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Figure 1: Three examples of seemingly impossible models (SIMs) that are realizable as 3D tangible objects using the modeling paradigm

presented in this work.

Abstract

In recent years, there has been a growing interest in computer
graphics and geometric modeling in the ability to create and ma-
nipulate Seemingly Impossible Models (SIMs). Methods to cre-
ate derivative work and modify drawings and paintings of SIMs
made by artists were suggested. Similarly, 3D realization of SIMs
of some of these drawings were also offered.

In this work, we further explore the nature of SIMs and identify a
class of SIMs that can be realized and modeled in 3D. As part of
this analysis we show an invariance whose preservation allows one
to model SIM artifacts that are completely realizable. We further
present a mini-modeling package that allow end-users to realize
whole new SIMs in two stages: modeling a regular 3D model and
then converting it into a SIM using special deformations. We con-
clude with some examples, a discussion on the current limitations,
and a layout of possible future work.

keywords: Impossible 3D Models, M. C. Escher, Non realistic
modeling (NRM), Art in science.

1 Introduction and Previous Work

Drawings of impossible models are never-ending intriguing pieces
of art that captivate and intrigue the beholder. The immense pub-
lic interest in the drawings of Maurice Cornelius Escher [Esched ]
probably stems from the sensation of the impossibility that these
drawings generate in the spectator. In other words, these drawings
build upon the spatial training of the human mind and trick the ob-
server into seeing impossible scenarios. The desire to create tan-
gible 3D models that mimic these drawings leads to the following
definition:

Definition 1.1 A rangible 3D model will be considered a Seem-
ingly Impossible Model (SIM), if it leads, from at least one spe-
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cific viewing direction, to a seeming contradiction in the presented
scene.

The “Belvedere”, “Ascending and Descending, and “Waterfall”
drawings of Escher all belong to this family of SIMs, and they are
all realizable as tangible 3D objects. Several authors have presented
such 3D realized SIM artifacts from wood and plastic [Elbet | and
even Lego®) pieces [Lipsor] ]. These tangible 3D artifacts mimic,
from one specific viewing direction, 2D scenes that are seemingly
contradictory. Focusing on a single view, there are others who
were able to (manually) realize tangible SIMs. The work of Sugi-
hara [Sugihara 2007)] stand out in this direction, work that recently
was also awarded the best-illusion-of-the-year contest ".

Kupla [Kupla 1987] and Sugihara [Sugihara 1982] before him tried
to classity the SIMs into different classes of impossibilities, to pos-
sible, impossible, likely and unlikely. Object-background contra-
dictions, depth-estimation contradictions and similar measures are
used in the process. Also interesting is how the realized 3D tangi-
ble SIM is made. For instance, are we required to introduce cuts
into the model? An interesting claim is made by [Kupla 1987] that
“all impossible figures have possible interpretation - all impossible
figures are possible”. While one can argue this claim and what does
"possible’ means, in this work, we aim at creating real tangible 3D
models that look like the SIM from one view, the view from which
they are typically painted. Having this requirement, not every draw-
ing of a SIM is indeed realizable as a 3D model.

Oriented compact 2-manifolds in R® delineate space into interior
and exterior sub-spaces and therefore serve as a boundaries that
separate the two. The Jordan theorem [DoCarmo T976] states that
we must cross the boundary of the oriented 2-manifold, when we
move from the inside out or vice versa. With that in mind, we
introduce a simple test that must be satisfied in order to achieve a
tangible 3D SIM:

'See http://1llusioncontest.neuralcorrelate.com
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Figure 2: A well-known impossible model that has no interior and
no exterior and hence cannot be realized as a tangible 3D object.

Condition 1.2 A SIM that has a tangible 3D realization, must pass
the Jordan curve theorem test.

The drawings of one class of impossible models allow a connected
path in the drawing plane to go from infinity (outside the model)
into the model, crossing no boundary and hence violating the Jordan
theorem’s condition (Condition [22). The tribar drawing in Figure I
is one such example. Such drawings cannot have tangible solid 3D
models that realize them, not even from a single viewing direction,
and are excluded from our discussion here.

