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Abstract

The tensor product parametric representations are the most commonly used representation in geometric modeling. Yet,
other representations have advantages in certain aspects, and in this work, we focus on employing implicit representations
in the construction of microstructures. An implicit function, either functionally precise, or spline trivariate-based, is
used to populate a macro-shape trivariate parametric form, and construct a conforming microstructure. Either the
implicit tile or the macro-shape can be functionally graded or be heterogeneous, carrying graded properties such as
material, translucency, or color alongside the geometry. Further, the implicit tiles can be parametrized and hence their
geometry can vary across the macro-shape. The representation is locally precise and we demonstrate that in a slicing
process that employs no (piecewise-linear) approximation. Finally, we demonstrate this framework on several 3D printed
heterogeneous models.

Keywords: Implicit representations; triply periodic minimal surfaces (TPMS); functionally graded materials (FGM);
volumetric trivariate splines; precise slicing for additive manufacturing; efficient non-linear inversions

1. Introduction

With the advent of additive manufacturing technology,
also known as 3D printing, there have been dramatic
changes in the modeling of 3D solid objects for physical
fabrication in reality [1, 23, 31, 37, 43]. A main chal-
lenge in 3D modeling research and development nowadays
is how to fill the interior of 3D solids using inhomogeneous
materials, often with highly complex microstructures for
supporting various mechanical, structural, and biomedical
properties [13, 15, 26, 30, 34, 41, 44].

Certain geometric features play a crucial role in meet-
ing some of often mutually-contradicting multiple design
goals by imitating the generation rules commonly found in
nature [17, 37, 43]. TPMS (Triply Periodic Minimal Sur-
faces) has attracted considerable research attention in the
microstructure generation due to the periodicity of these
minimal surfaces, and closed implicit forms that are based
on sine and cosine functions [14, 20, 21, 22, 25, 45, 46, 48].
Being represented in non-algebraic transcendental implicit
equations, the TPMS-based surfaces and volumes are typ-
ically approximated using piecewise linear, bilinear, and
trilinear elements, which introduces relatively large ap-
proximation errors compared with the level of precisions
provided/required by the modern 3D printers and the 3D
printing applications.

In this work, we strive to support highly precise 3D
printing of functionally graded materials (FGM) [3, 4, 32].
The resolution of state-of-the-art 3D printing is in the tens
of microns and even below microns 1, and the goal in this
work is to fully support those resolutions and beyond.

In its basic form, trivariate T (u, v, w) = (Tx, Ty, Tz) :

D ⊂ IR3 → IR3 may be considered as a regular freeform

1https://www.nano-di.com/resources/blog/2019-3d-printing-
tolerances-considerations-for-high-frequency-electronics

deformation of the 3D volume. Moreover, the uvw-space
of D can be initially populated with uniform tiles (aligned
in a volumetric 3D axis-parallel grid), where each tile is
defined by a periodic implicit function and thus (smoothly)
connected with adjacent tiles in each direction. In the
3D printing stage of the algorithm, we consider the plane-
volume intersection, known as the slicing of T (u, v, w), and
its embedded implicit tiles, against each slicing plane z =
zslice, one slice at a time, in an ascending order.

To ensure that the computation is efficient, we employ
numerical tracing while preserving the accuracy. For ex-
ample, consider the precision of curve tracing [35]. On the
other hand, a piecewise-linear mesh approximation of an
implicit surface introduces typically a much larger error,
employing the marching cubes algorithm [24] or similar.
Further, the non-linear mapping of the piecewise-linear
approximation of the tile through T (u, v, w), hence after
denoted the macro-shape, might enlarge those approxima-
tion errors, in the xyz-space. Some previous methods such
as Yoo [46] constructed the slicing result as an image on the
plane z = zslice. Nevertheless, it is unclear how they can
possibly meet the goal of the fabrication precision required
for a specific 3D printer. To answer this fundamental ques-
tion on the precision of manufacturing, we propose a scan
conversion algorithm that can meet the goal of arbitrary
precision, up to the computational machine precision.

A main technical challenge here is how to guarantee the
local and global invertibility of the freeform trivariate map-
ping T (u, v, w). In the context of our microstructure ap-
plication at hand, and by construction, we assume that
the Jacobian of T (u, v, w) never vanishes and the trivari-
ate volume T (u, v, w) has no global self-intersection. Thus
not only the local invertibility is guaranteed but the solu-
tion is also unique [10, 11, 16].

