S1 ∩ S2,
(S1 \ Sm) ∩ Sc, and Sc ∩ (S2 \ Sm).

The recursive subdivision of a surface into three smaller pieces means that each internal node of our
BVH structure would have three child nodes: the left, middle, and right nodes. The middle node should be
responsible for the recursive self-intersection of Sm, and thus it is the root of the subtree for Sm. The BVH
structure is ideal for handling the overlap parts of Sm with S1 and S2. Instead of recursively constructing
three other subtrees for smaller surfaces: (S1 \Sm), Sc, (S2 \Sm), we can implicitly represent these subtrees
by restricting the parameter domains of the subtrees for S1, Sm, S2. For example, in the construction of
three child nodes of Sm, their bounding volumes are generated for three surfaces (Sm)1, (Sm)m, (Sm)2. It is
clear that the union of these three volumes also bounds the surface Sc, which is smaller than Sm. The BVH
for Sm can also serve as a BVH for Sc, even though it is not an optimal one for Sc. Some internal nodes of

3



(a) (b) (c)

Figure 2: Recursive self-intersections: (a) in S1 and S2 sharing a common boundary curve, (b) in S1, Sm, S2 with Sm covering
the common boundary, and (c) in S1, Sm, S2, followed by global intersections.

the BVH for Sm may not bound any part of Sc when they represent some marginal areas in (Sm \ Sc). We
can treat these nodes as empty when the BVH is used for the smaller surface Sc.

In the global intersection steps, we need to process smaller surfaces (S1 \ Sm), Sc, (S2 \ Sm) than those
stored in the left, middle, and right subtrees of the BVH tree. By using the parameter domains for surfaces
to be intersected, we can deal with smaller surfaces using the BVH for a larger surface. When the parameter
domain of a child node is outside the domain of a surface, we can simply treat the node as an empty
subtree and stop further recursive search down to that direction. One disadvantage of this approach is in
the duplication of the overlap area (Sm \ Sc) in different subtrees, which may cause the detection of some
self-intersections in the overlap areas multiple times. Nevertheless, by controlling the relative size of the
overlap area, we can reduce the number of repeated detections. The self-intersection curve is constructed
for the pairs of leaf nodes after all redundant duplications are filtered out. According to our experience, the
computational advantage from the overlap region is far more beneficial than the duplication problem.

The main contributions of this work can be summarized as follows:

• We propose a new representation scheme for miter points using small quadrangles (in the parameter
domain), each of which can be mapped to a tiny surface patch (in the Euclidean xyz-space) totally
contained in an ε-ball, where the approximation error bound ε > 0 is typically taken as 10−5, 10−6,
depending on each application. Note that the SSI curves are often approximated within an error bound
of similar size (as a sequence of cubic curve segments).

• Using osculating toroidal patches [11; 16; 18], we develop a stable method for detecting and bounding
miter points, where the degeneracy of toroidal patches is used as a signal for the existence of miter
points.

• We modify the conventional BVH structures (developed for freeform surfaces with no self-intersections)
so that the leaf nodes containing miter points are represented and processed properly. This modification
is also an important step for the extension of many other geometric algorithms so that they can handle
input surfaces that may self-intersect.

• We present an efficient algorithm for computing the self-intersection of a freeform surface, based on
recursive self-intersections and global intersections on smaller subpatches of the input surface S. Due
to the overlap of Sm with S1 and S2, there are duplications of computation. We suggest a simple way
of filtering out the redundancies in the most expensive stage of constructing the self-intersection curve.

• Using only one BVH structure precomputed for the input surface S, we introduce a new technique for
supporting the effects of different BVH trees for smaller surfaces S1 \ Sm, Sc, S2 \ Sm by comparing
the parameter domains of the surfaces and the BVH nodes.

4



• In Section 4, we solve a non-trivial self-intersection problem between a small neighborhood of miter
point and other parts of the surface, by converting it to a simple line-surface intersection. This is
based on an observation that the self-intersection curve often has a linear shape near miter points.

• We provide a general guideline for the extension of geometric algorithms so that they can properly
handle input surfaces that may self-intersect. Some duplications of computation may be inevitable
in a geometric approach based on recursive subdivisions. We need to develop different strategies for
filtering out the duplication of computations, depending on the requirements for each application.