In [Savransky et al. 1999], the depth misperceptions in a drawing
are mapped to detections of cycles in the (depths of the objects in
the) scene graph. A Z-buffer based rendering is then employed to
render the elements of the scene in the desired order, a process that
is quoted to require “considerable user intervention”. [Wief all
201d] also examined the depth misperceptions. Given an initial
drawing of a SIM, they are able to synthesize nearby novel views
of the input.

Indeed, depth misperception is one of the most compelling features
in drawings of SIMs. While a large portion of previous work syn-
thesize derivative 2D drawing of SIMs, some efforts were directed
at generating 3D models that look impossible from one specific
view. Of this class of 3D SIM generators, many are manually made,
and are typically based on a 2D drawing of some SIM. In contrast,
in this work, we seek to go a step further and create a modeling
environment that will allow end-users to build entirely new valid
tangible 3D SIMs by deforming regular tangible 3D geometry in a
special way. Consider, for example, Figure [ that shows three SIMs
that are realizable as tangible objects using the modeling environ-
ment we offer as part of this work.

The rest of this work is organized as follows. In Section O, we
present the basic ideas and portray several ways of creating SIMs,
focusing on the special deformations and assuming the input 3D
geometry is readily available via the means of regular 3D geomet-
ric modeling techniques. Conceptually, any regular 3D geometry
can be exploited as the input to create SIMS. Specifically, we use
polygonal 3D models that are refined to small enough polygons so
that the deformed output continues to appear smooth. We further
employ the Gulrit [Gulrii ] modeling environment to create all in-
put models. Examples of the introduced deformations are presented
in Section B, and finally, we conclude in Section B. All the exam-
ples presented in this work, but Figures B, [4, and 3, were created
using the presented approach and implementation.

Figure 3: A SIM of a cycle of three bars that hide parts of each
other. The SIM is created by exploiting two human brain misper-
ceptions. The first is the creation of an apparent cycle in the depth
ordering and the second is that seemingly orthogonal angles and
straight lines in the drawing plane are indeed orthogonal and lin-
ear in R3.

2 Algorithm

While depth misperception is a major feature that is exploited in
many drawings of SIMs, it is also a clear degree of freedom in cre-
ating new SIMs. When one examines artistic drawings of SIMs, the
limited capability of humans to capture depth (or Z) is revealed.

Humans are excellent at detailed understanding of information in
the (XY) plane. Yet, our minds aim to interpolate and complete
missing details in Z. The human natural stereo-vision allows us to
gather some limited depth information in real life but it is of no use
when inspecting 2D drawings of SIMs. A small person is perceived
as farther away compared to a larger one. Similarly, if object A
is (even partially) hidden by object B, our brain naturally assumes
that A is behind B.

Hence, it is difficult for us as humans to interpret a loop in the
depth ordering of some objects in a drawing. Such difficulties arise
when, for instance, object A hides object B, object B hides object
C and object C hides object A (i.e., Figure B). To complicate the
situation even more, we are trained to anticipate that a straight line
in the drawing plane originates from a straight line in space and to
expect that the spatial angle between two faces that look orthogonal
in the 2D drawing is indeed 90 degrees in 3-space. Figure B shows
one such example, taking advantage of these mis-interpretations.

Armed with the knowledge about genetic evolution and the out-
comes of mind training, we are now ready to fool the eye, using the
following crucial observation:

Observation 2.1 Consider object A that is seen from eye position
E. A deformation of A along the line of sight from £ (aka projection
lines or projectors) does not change the shape of A as seen from E.
We denote such deformation a Line of Sight Deformation (LoSD).

Observation I is crucial to our discussion. A change (i.e. de-
formation) in object A along the projectors does not change the
drawing of A as seen from £! Hence after, and for simplicity of ex-
planation, we will assume that the parallel projectors are only along
the Z axis. That is, we are dealing with an orthographic projection.



