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Abstract

Functional composition can be computed efficiently, robustly, and precisely over polynomials and piecewise polyno-
mials represented in the Bézier and B-spline forms [6, 8, 20]. Nevertheless, the applications of functional composition
in geometric modeling have been quite limited. In this work, as a testimony to the value of functional composition,
we first recall simple applications to curve-curve and curve-surface composition, and then more extensively explore
the surface-surface composition (SSC) in geometric modeling. We demonstrate the great potential of functional com-
position using several non-trivial examples of the SSC operator, in geometric modeling applications: blending by
composition, untrimming by composition, and surface distance bounds by composition.
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1. Introduction

Splines are a common representation in virtually al-
most all computer aided geometric design (CAGD) sys-
tems. The Bézier and NURBS representations almost
solely govern the geometric modeling industry. Excel-
lent techniques to create and modify these representa-
tions have been developed in the CAGD community,
which made these representations so common. On the
other hand, the Bézier and NURBS representations are
often too complex to be handled precisely. Boolean
operations and intersections [24] and/or generic oper-
ations such as offsets [14] are not closed in the Bézier
and NURBS representations and thus should be approx-
imated, entailing all the difficulties that such approxima-
tions induce.

To alleviate some of these difficulties, Elber [8] in-
troduced symbolic tools, which mean computational
schemes that allow one to evaluate a symbolic expres-
sion once a real numeric input is provided. For example,
given two parametric curves C1(u) and C2(v), the simul-
taneous zeros of the following two expressions:⟨

C1(u) −C2(v),
dC1(u)

du

⟩
= 0,⟨

C1(u) −C2(v),
dC2(v)

dv

⟩
= 0, (1)

prescribes one type of distance-extrema event, which
is characterized by a bi-normal line (a line normal
to both curves at its intersection points with the two
curves). Given two Bézier and/or B-spline curves C1(u)

and C2(v), the numeric representations of C1(u) and
C2(v) can be plugged into Equation (1), producing a
non-linear system of two equations and two unknowns,
whose solution(s) detects all the mutual bi-normals of
C1(u) and C2(v).

Symbolic manipulation tools have been used in the
last couple of decades, offering robust solutions to many
computational queries regarding freeform curves and
surfaces. With the aid of algebraic operators to add,
subtract, and multiply splines [3, 8, 21], and a solver
for systems of non-linear constraints [13, 26], robust
computation methods were developed, for example, to
evaluate offsets and sweeps [10, 14], to construct bisec-
tors and Voronoi regions [17, 23], and to measure min-
imal and Hausdorff distances [1, 19] between freeform
curves and surfaces.

The composition operator is one additional symbolic
algebraic tool that is worth exploring more extensively.
The composition is a well defined operation. Tech-
niques to evaluate the composition of freeforms, di-
rectly in the spline (Bézier or B-spline) domains are
well-known [6, 8, 20]. Nevertheless, this operator has
not been fully exploited in geometric modeling to its
great potential. In particular, surface-surface composi-
tion (SSC) has rarely been used. In this work, we show
that the composition operator has a lot to offer in geo-
metric modeling. We first discuss existing examples and
applications for curve-curve composition, curve-surface
composition, and then focus on surface-surface compo-
sition (SSC).

The rest of this work is organized as follows. In Sec-
tion 2, previous work on the computation of the com-
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position operator is laid out as well as some discus-
sion on previous uses of this operator. In Section 3, we
show how SSC can be used to create a general blend-
ing between two surfaces and with arbitrary continu-
ity. In Section 4, we present a paradigm that can con-
vert trimmed surfaces to regular tensor product patches,
again using SSC, and Section 5 considers the question
of bounding the maximum distance between two adja-
cent patches that are parameterized differently and ex-
ploits SSC to much improve on the established distance
bound. Then, we conclude in Section 6.

2. Previous Work

The composition of two spline functions, in the
Bézier and B-spline bases, was first discussed in [6, 8].
DeRose et al. [6] reduced the problem of function com-
position to Blossoming evaluations, and makes the ob-
servation that surface-surface composition in the B-
spline domain can create non-rectangular regions, im-
posing a major barrier on the computation. Elber [8]
reduced the problem to basic symbolic operations such
as additions and products of splines, and extended the
composition operator to both the polynomial Bézier and
piecewise polynomial B-spline domains. In [20], an ef-
fort was made into further optimizing the composition
computation of two polynomials [6].