2. Related work

There is a rich body of literatures (including some extensive survey articles) on the surface-surface-
intersection (SSI) problem [6; 12; 19; 20; 21]; however, the majority of previous results are on the intersection
of two different surfaces. The special case of intersecting an identical surface with itself has received much
less research attention than the general SSI problem. Nevertheless, this does not necessarily mean that
the surface self-intersection is less important. On the contrary, the sparsity of previous work is mainly due
to technical difficulties handling the self-intersection case. For example, it is not easy to deal with trivial
solutions: (u, v) = (s, t), in the self-intersection problem: S(u, v) = S(s, t), which should not be included in
the solution set, because of the non-equality constraint: (u, v) 6= (s, t). Consider the intersection test for two
adjacent subpatches that share a common boundary curve along an iso-parametric curve: u = s or v = t.
A good solution to this problem can be used for the elimination of trivial solutions, and vice versa. The
issue is how to accelerate the computing speed for a large number of overlap tests among nearby subpatches,
which is often considerably larger than those for intersecting two different surfaces.

As a method of choice for symbolically eliminating the redundant factors (u − s) and (v − t) from the
constraint equations for S(u, v) = S(s, t), many previous algorithms took an algebraic approach [3; 5]. In
the univariate case of the curve self-intersection problem: C(u) = C(s), Pekerman et al. [22] removed the
redundant factor (u − s) from each constraint equation for the solution set. Nevertheless, in the bivariate
case of freeform surfaces, simple factors such as (u− s), (v− t), [(u− s)2 + (v− t)2], do not always appear in
the constraint equations directly drived from each coordinate of S(u, v) = S(s, t). To deal with this problem,
Elber et al. [5] formulated a different set of constraint equations by combining the coordinate functions of
F (u, v, s) and G(v, s, t), where S(u, v)−S(s, v) = (u− s) F (u, v, s), S(s, v)−S(s, t) = (v− t) G(v, s, t), and
thus S(u, v)− S(s, t) = (u− s) F (u, v, s) + (v − t) G(v, s, t). Busé et al. [3] proposed a different algorithm
based on resultant techniques. Regarding the main technical issue of the current work, the detection and
representation of miter points, the elimination-based algebraic approach has a clear limitation. The miter
points are characterized by the triviality condition: (u, v) = (s, t), the detection of which becomes more
difficult after the elimination of all trivial solutions. Thus we focus on geometric approaches that gradually
reduce the given self-intersection problem to relatively simple subproblems.

Volino and Thalmann [26; 27] presented a subdivision-based algorithm for computing the self-intersection
of triangular meshes. The self-intersection-free condition developed in this approach is quite similar to the
normal cone test traditionally used in the SSI algorithms [23; 24]. Starting with an initial solution from a
polygonal approximation to the given freeform surface, Ho and Cohen [9; 10] improved the solution curve, in
particular, the locations of miter points, by carefully controlling the speed of curve tracing near miter points.
Galligo and Pavone [8] also used a triangular mesh approximation and reported certain limitations of the
mesh-based approach in the neighborhoods of miter points. Hong et al. [11] considered the self-intersection
problem for offset surfaces, where osculating toroidal patches are used for a stable curve tracing near the
miter points. They have observed that the self-intersection curve takes a local shape of line segment with
an open endpoint at the miter point location.

The detection and elimination of self-intersections in an offset surface has long been an important problem
with applications in NC toolpath generation [1; 2; 17; 25; 28]. The offset self-intersection curves are often
traced using numerical techniques (such as Runge-Kutta methods) applied to differential equations [1; 17; 28].
The offset trimming technique of Seong et al. [25] is based on the approximation of offset surfaces using

5



rational freeform surfaces, in which subtle geometric details such as miter point locations can be changed
to something else.

For the intersection of two polygonal meshes, the BVH-based algorithms are now widely accepted as the
method of choice for efficiency reasons, where the detection of all possible pairs of intersecting triangles is
important [14; 15]. The BVH-based approach is also commonly used for intersecting two freeform surfaces.
The GPU-based SSI algorithm of Krishnamurthy et al. [13] used the AABB (Axis-Aligned Bounding Box)
tree, which is the most suitable for GPU implementations. Based on the surface approximation techniques
of Filip et al. [7] and Liu et al. [16], Park et al. [18] developed a hybrid BVH using rectangle swept spheres
(RSS) for internal nodes and osculating toroidal patches for leaf nodes. In the current work, we follow the
basic guideline of Park et al. [18] and make some changes to the BVH structure.