The extension of the presentation to perspective projections is sim-
ple. Given a 2-manifold object A, we expect the result of the LoSD
to be a 2-manifold. Hence, the LoSD should be injective near the
2-manifold. One should note that this condition does not exclude
self-intersections.

Any LoSD we can apply to the model along projector lines parallel
to the Z axes will not be reflected in the way the object is drawn
(and seen) in the XY plane®. In other words, given object A, we
seek simple and intuitive a LoSD that will move point P(z,y, z) €
A to anew depth P(z,y, 2+ 6z) € A, on the deformed object A.
This changes A’s relative depth with respect to other objects in the
scene.

We enumerate several possible LoSDs. Because the (z, y) position
is invariant in all these transformations, we specify only the trans-
form in the depth, or Z, of input point (z1,y1, 21):

1. Global Z-skew transformation, Fsgew(z1) = 21 +
Sskew(x1,y1). A simple example can be the linear transform

Fliew(21) = 21 + y1. (1)

Figure B shows a simple example of a depth skewing trans-
formation applied to one of three bars, creating a well-known
illusion called the Penrose triangle, from one view. However,
this SIM is disconnected, an approach we rather avoid. Fig-
ure B shows a simple example of skewing that is applied to
an entire mode, a cube. Note that the objects, in Figures B (a)
and (c), looks very much the same from the original line of
sight. Moreover, the impression that all faces are orthogo-
nal is preserved in Figure B (c). Finally, because Fl,,,(2) is
linear, colinearity and coplanarity is preserved (while orthog-
onality is obviously not preserved).

2. Local Z-deformation transformation, Fyeform(21) = 21 +
faeform(z1,y1). Here, a main question is how to define the
area or volume of influence of Fyeyorm. One possibility is
based on the XY distance from a user-selected center-of-
deformation location, (zo, yo), as

Fieform(z1) = 21 + /(21 — 20)2, (31 — 50)%. ()

Fdlefo,.m(zl) (see Figure @ (a)) preserves the depth of the
input model at (zo,yo) and increasingly deforms the space
along the projectors as we move away from location (zo, yo),
forming a cone of increasing deformation effect around
(z0,y0). A second valuable possible alternative is a defor-
mation along a line in the projection plane. Let L(z,y) :=
Ax 4+ By + C = 0 be some line in the XY plane. Then,
given point (1, y1, 21) (see Figure 8 (b)),

«
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€, o, d, k € R, applies a depth deformation of amount
« along £ and as we move away from line £ the amount of
the deformation decays (unlike F(}efmm). Clearly one can
control the amount and region-of-influence of the deforma-
tion and the rate of the decay using constants ¢, d, and k in
Equation (B). Figure @ shows a bar that underwent a few dif-
ferent F2, form (%) deformations.

2Granted, the shading of the deformed object might be different in the
drawn picture in the XY plane—a second order concern we will address at
the end of the next section.

Figure 4: Plots of F;efwm (z1) (Equation (B)) in (a) around the

origin and of Ffeform (Equations (B)) in (b) around the origin,
withe =03, a=d =1, and k = 2.
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Figure 5: Recreating the Penrose triangle (a) as a SIM using the
application of a global skewing transformation, F..,, to one of
the bars. Note the evident shading discontinuity at the bottom left
corner in (a). (b) shows a different view of the same scene.

There are many variations on Fsgew and Fgeform. The transfor-
mation can be limited to a certain region in the XY plane or to a
certain region in 3-space. It can also be limited to some sub-object
parts (i.e. individual bars). The later is crucial when one bar in
the object covers a second bar in the XY image plane and only the
second bar is to be locally deformed. All these techniques as well
as similar ones are classical geometric modeling deformation tools
and are not part of the scope of this work. In the next section, we
will demonstrate LoSDs and present examples of SIMs.