Once the solution (u, v, w) is computed, the trivariate
scalar function I(u, v, w) that defines the relevant implicit
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surface tile in T , I(u, v, w) = 0, is evaluated. Typically,
the condition I(u, v, w) > 0 (or I(u, v, w) < 0) implies
that the point (u, v, w) is located in the interior (or in
the exterior) of the tile under consideration. By enhanc-
ing the scalar function I(u, v, w) into a multi-valued vector
function, we can also represent graded materials and prop-
erties in each tile and hence in the entire microstructure.
Using the same trivariate mapping T (u, v, w), we can also
map these graded properties to the xyz-space, allowing for
graded heterogeneity.

The main contributions of this work and the technical
advantages of the proposed method can be summarized as
follows:

� We propose a natural construction scheme for mi-
crostructures that conform to the macro-shape of
freeform trivariate solid models, which is based on the
periodic implicit tiles.

� The concept of non-linear inversion plays an impor-
tant role in the design of a highly efficient and pre-
cise slicing algorithm for freeform trivariate volumet-
ric solids whose interiors are heterogeneous with func-
tionally graded properties such as material, translu-
cency, or color.

� By parametrizing the implicit tiles, tiles in the con-
structed microstructures can also continuously (and
possibly smoothly) vary in their geometry and topol-
ogy across macro-shape T .

� Based on geometric and computational tools for solv-
ing systems of non-linear polynomial equations [2, 10,
16, 38, 39], we efficiently produce solutions which are
locally precise – numerical errors are bounded within
machine precision.

� Finally, the fact that the representation is precise
throughout makes it suitable for analysis. Aims at di-
rectly analyzing implicit forms are already commenc-
ing [36] and this work can clearly support those ef-
forts.

2. Previous Work

Conventional methods for volumetric modeling are ca-
pable of representing solid objects with interior prop-
erties [7, 19]. Recent development of additive manu-
facturing technologies introduced new ways of modeling
and fabricating the volumetric interior, using microstruc-
tures [1, 23, 31, 37, 43]. The main technical challenge
here is how to align the microstructures naturally with the
macro-shape of a given solid object, in particular with the
boundary surfaces [12, 13, 15, 34, 41, 44]. There are basi-
cally two different types of construction methods: (i) the
generation of microstructures, based on certain procedural
rules, directly in the interior volume [15, 26, 30, 44], and
(ii) the design of microstructures in some parametrization
of the Euclidean space [1, 28, 40, 47].

The methods in the first type are often based on geo-
metric operations (such as minimum distance and surface
offset computations) on the macro-shape of the object un-
der consideration. Due to certain geometric singularities

near the skeleton of the object, it is quite cumbersome
to deal with the arrangement of periodic microstructures
in some intricate parts. On the other hand, in the sec-
ond type, the volumes are typically decomposed into rel-
atively simple trivariates such as curved cuboids [27, 29]
and curved tetrahedra [12]. The freeform deformations
for these trivariate primitives are assumed to be nowhere
Jacobian-vanishing. Nevertheless, in some cases, it is hard
to avoid large distortions of these volumes and the mi-
crostructures embedded in them. There are many recent
results [18, 28], developed for handling these cases. In this
work, we focus on the simple case of objects being com-
posed of curved cuboids.

Triply periodic minimal surfaces (TPMS) are useful im-
plicits for populating microstructures within cuboids, in
a repetitive fashion along each direction. In particu-
lar, TPMS surfaces provide an additional advantage of
being locally minimal in surface area, which might ex-
plain why they are often found in biological shapes with
porous scaffold structure [5, 48]. Being a special type
of implicit surfaces, it is conceivable that the TPMS-
based modeling techniques can easily be extended to adapt
the function-based procedural representation of Pasko et
al. [34] for heterogeneous volumetric microstructures in a
compact, precise, and arbitrarily parametrized form based
on generic geometric operations such as blending and de-
formations [6, 8, 9, 14, 20, 25]. Nevertheless, the major-
ity of conventional work on TPMS-based microstructures
considered TPMS surfaces which are static, often with
simple Boolean operations such as intersection and trim-
ming [13, 21, 22, 45, 48].

It is only a recent development that deformations are
applied to TPMS implicit models to generate heteroge-
neous porous scaffolds for freeform trivariate volumetric
objects [20]. The surfaces under deformation do not pre-
serve mean curvature, and thus they may not be minimal
surfaces anymore. Nevertheless, the TPMS-based trivari-
ate mapping provides many useful properties for porous
scaffold design. In particular, Hu and Lin [20] demon-
strated constrained optimization techniques for the gen-
erated porous scaffold so that various non-trivial design
requirements can be handled in a systematic way. Based
on porous synthesis and topological optimization and us-
ing implicit B-spline functions in the parameter domain
of the trivariate B-spline volumes, Gao et al. [14] approx-
imated porous structures more general than those based
on TPMS models. In the current work, we also employ
TPMS and/or B-spline implicit functions in the parame-
ter domain of the trivariate mapping.