3. BVH Construction

The consideration of miter points and the ternary structure for the BVH tree necessitates certain changes
to the conventional BVH structures for freeform surfaces. The changes are mainly in the leaf nodes containing
miter points. For the sake of simplicity, we assume that the uv-parameter domain of a surface patch is
explicitly stored in the corresponding node, and a leaf node may contain at most one miter point.

3.1. Miter Points

We start with a uniform subdivision of a surface S(u, v) into subpatches Sij , (i, j = 1, · · · , 128). (The
following construction scheme also works for a grid structure of size 8M × 8N , as discussed in Section 3.3.)
Each subpatch Sij is then tightly approximated by an osculating toroidal patch Tij based on the construction
steps discussed in Section 3.3 of Park et al. [18]. When the deviation of normal directions at Sij(u, v) and
Tij(u, v) is larger than a certain threshold, we consider this failure of approximation as a signal for the
detection of a miter point in Sij . As shown in Figure 1, a non-isolated miter point is the junction point
of two corresponding solution curves (represented as (u, v)- and (s, t)-curves in the parameter space) for
the self-intersection curve (in the Euclidean space), given by the relation: S(u, v) = S(s, t). We search the
two branches of these solution curves in the 1-ring neighborhood of Sij . In the example of Figure 1(b), the
domains for Si,j+1 and Si,j−1 have the corresponding branches, which are computed by intersecting the two
osculating toroidal patches Ti,j+1 and Ti,j−1, which is more stable than intersecting the surface S(u, v) with
itself near a miter point. (In fact, we iteratively improve the intersection result by recomputing Ti,j+1 and
Ti,j−1 at the corresponding solution points and incrementally walking along the self-intersection curve in
small steps.)

We extend the (u, v)- and (s, t)-solution curves simultaneously from Si,j+1 and Si,j−1 so that they can
meet at a miter point inside Sij . The miter point location is computed by solving Su × Sv = 0. The
numerical tracing along the solution curves works only up to a certain pair of solution points. Using the
positions and tangent directions of the two solution curves at these points, we guess the remaining solution
curves by interpolating a Bézier curve to these data. The Bézier curve is then bounded by a quadrangle Q
(in the parameter space of S(u, v)) as a regional representation for the miter point. The quadrangle Q is
then represented as a bilinear surface Q(α, β), (0 ≤ α, β ≤ 1), in the uv-parameter domain. The composite
surface S(Q(α, β)) in the Euclidean xyz-space will be a very tiny surface patch containing the miter point
of Sij . When this small surface patch is totally contained in an ε-ball, we are done. Otherwise, we reduce
the size of Q so as to improve the approximation result.

What if all these tests fail in the detection of Q or the bounding of S(Q(α, β)) in an ε-ball? Then
we increase the resolution of uniform subdivision in the 1-ring neighborhood of Sij , and repeat the same
procedure in this restricted domain. We also need to take this approach when there is no branch or only one
branch in the 1-ring neighborhood of Sij . We may have the same problem repeatedly even with higher and
higher resolutions; then, we make the following decisions: (i) the no-branch case as an isolated miter point,
and (ii) the one-branch case as a signal for the failure of our algorithm in separating two almost identical
branches from each other. In the one-branch case, it would also be possible to have a small self-intersection
loop or no self-intersection curve yet but about to start one if the surface shape is slightly changed. Thus it
is reasonable to consider this case as an isolated miter point as well.

6



Figure 3: Converting Sij to an internal node.

Figure 4: Grid sizes for the subpatches generated by the vertical and horizontal splits.

3.2. Leaf Nodes

The quadrangle Q is usually contained inside the domain of Sij . In some cases, there may be overlap
with two adjacent domains or three/four domains with a common corner. We slightly expand the domain
(and the corresponding subpatch) with maximum overlap and shrink other domains. This works under the
assumption that Q is much smaller than the domain of Sij . Otherwise, Q may contain multiple miter points,
and the construction of Q should be repeated more carefully with higher precision for possible detection of
multiple miter points if there are some.

Now, as shown in Figure 3, we convert the leaf node for Sij to an internal node by splitting it into three
child nodes. The vertical bounding slab for Q is taken as the middle child node, from which we go one more
step down the BVH tree by adding three child nodes. This time, the horizontal bounding slab for Q is the
middle one. Let R denote the middle leaf node, which is a minimal AABB for Q. In case the composite
surface S(R(u, v)) can be bounded in an ε-ball, we replace Q with the rectangle R. Otherwise, the middle
leaf node contains Q and four triangles, one for each edge of Q.