3 Examples and Limitations

We start again with one of the most famous 3D models that is a
SIM-the Penrose triangle. This 3-bars model creates the simplest
cycle in depth, of three bars. Bar A hides parts of bar B, which
hides parts of bar C, which, in turn, hides part of bar A again, cre-
ating the loop in the visibility graph. We can recreate the Penrose
triangle as a SIM in several methods. Figure B shows two exam-
ples. In Figure B (a) and (b), the 3 bars are positioned parallel to
the X, Y, and Z axes, creating the isometric view in Figure B (a).
However, special cuts must be introduced to the end of the bars to
complete the illusion in the SIM’s drawing. Nevertheless, we can
locally deform one of the bars, using Fiycform, and create a real
connected object as seen in Figure B (¢) and (d).

We continue with the presentation of the three models shown in
Figure [, this time from general and different views. Figure [ (a)
is presented again in Figure B (a) from a different view where the
global skewing transformation, F4..,,, that is applied to both the
green and the red parts is apparent, and where the orthogonality is
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Figure 6: An example of global Z skewing transformation that preserves the (x,y) locations invariant, from one viewing direction ((a) and
(c)). Note that (a) and (c) look almost identical whereas (c) underwent Z skewing transformation, Fslkew (see Equation ()). (b) and (d) show
(a) and (c) from different views.

(d)

Figure 7: An example of a local Z deformation transformation, Fa, forms that is applied to a straight bar (a) and preserves the (z,9)
projected image of the bar. (b), (c), and (d) shows three different local deformations (from a different view), all looking the same from the
original line of sight, of (a). The dark blue color in (b), (c), and (d) is a user-interface cue to the region-of-influence.

(a) (b) (© (d

Figure 8: Recreating the Penrose triangle as a SIM. (a) and (b) show three bars parallel to the X, Y, and Z axes, in two different views, so
they almost look like the Penrose triangle from the isometric view of (a), up to one open end. In (c) and (d), a local deformation, F3. Forms 1S
applied to one of the bar. (c) is the same isometric view as in (a), creating a SIM that looks perfect, whereas (d) again shows the model in (c)

from a general view.

not really preserved. Figure [ (b) is presented again in Figure B (b)
from a different view where local LoSD transformation, Fz. forms
is applied to the different bars. Finally, Figure 0 (c) is presented
again in Figure 8 (c) from a different view where local LoSD trans-
formation, F2, form. 18 applied to the original back side, bringing it

to the front.

The best-illusion-of-the-year for 2010, by K. Sugihara (see footnote
on page 1), is modeled in Figure . Herein, a conical deformation
is applied around the center of the model, following Fj. form IN
Equation (). Figure [M (a) shows the scene from the illusion’s
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Figure 9: The three SIMs shown in Figure Ul are presented here from a somewhat different view that reveals their real nature.
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Figure 10: The model of K. Sugihara that was awarded the best-illusion-of-the-year in 2010 (see footnote on page 1) is modeled here using
the conical deformation function Fj, form- (@) shows the original illusion view that presents descending slides, moving away from the center,
whereas (b) and (c) show that the slides are actually going upward, away from the center.

intended direction where all four slides look as if they go downward
away from the center, whereas Figures [ (b) and (c) show two
other, general, views where the slides are seen to, in fact, go upward
away from the center.

We complete our set of examples with a short description of the
modeling environment that allows the creation of all these SIMs.
Figure [ shows a capture of the environment [Gulrii ] that serves
as a graphical user interface to the Irit geometric modeling sys-
tem [Irid ]. The modeling package of SIMs is implemented as an
external shared library in Gulrit, like many other modeling features
in this system, and its interface is seen on the far right side of Fig-
ure . A regular tangible 3D model is created using traditional
geometric modeling techniques offered in the Gulrit system, only
to be fed to the LoSDs’ module. The different LoSDs (i.e. Fskew,
Fi. forms F2 form. €tC.) can be selected and applied to the specific
geometric model/part, interactively. A simultaneous view of the
model from a different direction, aside from the view selected for
the illusion, provides an excellent indications about the effect of the
deformation, in real time. Because many of these deformations are
non linear and flat polygons can actually bend and twist due to the
application of the deformation, models with only triangles are pre-
ferred so no non-planar polygons will result. An option of ensuring
the existence of only triangles in the input model is, therefore, re-
quired and offered. Further, a polygonal refinement scheme to limit
the size of the maximal edge length in the model is also available.
This improves the accuracy and hence quality of the (non-linear)
deformation’s output.