Even before results [6, 8], Sederberg [25] proposed
trivariate Bézier volumes as a deformation tool. The
original proposal of Sederberg [25] was to map con-
trol points and so as to approximate the deformation.
There are also some previous results developed for pre-
cise freeform deformation using the composition oper-
ator such as Feng and Peng [16], where the composi-
tion computation was resolved by posing it as a polyno-
mial interpolation problem. Surazhsky and Elber [27]
is another example of precise1 deformation using the
composition operator. They employed the curve-surface
composition for a precise text deformation of piecewise
Bézier outline fonts, where the underlying deformation
functions were represented as bivariate B-splines.

In the last couple of decades, other results were also
developed for various specific applications using the
composition operator. For example, using the surface-
surface composition for bilinear patches, Feng and
Peng [15] showed how to transform a rectangular (ten-
sor product) patch into two triangular patches and how
to convert a triangular patch into three rectangular ones,
a problem that was also examined by [6].

Elber [9] used the curve-curve composition to nor-
malize vector fields in general, and to approximate
piecewise polynomial arc-length curves in specific.
Moreover, Cohen et al. [5] employed the curve-curve

1In this work the term precise denotes machine precision.

composition for the elimination of self-intersections in
planar ruled surfaces and in metamorphosis between
two curves. Kim and Elber [18] developed a precise G1

surface blending scheme that exploits the curve-surface
composition to precisely locate the rail curves of the
blending surface over the given input surfaces.

The coming sections of this work focus on the
surface-surface composition (SSC) and present results
in a variety of applications.

3. Blending by Composition

Surface rounding and/or blending is a well-known
problem that has been extensively investigated in many
previous results [18, 28]. Nevertheless, few results of-
fer blending algorithms that are precise to within ma-
chine precision. Typical blending solutions derive the
rail curves of the blend (the two curves between which
the blending surface is defined) as a solution of some
offset or as a surface-surface intersection (SSI) opera-
tion, which produce rail curves that are within the toler-
ance of offset or SSI computation. The error is typically
much larger than that of machine precision. One ex-
ception is the approach of Kim and Elber [18], where
the rail curves are specified in the parametric domains
of the two input surfaces, S 1(u, v) and S 2(r, t). In this
approach, using the curve-surface composition, the rail
curves (and the tangent field) over S 1 and S 2 can be lo-
cated within machine precision.

The SSC operations can be used to derive precise
blending and/or rounding surfaces with a continuity of
arbitrary order. Consider the two surfaces S 1(u, v) and
S 2(r, t) and the two rail curves C1(a) = (u(a), v(a)) and
C2(b) = (r(b), t(b)) in the parametric domains of S 1 and
S 2.

Assume C1(a) and C2(b) are interior to the respective
domains of S 1 and S 2 so that a small offset approxima-
tion of C1(a) and C2(b) remains interior to S 1 and S 2

2.
Then, the following procedure will generate such a pre-
cise Gk continuous blending surface:

Lines 1.1 and 1.2 of Algorithm 1 compute the off-
sets by a small radius od to the input rail curves that are
assumed to be contained in the domains of S i. The in-
fluence of od on the outcome will be discussed later. In
Lines 1.3 and 1.4, two ruled surfaces are constructed in
the parametric spaces of both S 1 and S 2. One should
note that in Line 1.4, we can also control the mapping
between the two curves’ parameterizations using b(a).
As a first order approximation, b(a) can be a linear re-
parameterization that maps the domain of C1 to that of
C2 and the curve-curve composition C2(b(a)) is of the

2Otherwise, one can always Ck-extend the domain of S i a bit,
computing a larger S L

i surface that identifies with S i in the original
domain.
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Algorithm 1: Building a precise Gk blending sur-
face between two general rail curves C1(a) in
S 1(u, v) domain and C2(b) in S 2(r, t) domain:
input : S 1(u, v), first surface to blend;

S 2(r, t), second surface to blend;
C1(a) = (u(a), v(a)), rail curve in S 1;
C2(b) = (r(b), t(b)), rail curve in S 2;
od, offset amount to apply to C1 and C2;

output
:

A blending surface B between C1 and C2;