3.3. Internal Nodes

The uv-parameter domain [0, 1] × [0, 1] of the surface S(u, v) is first split vertically, then horizontally,
and alternating the two directions in the rest of the BVH construction. In Figure 2(c), the three subpatches
S1, Sm, S2 are made of the same size, having width 3/8 and height 1. (The width of Sc is 2/8, and each of

7



the overlaps S1 ∩ Sm and S2 ∩ Sm has width 1/16.) They become the three child nodes for the root of the
BVH tree. Each child then becomes an internal node by splitting horizontally in the same ratio. Starting
with a uniform grid of 128 × 128 subpatches Sij , the first row of Figure 4 shows the grid sizes of these
intermediate subpatches in the vertical and horizontal splits. Repeating the same procedure one more time
to each uniform grid of 48× 48, each internal node of the BVH at this level will cover a grid of size 18× 18.
After that, we have to change the ratio of splits so that the split lines always go through the boundary
curves of some Sij but never through the interiors of some subpatches. (Otherwise, the width or height of
an overlap region S1 ∩ Sm at this level will be 18/16 of the size of Sij , and the boundary of Sm will go
through the interior of some subpatch Sij .)

In the grid of 18 × 18, we set the widths of S1, Sc, S2 to 8, 2, 8, and that of Sm to 4. The horizontal
splits are also made in the same way. (The second row of Figure 4 shows the grid sizes of the corresponding
intermediate subpatches.) In the remaining lower levels of the BVH construction, we leave no overlap
region by making Sm = Sc. Thus, the size 8 will be split to 8 = 3+2+3, and the size 4 will be 4 = 2+0+2.
At this stage, the self-intersection test results are explicitly recorded in the BVH nodes by doing the test
in a preprocessing stage for small windows of 3 × 3 or 2 × 2 subpatches. In Section 4.1, we have more
details of the preprocessing computations. (In fact, we do this test for each 3 × 3 windows of the total
grid of size 128 × 128, in a preprocessing step, and store the results in the grid structure. The tests for
2 × 2 windows can be done as a part of the tests for 3 × 3 windows containing them.) If the recorded test
result is no self-intersection, we can save computing time by skipping the self-intersection test. Otherwise,
we should be ready for the detection of miter points and the construction of solution curves for the surface
self-intersection. This is done in the BVH subtree, with its root at the corresponding internal node.

From the internal nodes of size 3× 3 or 2× 2, we go down to the lower levels (in two more steps) using
the split ratios of 3 = 1 + 1 + 1 and 2 = 1 + 0 + 1, where the number 0 in the middle means that there
is no middle child from the node of size 2 × 2. At this stage, all leaf nodes are at the same level 8. Some
leaf nodes are converted to an internal node as discussed above when they contain miter points and their
regional representation as a small quadrangle Q.

Remark: We can also construct a ternary BVH tree for a grid of 8M×8N subpatches Sij . For example,
when the grid size is 256×48, the vertical splits are made twice to generate nodes of size 96×48, and then of
size 36×48. After that, the horizontal splits produce nodes of size 36×18. Now, 36 and 18 are not multiples
of 8, and we need to use different ratios for the splits. The basic rule is to build a balanced ternary BVH
tree at high levels and at the same time to provide some gaps between two subpatches to be intersected for
global intersections. The split ratio 8 = 3 + 2 + 3 is intended for this purpose. At low levels of the BVH
tree, we have to compromise. The grids of small sizes make the split business more difficult, often leaving
no more overlap regions. On the other hand, the local self-intersections become relatively easier to check for
small windows of adjacent subpatches. The self-intersection test results can be pre-computed and recorded
in the grid structure for later usage. We discuss more details below.

4. Surface Self-Intersection Algorithm

Our surface self-intersection algorithm is based on traversing the ternary BVH tree constructed in the
previous section. In a hash table, we store the pairs of leaf nodes whose bounding volumes overlap. In
the insertion process to the hash table, we can filter out duplicated copies of the same pair already stored.
For each pair of leaf nodes stored in the hash table, we compute their intersection curves only when the
corresponding subpatches intersect each other. The (u, v) and (s, t) solution curve segments are recorded in
the parameter domain of the surface. In the final step, they are connected in a correct topology.