The constructed SIM undergoes major deformations. These defor-
mations affect the shading and consequently reveal the *mystery’
behind the SIM. For example, at the bottom left corner of the Pen-
rose triangle in Figure B(a), an hard-to-accept discontinuity in the
shading is easy to spot. A simple remedy to circumvent the prob-
lem is to keep the original vertices normals of the object before the
deformation. Much like Gouraud shading [Foley et al. 1990] that
assigns shading intensities based on interpolated normals that are
not of the piecewise linear approximated model but, typically, of
the original smooth object, we will supply here the deceptive nor-
mals of the (original, pre-deformed) model that will fool the eye
into accepting a more believable drawing of a SIM.

4 Conclusions and Future Work

In this work, we presented a simple modeling environment that can
affect the depth of the geometry in the scene, applying line of sight
deformations (LoSDs). While 2D drawn figures are not affected
by this scheme, we can affect the depth order of any selected part,
creating entirely new SIMs. Any model that has crossing bars or
parts, in Z, in some view, can be employed and deformed using the
LoSD to create an impossible model. One additional example is the
stool shown in Figure [2. Similarly, objects that mimic expected
shapes and behaviors can be modified into shapes that contradict
the expected behavior, as shown in the slopes in Figure [Q.

Many classes of models that pass the Jordan test (i.e., Condi-
tion ) can be modeled using the presented LoSD scheme. The
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Figure 11: The modeling environment of Seemingly Impossible Models’ (SIMs) inside the Gulrit geometric modeling system [Gulrii |. Two
additional SIMs are presented from a general view (left) and from the illusion, supposedly impossible, direction (right). The interface of the
SIMs, modeling extension, which is modeled as a shared library in Gulrit, is shown on the far right.

“Waterfall” drawing of M. C. Escher is merely formed out of a
chain of three Penrose triangles and hence falls into the LoSD class.
Another nice example that belongs to the LoSD class is “The Gar-
den Fence” drawing (see Figure [[4) of Sandro Del-Prete [Del-Prefel
]. In summary, any computer graphics and/or geometric modeling
deformation techniques that is invariant of the line of sight can be
employed here.

Nevertheless, a close inspection of Escher’s “Belvedere” drawing
shows that indeed the LoSD is not powerful enough to model it.
The vertical pillars that connect the first level’s balcony to the next
level must be cut and stitched again, changing the topology of the
model. Interestingly enough, a smaller such example is revealed on
a careful inspection of the “Belvedere”, exposing a person holding a
Necker cube (see Figure [3). This SIM is also not part of the LosD
class, while it passes the Jordan curve Condition [, as again, its
creation involves cutting and stitching of the model. See [Elbei

] for more on these models and others. Another group of SIMs
that cannot be modeled using the LoSD techniques are models that
are twisted in the plane. For instance, consider two lines in space
that are not parallel in R®, and yet they are parallel when projected
onto the drawing plane. The human interpretation of a ruled surface
between the two lines will be of a planar region, while the ruled
surface is clearly hyperbolic. Figuring out intuitive ways to model
these non-LoSD objects and/or perform the deformation in some
optimal way, whatever optimality means (possibly minimizing the
surface normals’ changes), is still ahead of us.
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Figure 12: The model of a stool with crossing bars is modified into
a SIM via the LoDS. (a) shows the seemingly impossible direction
where as (b) shows a side view of the same model.
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