1.1 Co
1(a)⇐ Offset of C1(a) by od in the domain of S 1;

1.2 Co
2(b)⇐ Offset of C2(b) by −od in the domain of

S 2;
1.3 R1(a, p)⇐ ruled surface from C1(a) to Co

1(a);
1.4 R2(a, p)⇐ ruled surface from Co

2(b(a)) to C2(b(a));
1.5 Re

1(a, p)⇐ S 1(R1(a, p));
1.6 Re

2(a, p)⇐ S 2(R2(a, p));
1.7 B(a, p)⇐ Blend(Re

1(a, p), Re
2(a, p));

same degree as C2. However, an additional degree of
freedom is now being added, by b(a), to possibly con-
trol the speed of C2 and possibly match it to (a scaled
constant factor of) the speed of C1. Alternatively, b(a)
can be used to induce a desired speed on both C1 and C2
as is done in [9] that approximates an arc-length param-
eterization, or to match some shape similarities between
the two curves, as is done, for example in [5]. Then, the
two ruled surfaces are mapped to the Euclidean space
in Lines 1.5 and 1.6 of Algorithm 1 by using the SSC
operator.

The final step, in Line 1.7, computes the desired
blending surface. Denote by Bk a blending surface with
a Gk-continuity. For a C0 blending surface, one can use
linear (Bézier basis) functions:

B0(a, p) = (1 − p)Re
1(a, p) + pRe

2(a, p). (2)

For a G1 blending surface, one can use the cubic Her-
mite basis functions:

B1(a, p)

= H00(p)Re
1(a, 0) + H10

 ∂Re
1(a, p)
∂p

∣∣∣∣∣∣
p=0

 +
H01(p)Re

2(a, 1) + H11

 ∂Re
2(a, p)
∂p

∣∣∣∣∣∣
p=1

 . (3)

Note that this result recovers the blending scheme
of [18], where the tangent fields (required for the G1

continuity) were computed along the rail curves by de-
riving the normal fields of S i, ni, only to cross-product
ni with the tangent field of Co

i . The magnitude of these
vectors fields, like ni, must be controlled in [18] and

(approximately) normalized. In contrast to [18], herein
the tangent field is recovered directly from Re

i and hence
is expected to be of a lower order (the exact degree of
which is dependent on the degrees of the ruled surfaces,
Ri).

Figure 1 shows some examples. Figures 1 (a) and (b)
show two G1 (k = 1) blends between the left and the
right sides of the spout and the body of the Utah teapot.
Because Re

1(a, p) and Re
2(a, p) are precisely embedded in

the input surfaces S 1 and S 2, one can generate a blend-
ing surface of arbitrary continuity, Bk, by computing
all the needed partials of Re

1(a, p) and Re
2(a, p) with re-

spect to p and employing degree 2k−1 Hermite blending
functions to achieve the Gk continuity. Figures 1 (c) and
(d) show two G2 (k = 2) blends between the left and the
right sides of the spout and the body. All these examples
are accurate to within machine precision.

Consider the effect of od from Algorithm 1. We
parametrize the ruled surfaces, Ri(a, p), in the p di-
rection between zero and one (so we can then exploit
the Bézier or Hermite basis functions in p with ease).
Hence, the offset radius directly controls the magnitude
of the 1st derivatives. Figure 2 shows a few examples
demonstrating the effect of different od values.

So far, we did not take into account stretch due to the
mapping of the blended surfaces. An offset by amount
od in the domain of S i can create an offset in Euclidean
space, over S i, of different and varying distances. In
some cases, when a precise type of blend (i.e. a ball-
end blend) is needed or the Jacobian of S i is not well
behaved, the stretching metric of S i must be considered
as well and algorithms for offset of varying-amount od,
such as [11], must be employed.

4. Untrimming by Composition

Given a trimmed Bézier surface, S t, it is often needed
to convert the surface into a set of (untrimmed) tensor
product surface patches. However, this conversion, if
made precisely, has been considered to be a challenging
problem. Using surface-surface composition (SSC), one
can approach this problem in two steps:

1. A division of the valid domain of trimmed sur-
face S t into quadrilateral domains (with possibly
freeform boundaries). Dividing a closed domain,
possibly with holes, into quadrilateral regions is a
well-known problem in various fields such as finite
element generations and more recently in quad-
remeshing of polygonal surfaces [2, 22]. In this
work, one assumes such a tool is given as a block-
box that decomposes the given domain into quads.