4.1. Preprocessing

It is convenient to store surface local details in a simple grid structure of uniformly subdivided subpatches
Sij , (i, j = 1, · · · , 128). Tij is the osculating toroidal patch of Sij computed at the mid-parameter point of
Sij , properly parameterized and trimmed so that ‖Sij(u, v)− Tij(u, v)‖ < εT , for all (u, v) in the domain of
Sij , and some error bound εT > 0. (We use the surface approximation techniques of Liu et al. [16] and Park

8



et al. [18].) Their surface normals also satisfy a similar condition by increasing the number of subpatches
in the uniform grid structure if necessary. However, for the subpatches containing miter points, the normal
bounding fails repeatedly even if we reduce the size of Sij . These subpatches are handled differently.

For non-miter subpatches, the Gauss map of Sij can be bounded by adding some margin to that of Tij ,
based on which we can tell that Sij is self-intersection-free if the Gauss map of Tij is sufficiently small and
totally contained in a unit hemisphere. Using a higher resolution for the grid structure if necessary, we
assume that each non-miter subpatch Sij has no self-intersection. Next, we check if 2×2 and 3×3 windows
of these non-miter subpatches are self-intersection-free. When the Gauss map of Tij in the window covers an
area larger than a unit hemisphere, we record this information to the upper-left corner of a 2×2 window and
to the center of a 3× 3 window. The windows near a miter subpatch have some chances of being classified
as this class.

4.2. BVH traversal

Starting from the BVH root for a freeform surface S(u, v), we recursively compute the self-intersection
curve for each of the three child nodes: S1, Sm, S2. (When the child node is empty or a leaf node, we
stop the recursion.) After that, we recursively compute the global intersections for three pairs: (S1, S2),
(S1 \ Sm, Sc), (S2 \ Sm, Sc), where Sc = Sm \ (S1 ∪ S2). In the global intersection for a pair (SA, SB), we
swap the two nodes, (i) when SB is larger than SA in the domain size, or (ii) when SA is a leaf node and
SB is an internal node.

Algorithm 1: Self-Intersection of a Freeform Surface

Result: Surface Self-Intersection Curve
input: S: the root of a BVH tree for a freeform surface patch
if S is either empty or a leaf node then

return
end
S1, Sm, S2: the left, middle, and right child nodes for S;
Self-Intersect(S1); Self-Intersect(Sm); Self-Intersect(S2);
Sc = Sm \ (S1 ∪ S2);
Intersect(S1, S2); Intersect(S1 \ Sm, Sc); Intersect(S2 \ Sm, Sc);

We stop the recursion when either node is empty or both are leaf nodes. The pair of leaf nodes is then
inserted to a hash table for all pairs to be intersected. In the insertion process, duplications of the same
pair are filtered out. Moreover, we also stop the recursion when the two bounding volumes for SA and SB

have no overlap. In principle, we may use any bounding volumes for freeform surfaces. In the current work,
we use Rectangle Swept Spheres (RSS) for the overlap test [18]. One exception is an ε-ball, for bounding
the composite surface S(Q(α, β)) for a miter-quadrangle Q.

4.3. Construction of intersection curve segments

The intersection of two surface patches Sij and Skl from non-miter leaf nodes can be constructed using
a conventional SSI algorithm. Thus we focus on the pair of nodes, where one contains a miter point. (The
chance of both being miter nodes is extremely low; thus we skip this highly unusual case in the following
discussions.) The center of an ε-ball for S(Q(α, β)) can be projected to the subpatch Skl of the other
node [16]. Based on the result, we can decide on which side of Skl the miter point (approximated by the
ε-ball center) is located, including the case of lying on the subpatch.

The self-intersection curve (in the Euclidean xyz-space) near the miter point is usually an almost
linear segment with the miter point at its open end. By intersecting the short curve (often approximated
with a line segment) against the subpatch Skl, we can decide the planar arrangement of solution curves
in a neighborhood of the miter-quadrangle Q. Note that the solution curves for a local self-intersection
(meeting at the miter point as shown in Figure 1) are constructed in a preprocessing step and stored in the

9



Algorithm 2: Intersection of Two Surfaces

Result: Intersection of Two Surfaces
input: SA, SB : Two surfaces to be intersected
if SA is empty or SB is empty then

return
else if SB is larger than SA then

Swap SA and SB ;
end
if SA is a leaf node then

Compute-SSI-Curve(SA,SB);
else if SA and SB have no overlap in their bounding volumes then

return
else

S1, Sm, S2: the left, middle, and right child nodes for SA;
Intersect(S1, SB); Intersect(Sm, SB); Intersect(S2, SB);

end

(a) (b)

Figure 5: Arrangement of solution curves: (a) when the local self-intersection curve has no intersection with Skl, and (b) when
the local self-intersection curve has a global intersection with Skl.

grid structure of subpatches. To complete the construction of self-intersection curves, we need to add an
additional solution curve from a global self-intersection of Skl against the neighborhood of Q.