The quality of final fabrication results is highly depen-
dent on the efficiency and precision of slicing algorithms
employed in AM technologies. Though popular in many
implicit modeling techniques including those for TPMS
models, the conventional marching cubes algorithm [24]
has limitation in meeting the high-resolution requirement
for 3D printing, which is in the level of tens of microns
and even below microns. Regarding the storage efficiency,
Hu and Lin [20] proposed a procedural way of represent-
ing porous scaffolds in a compact way, often reducing STL
files of hundreds of megabytes to a procedural format of
less than one megabyte. Feng et al. [13] tried to improve
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the slicing precision using a refined constrained Delaunay
triangulation method and constructed multiscale pores for
external freeform geometries. Moreover, Yoo [46] proposed
the representation of slicing result as an image on the plane
of slicing. Nevertheless, even the image resolution for typ-
ical rendering applications may not be sufficient for phys-
ical fabrication, in practice. In this work, we propose a
highly efficient approach to the slicing of trivariate macro-
shape T embedded with implicit tiles, in an arbitrary pre-
cision.

Geometric tools developed for intersection problems
play an important role in the acceleration of our algorithms
– for example, the slicing process is essentially a plane-
volume intersection. Sederberg et al. [38, 39] introduced
the use of tangent and normal cones as an important geo-
metric concept for a single-component test, in surface in-
tersection problem. Based on a similar concept, Elber and
Kim [10] presented a simple geometric test for the unique-
ness of multivariate equation solver. Moreover, Barton
et al. [2] developed a topologically guaranteed algorithm
for computing univariate solutions when the multivariate
polynomial systems are underconstrained. All these algo-
rithms can be accelerated by techniques, such as Hanniel
and Elber [16], for bounding the tangent and normal maps
in multivariate equation solvers.

3. Algorithms

We are now ready to discuss the various algorithms we
employ toward implicit based tilings, in microstructures.
In Section 3.1 we discuss the representation and the struc-
tures we use, while in Section 3.2, precise slicing of graded
heterogeneous microstructures with implicit tiles is con-
sidered.

3.1. The Implicit Microstructure Representation

Let T (u, v, w) : D → IR3 be a regular parametric macro-
shape trivariate volumetric representation (V-rep). By
regular we mean that the Jacobian of the function never
vanishes. T , the macro-shape, is also assumed to be glob-
ally self-intersection free and will capture the general shape
of the microstructure. Implicit tiles will be embedded in
its domain, D. Now let

I(x, y, z) : [0, 1]3 → IR, (1)

be a scalar regular implicit tile, in a unit cube, with I ≥ 0
to be considered inside the model. The boundary (inte-
rior) of I can be defined as either a zero (positive) set
of a parametric trivariate V-rep spline function or a zero
(positive) set of a closed form, precise (transcendental),
function (e.g., a TPMS function), etc.

I(x, y, z) will typically be periodic. That is, its Xmin

boundary will identify with its Xmax boundary and same
for Y and Z. In many cases, we might require smoothness
along these periodic boundaries or even higher continuity.
By populating D, the domain of T , with a 3D grid of
size (L,M,N), of implicit tiles, I(x, y, z), we create the
microstructure M.

Figure 1: A marching cubes’ polygonal approximation of an implicit
heterogeneous Gyroid microstructure in a torus trivariate macro-
shape (shown in block wireframe). A Gyroid function is defined as
the zero set of I(x, y, z) = sin(2πx) cos(2πy) + sin(2πy) cos(2πz) +
sin(2πz) cos(2πx), where x, y, z ∈ [0, 1]3. One tile is shown on the
top right corner.

Now, reconsider the tile from Equation (1) as a vector
function:

I(x, y, z) : [0, 1]3 → IRk, k > 1, (2)

where the vector of I contains the scalar implicit function
in its first coordinate and the rest are properties, like ma-
terial or color in the tile. Alternatively, the macro-shape
T can also hold additional material properties:

T (u, v, w) : D → IRk, k > 3, (3)

where the coordinates of T , for k > 3, will hold the prop-
erty values, over the macro-shape.

Back to tile I, one can clearly construct an approx-
imation for the boundary surface of the implicit S0 :
I(x, y, z) = 0 in [0, 1]3, using some variation of Marching
Cube [24]. S0 will now be mapped through T , as T (S0),
for each position in D of the (L × M × N) tiles in the
microstructure. Then, and if I (or T ) is heterogeneous,
the material properties of I (or T ) are evaluated at the
vertices of the polygons from the marching cubes’ approx-
imation, only to determine the properties (colors) of those
vertices. One can rely on the (color) interpolation abilities
of the graphics library to interpolate the (color) properties
between vertices, inside each polygon. Figure 1 shows one
example of a marching cubes approximation of an implicit
tile (that is computed once), conformingly embedded in a
torus macro-shape, T , of a torus. Heterogeneity is pre-
scribed here by the tile (i.e., Equation (2)).