2. Once the division of parametric domain into
quadrilateral domains is given, the precise evalu-
ation of the corresponding 3D tensor product sur-
face patches in the Euclidean space is again a sim-
ple instantiation of the SSC operator. One should
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(a)

(b)

(c)

(d)

Figure 1: A precise G1 Hermite blending surface of degrees (3 × 18) in (a) and (b) (See Equation (3)) between a linear B-spline curve on the
bi-cubic spout of the teapot and a cubic B-spline curve on its bi-cubic body. A similar precise G2 Hermite blending surface of degrees (5 × 18) is
presented in (c) and (d). Note two different blends are actually shown between the two, left and right, halves. Compare with Figure 2.

(a)

(b)

(c)

(d)

Figure 2: A precise G1 blending surface of degrees (3 × 18) that shows the affect of the offset amount od from Algorithm 1 and the magnitude of
the 1st derivative. (a) and (b) show the use of a small value of od whereas (c) and (d) portray a large od value. Compare with Figure 1 that uses a
mid-range od value.

note that the question of parametrizing a general
quadrilateral region can still be challenging and
simple methods like Boolean-Sum [7] might fail
at times. That said, one can verify the regularity
of a given parametrization f (u, v) : IR2 → IR2 by
symbolically computing n(u, v) = ∂ f (u,v)

∂u × ∂ f (u,v)
∂v (a

scalar field) and making sure n(u, v) never vanish
- for instance if all the coefficients of n(u, v) share
the same sign.

If the input trimmed surface S t is a B-spline (or
NURBS) surface, first divide S t into a set of trimmed
Bézier surfaces, by dividing S t at all its interior knots.
Then, apply steps 1 and 2 above to each Bézier surface,
in this divided set of S t.

Figures 3 and 4 show two simple examples of con-
verting one trimmed Bézier surface into (untrimmed)
tensor product B-spline surface patches via the SSC op-
erator. One should note that even for an input trimmed
Bézier surface, the resulting untrimmed patches might
be forced to be B-spline surfaces due to existence of B-
spline trimming curves.

5. Distance Bounds by Composition

In many applications, it is important to bound the
(Hausdorff) distance between two similar models in
close proximity. Examples include cases where a given
freeform model consisting of (piecewise) polynomial
surfaces is approximated with similar surfaces of low
degree or surfaces of special type. In the application

S

S t

R

(a)

(b)

Figure 3: The bicubic trimmed Bézier surface S t with a quadratic
trimming B-spline curve in red in (a) is converted to a regular tensor
product B-spline surface R of degrees (12 × 12) in (b) by forming a
4-sided B-spline parametric mapping to the trimming curve of S t , and
then applying surface-surface compositions to it over S . Note the C1

discontinuity in the trimming curve is manifested itself in the resulting
B-spline surface R.

of manufacturing, a general freeform model can be ap-
proximated with piecewise developable or ruled sur-
faces so as to construct the model using manufacturing
techniques such as hot wire or wire EDM 3. Other ex-
amples include side milling that is based on the offsets
of piecewise ruled surface approximations to the given

3See, for example
http://en.wikipedia.org/wiki/Electrical discharge machining and
http://en.wikipedia.org/wiki/Hot-wire foam cutter.
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S

S t

R1

R2

R3

(a) (b)
Figure 4: The bicubic trimmed Bézier surface S t with a cubic trim-
ming B-spline curve in red in (a) is converted to regular tensor product
B-spline surfaces Ri in (b) by dividing the trimming region to three
4-sided regions and parametrizing these three 4-sided domains of S t
inside S ’s parametric domain as bicubic regions. Then, a surface-
surface composition is applied to the three regions over S , creating
three patches of degrees (18 × 18), in green.

S

P

S
S P

P

D⃗H
�
��(a) (b)

Figure 5: In (a), surface P in blue approximates a portion of the input
bicubic surface S in red. In (b), the corresponding (aligned) region of
S near surface P, S P in green, is extracted via surface-surface compo-
sition of S and a bilinear, formed out of the four corners of P projected
onto S . With S P of degrees (6 × 6), the one sided Hausdorff distance
from P to S can now be tightly bound as D⃗H(P, S P). In this example,
the established bound (using the difference of the 49 corresponding
control points and following Equation (4)) was ∼%65 percent larger
than the actual Hausdorff distance, that is assumed at point D⃗H in (b),
in magenta.

surface. In many cases and in practice, the lower degree
and/or the ruled/developable surfaces do not share the
same parameterization with the original input surfaces.
The Hausdorff distance computation is thus needed so
as to guarantee the quality of approximation in these ap-
plications.