When the line segment has no intersection with Skl, the solution curves (meeting at the miter point)
for a local self-intersection and the solution curve for a global self-intersection also have no intersection (see
Figure 5(a)). On the other hand, if there is an intersection with Skl, the intersection point should be of the
form S(u∗, v∗) = S(s∗, t∗), where the two locations (u∗, v∗) and (s∗, t∗) are on their respective (u, v) and
(s, t) solution curves. In this case, as shown in Figure 5(b), the solution curve for a global self-intersection
with Skl will intersect the (u, v) and (s, t) solution curves for the local self-intersection.

The illustration in Figure 5 corresponds to the example of Figure 8(a), with a hyperbolic type solution
curve. In Figure 8(b), an elliptic type solution curve produces an 8-figured self-intersection curve in the
Euclidean space. In a similar way, a parabolic type solution curve produces a self-intersection curve of
∝ shape. The type of each solution curve can be determined by the number of branches in the 1-ring
neighborhood of Sij . We skip the details of the case analysis.

5. Experimental Results

We have implemented the proposed self-intersection algorithm in C++, on an Intel Core i7-10700K
3.8GHz Windows PC with a 128GB main memory. To demonstrate the effectiveness of the proposed
approach, we have tested the algorithm on several test examples, including three freeform surfaces with
miter points on their self-intersection curves.

10



Table 1: BVH construction, traversal, and surface intersection time (in ms) and the number of pairs of overlapping leaf nodes

Examples Construction Traversal Intersection # Overlap pairs
(A) 3,635 392 1,084 (418) 599
(B) 1,902 260 1,133 (321) 773
(C) 1,872 257 1,251 (316) 662
(D) 11,113 1,111 6,960 (1,482) 3,629
(E) 10,980 1,238 5,133 (1,393) 4,858

(Miter-A) 3,616 451 45,610 (11,712) 1,730
(Miter-B) 1,986 257 11,400 (2,113) 774
(Miter-C) 1,828 296 28,522 (4,793) 1,374

Figure 6 shows five freeform surfaces, each with the self-intersection curve (in yellow line) in the Euclidean
xyz-space and the corresponding (u, v) and (s, t)-solution curves (in red and blue lines) in the parameter
domain. These five surfaces contain no miter point. Consequently, the construction of their self-intersection
curves is essentially reduced to the problem of computing global self-intersections.

More challenging test examples are given in Figure 7, where three surfaces are shown with miter point(s)
on their self-intersection curves. The miter points are shown as black dots located at the tips of the self-
intersection curves in the Euclidean space. In the parameter domain, the miter points (also represented as
black dots) appear as the junction points where the corresponding red and blue solution curves meet. The
regional representations of some miter points are also shown as green rectangles.

Table 1 reports some statistics on the self-intersection curve construction for the eight example surfaces
in Figures 6–7. In the middle three columns, the computing times are given in milliseconds, for the BVH
construction, the BVH tree traversal for overlap tests, and the handling of overlapping leaf nodes for the
construction of self-intersection curves (shown together with the parallel computing time using all 8 cores of
the CPU). The rightmost column reports the number of pairs of overlapping leaf nodes, actually processed
in the final intersection stage. Compared with the surfaces with no miter points, the self-intersection with
miter points takes considerably (approximately 10–40 times) more computing time. The extra computational
effort will eventually pay off when we deal with non-trivial geometric decision problems near the miter points,
an example of which we briefly discuss below.

In Figure 8, two local surface patches are extracted from small neighborhoods of the miter points, which
are on the (Miter-B) and (Miter-C) surfaces of Figure 7. Each patch is intersected with three parallel planes
as shown in the left, middle, and right columns of Figure 8. The top surface of Figure 8(a) intersects in
two separate branches (as shown on the left and right), or in an X-shaped self-intersecting curve (in the
middle) as the result of a tangential intersection at the miter point (of the (Miter-B) surface in Figure 7).
Regarding the three topological types of the plane-surface intersection curve, as discussed in Section 4.3, a
correct classification can be made based on the result of intersecting the plane against a short line segment
(with the miter point at an endpoint).

The plane intersections with the (Miter-C) surface of Figure 7 produce even more interesting results.
The plane-surface intersection curves are 8-figures, the miter point, or empty, depending on whether the
plane intersects the short line segment (approximating the surface self-intersection curve near the miter
point) at an interior point, tangentially at the miter point, or at no point. Note that the plane-surface
intersection appears as a closed loop in the parameter space, which turns into an 8-figured self-intersecting
space curve in the Euclidean space, as the result of gluing the two locations (u∗, v∗) and (s∗, t∗) to the same
point S(u∗, v∗) = S(s∗, t∗) in the xyz-space.

Though we have considered the intersection of a small surface patch (containing a miter point) against
parallel planes (which may not be from the same surface), the basic principle works for the self-intersection
with some other parts of the surface. Because of the tiny size of the ε-balls, it is quite cumbersome to
generate an example of generic surface that has a global intersection of a miter neighborhood with some
other parts of the same surface. Nevertheless, in some degenerate cases, we need to deal with this special

11



case, a reliable solution of which can be based on the techniques we have introduced in this paper.

6. Conclusions

In this paper, we have presented a new approach to the self-intersection problem for freeform surfaces,
using a regional representation of miter points in the parameter space. The geometric behavior of freeform
surfaces at miter points may look highly unwieldy. Nevertheless, the self-intersection curve near a miter
point often has an almost linear shape in the Euclidean space and the geometric uncertainty can be confined
to the miter quadrangles in the parameter space. Based on this observation, we have made reliable decisions
on the local geometry of the self-intersecting surfaces at miter points. In future work, we would like to
extend the coverage of geometric operations on self-intersecting freeform surfaces, including the self-bisector
computation for self-intersecting surfaces, among many others.

Acknowledgments

We would like to thank anonymous reviewers for their invaluable comments. This research was supported
in part by the European Union Horizon 2020 research and innovation programme, under grant agreement
No 862025, and in part by the National Research Foundation of Korea (No. NRF-2019R1A2C1003490,
NRF-2019K1A3A1A78112596).

References

[1] S. Aomura and T. Uehara. Self-intersection of an offset surface. Computer-Aided Design, 22(7):417–421, 1990.
[2] R. Barnhill, T. Frost, S. Kersey. Self-intersections and offset surfaces. In Geometry Processing for Design and Manufac-

turing, Robert Barnhill (Ed.), SIAM, 1992.
[3] L. Busé, M. Elkadi, A. Galligo. Intersection and self-intersection of surfaces by means of Bezoutian matrices. Computer

Aided Geometric Design, 25(2):53–68, 2008.
[4] M. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs, NJ, 1976.
[5] G. Elber, T.. Grandine, M.-S. Kim, Surface self-intersection computation via algebraic decomposition. Computer-Aided

Design, 41(12):1060–1069, 2009.
[6] G. Farin. An SSI bibliography. Geometry Processing for Design and Manufacturing, R.E. Barnhill (Ed.), Chapter 10,

pp. 205–207, SIAM, Philadelphia, PA, 1992.
[7] D. Filip, R. Magedson, R. Markot. Surface approximations using bounds on derivatives. Computer Aided Geometric

Design, 3(4):295–311, 1986.
[8] A. Galligo and J.P. Pavone. Self intersections of a Bézier bicubic surface. In Proc. of the 2005 Int’l Symp. on Symbolic

and Algebraic Computation (ISSAC), pp. 148–155, 2005.
[9] C.-C. Ho. Feature-Based Process Planning and Automatic Numerical Control Part Programming. Ph.D. Thesis, Dept. of

Computer Science, Univ. of Utah, 1997.
[10] C.-C. Ho and E. Cohen. Surface self-intersection. In Mathematical Methods for Curves and Surfaces, Lyche, T., and

Schumaker, L.L. (Eds.), Proc. of Oslo 2000, Vanderbilt Univ. Press, Nashville, Tennessee, 183–194, 2000.
[11] Q Hong, Y. Park, M.-S. Kim, G. Elber. Trimming offset surface self-intersections around near-singular regions. Computers