Consider a 3-space parametric input surface S (u, v)
and an approximating patch P(r, t) that spans a portion
of S (see also Figure 5 (a)). How can one tightly bound
the one-sided Hausdorff distance between P and the rel-
evant portions of S near P? Typical practical solutions
include sampling points {pi} on P and projecting them
to S , as {si} (and vice versa) and finding an estimation of
the approximation error as max ∥pi− si∥, or simply sam-
pling points on both entities and computing distances
between the sampled points [4]. Clearly, neither provide
a guaranteed upper bound for the Hausdorff distance er-
ror.

Given surfaces S and P, one can bring them to a com-
mon function space, that is, by elevating them both to
the same degrees, and if S or P are piecewise polynomi-

als by also refining them so they both possess the same
knot sequences. Then, a guaranteed yet somewhat loose
upper bound on the one-sided Hausdorff distance, D⃗H ,
can be easily established as

D⃗H(P, S ) = max
r,s

min
u,v
|S (u, v) − P(r, s)|

≤ max
u,v
|S (u, v) − P(u, v)|

= max
u,v

∣∣∣∣∣∣∣∣
∑
i, j

QS
i jBi j(u, v) − QP

i jBi j(u, v)

∣∣∣∣∣∣∣∣
≤ max

i, j

∣∣∣QS
i j − QP

i j

∣∣∣, (4)

where Qi j are the control points of the respective sur-
faces.

In order to be able to employ Equation (4) as a tighter
upper bound, one can extract the region of S near P, de-
noted S P (See Figure 5 (b)), parametrize it similarly to
P, and compare the control points between P and S P.
How to extract this S P region is application dependent.
Algorithm 2 presents one simple approach to perform
this task. Line 2.4 of Algorithm 2 computes S P using
the surface surface composition, composing the bilin-
ear surface determined by the four projected points of
P onto S with the surface S itself. As a result, the sur-
face patch S P(r, t) (and its parameterization) is aligned
with P(r, t) and Equation (4) can now be used to more
tightly bound the one-sided Hausdorff distance from P
to S . By construction, the parametrization of P will be
close to that of S P. Simple degree raising and/or refine-
ment of the surfaces to bring them to the common space,
can provide a fairly tight bound, using Equation (4).
One can further improve this bound by using the spread
of the control points of one surface to refine the other,
mimicking the parametrizations’ speed of the other sur-
face as much as possible.

Algorithm 2: Extracting a region of the input sur-
face S close to surface P

input : S (u, v), a general surface;
P(r, t), a surface over a portion of S ;

output
:

S P(r, t), a portion of S close to P;

2.1 Ci j, i, j = 1, 2⇐ four corner points of surface P;
2.2 UVS

i j ⇐ UV values of Ci j projected onto S ;
2.3 B(r, t)⇐ bilinear through four points UVS

i j , in S ’s
domain;

2.4 S P(r, t)⇐ S (B(r, t));

For the case of Figure 5, the 49 corresponding con-
trol points of the two surfaces of degrees (6 × 6) in the
common space (Figure 5 (b)) are compared, resulting in
a bound on the Hausdorff distance that is ∼%65 percent
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larger than the actual Hausdorff distance, computed pre-
cisely using [12].

6. Conclusions

We presented several applications that employ the
SSC operator in geometric design. The accuracy of the
presented operations is within machine precision while
we have shown abilities to compute composed surfaces
with high quality and continuity. These present appli-
cations deserve further research. For instance, how can
one find a better (best?) parameterization to S P in Sec-
tion 5 in order to minimize the error in the bound? We
hope that this work will renew interest in the composi-
tion operation and specifically other applications to the
SSC will be explored as well. Nevertheless, the degrees
of the composition results can be quite high and as an
additional future work, one should develop techniques
to improve the efficiency of evaluating high-degree sur-
faces thus generated as the result of function composi-
tion.
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