& Graphics, 82:84–94, 2019.
[12] J. Hoschek and D. Lasser. Fundamentals of Computer Aided Geometric Design. AK Peters, Wellesley, MA, 1993.
[13] A. Krishnamurthy, R. Khardekar, S. McMains, K. Haller, G. Elber. Performing efficient NURBS modeling operations on

the GPU. IEEE Trans. on Visualization and Computer Graphics, 15(4):530–543, 2009.
[14] M.C. Lin and S. Gottschalk. Collision detection between geometric models: A survey. Proc. of IMA Conference on

Mathematics of Surfaces, pp. 37–56, 1998.
[15] M.C. Lin and D. Manocha. Collision and proximity queries. Handbook of Discrete and Computational Geometry, 2nd

Ed., J.E. Goodman and J. O’Rourke, Eds., Chapman & Hall/CRC, pp. 787–807, 2004.
[16] X.-M. Liu, L. Yang, J.-H. Yong, H.-J. Gu, J.-G. Sun. A torus patch approximation approach for point projection on

surfaces. Computer Aided Geometric Design, 26(5):593–598, 2009
[17] T. Maekawa, W. Cho, N.M. Patrikalakis. Computation of self-intersections of offsets of Bézier surface patches. Journal

of Mechanical Design: ASME Transactions, 119(2):275–283, 1997.
[18] Y. Park, S.-H. Son, M.-S. Kim, G. Elber. Surface-surface-intersection computation using a bounding volume hierarchy

with osculating toroidal patches in the leaf nodes. Computer-Aided Design, 127, Article 102866, 2020.
[19] N. Patrikalakis. Surface-to-surface intersections. IEEE Computer Graphics and Applications, 13(1):89–95,1993.
[20] N. Patrikalakis and T. Maekawa. Shape Interrogation for Computer Aided Design and Manufacturing. Springer, 2002.
[21] N. Patrikalakis and T. Maekawa. Intersection problems. Handbook of Computer Aided Geometric Design, G. Farin,

J. Hoschek, and M.-S. Kim (Eds), Elsevier, Amsterdam, 2002.

12



[22] D. Pekerman, G. Elber, M.-S. Kim. Self-intersection detection and elimination in freeform curves and surfaces. Computer-
Aided Design, 40(2):150–159, 2008.

[23] T. Sederberg, and R. Meyers. Loop detection in surface patch intersections. Computer Aided Geometric Design, 5:161–171,
1988.

[24] T. Sederberg, H. Christiansen, S. Katz. An improved test for closed loops in surface intersections. Computer-Aided
Design, 21(8):505–508, 1989.

[25] J.-K. Seong, G. Elber, M.-S. Kim. Trimming local and global self-Intersections in offset curves/surfaces using distance
maps. Computer-Aided Design, 38(3):183–193, 2006.

[26] P. Volino and N.M. Thalmann. Efficient self-collision detection on smoothly discretized surface animations using geometri-
cal shape regularity. Computer Graphics Forum, Eurographics ’94, M. Daehlen and L. Kjelldahl (Eds), 13(3):C-155–166,
1994.

[27] P. Volino and N.M. Thalmann. Collision and self-collision detection: Efficient and robust solutions for highly deformable
surfaces. In Computer Animation and Simulation ’95 , D. Terzopoulos and D. Thalmann (Eds), pp. 55—65. Springer-
Verlag, 1995.

[28] Y. Wang. Intersection of offsets of parametric surfaces. Computer Aided Geometric Design, 13(5):453–465, 1996.

13



(A)

(B)

(C)

(D)

(E)

Figure 6: Examples of self-intersecting surfaces; the left column shows the results of self-intersecting a freeform surface and the
right column shows the intersection curves in the parameter domains of the surfaces, respectively.

14



(Miter-A)

(Miter-B)

(Miter-C)

Figure 7: Examples of self-intersecting surfaces with miter point(s) on their intersection curves; the left column shows the
results of self-intersecting a freeform surface and the right column shows the intersection curves in the parameter domains of
the surfaces and zoom-in areas around the miter points, respectively.

15



(a)

(b)

Figure 8: Examples of local self-intersection curve near the miter point.

16


	Introduction
	Related work
	BVH Construction
	Miter Points
	Leaf Nodes
	Internal Nodes

	Surface Self-Intersection Algorithm
	Preprocessing
	BVH traversal
	Construction of intersection curve segments

	Experimental Results
	Conclusions