While we do support this approach and provide the end
user with a (polygonal) approximation of microstructure
M, mostly toward visualization, we also aim at a more
precise alternative. As we seek to support graded hetero-
geneity in the interior of the model, interior that is not rep-
resented by this polygonal approximation and because this
polygonal approximation has a limited accuracy, we also
support a deferred (volumetric) evaluation where we very
efficiently support point by point evaluation, including at
the interior of the model, as is discussed in the coming
Section 3.2, toward slicing for additive manufacturing.

3



3.2. Precise Point Evaluation and Slicing of Implicit Mi-
crostructures

Traditionally, the 3D printing process of 3D models, is
performed one planar section or slice after another. For ho-
mogeneous materials, the outline of the, typically bound-
ary representation (B-rep), model is computed, only to fill
in the interior with a homogeneous material. However,
in order to support graded heterogeneity, that, for exam-
ple, can be encoded in the regular V-rep macro-shape T
and/or in the regular V-rep tiles I, an outline is no longer
sufficient.

Each planar slice must prescribe the material at any
interior location and at any desired resolution. Toward this
end, we follow the Voxel Printing 2 interface of Stratasys,
where each slice is an image at a desired resolution, and
each pixel in a slice is assigned with a color that reflects
the desired material in that pixel, at that Z level.
Recall that the microstructure M is represented as a

parametric trivariate V-rep macro-shape, T , tiled with
(L × M × N) implicit tiles Ilmn. We intersect M with
a slicing plane Ps, and represent the result as an image at
the desired resolution. W.l.o.g., assume Ps is parallel to
the xy-plane. For each pixel p ∈ Ps, one needs to perform
the following operations:

1. Compute the (u, v, w) parameters in T of p. That
is, solve for the (u, v, w) parameters for which
T (u, v, w) = p, if any.

2. Derive the specific implicit tile, Ilmn that these spe-
cific (u, v, w) parameters are in its domain.

3. Evaluate the sign of Ilmn at this location, to deter-
mine if we are inside this implicit tile or outside.

4. If found inside:

� If either the tile Ilmn (with higher priority)
or the macro-shape T have additional material
properties, employ those properties to set the
heterogeneous property value of p.

� Otherwise, set p to be of homogeneous build ma-
terial.

Otherwise, set p to be of no-material property (back-
ground).

Algorithm 1 details this process. Lines 3 and 4 in Algo-
rithm 1 traverse pixel after pixel so we can compute the
steps just described for all pixels in the image. Line 7
computes the inverse of T , deriving the (u, v, w) parame-
ter values so that T (u, v, w) = (xi, yj , zslice). As pixels in
the slicing image might be outside T , in Line 8, we identify
such invalid cases and skip them. If valid, the right im-
plicit tile, Ilmn that contains these parameters is identified
in Line 10, that also maps these parameters to Ilmn’s local
domain. If we are inside the implicit (Ilmn(ul, vm, wn) ≥ 0
in Line 11), we set the right color/material, in Lines 12 to
20. If tile Ilmn has material information (its dimension
is greater than one), it is used to prescribe the material.
Otherwise, if the macro-shape T has material information
(its dimension is greater than three), it is employed. Then,

2https://www.stratasys.com/en/resources/videos/voxel-the-3d-
printed-pixel

if neither Ilmn nor T has material information, a homo-
geneous materials color is set. Finally, if we are outside
the implicit (Ilmn(ul, vm, wn) < 0), a background color is
assigned to that pixel.

FunctionDimension in Algorithm 1 returns the dimen-
sions of the given function - one for a scalar field. Then,
function HeterogenousMaterialColor maps the mate-
rial properties, encoded in the (higher dimensions of the)
given function(s), at the given parameter location, to an
RGB color.

Clearly, by far, the most challenging task in Algorithm 1
is the solution of the inverse of T , in Line 7. Remem-
ber that T has at least three Euclidean coordinates (and
possibly some additional heterogeneous properties’ dimen-
sions), and denote these three Euclidean coordinates by
T = (Tx, Ty, Tz, ...). Computing this inverse amounts
to solving three nonlinear equations in three unknowns,
(u, v, w):

Tx(u, v, w) = xi,

Ty(u, v, w) = yi,

Tz(u, v, w) = zslice. (4)

We follow [11] that solves these nonlinear constraints
using a subdivision solver [10, 16]. We will be computing
this inverse function billions of times, millions of times per
image. Hence, the efficient evaluation of this inverse is
crucial for reasonable computation times. Yet, we have
two potential advantages we can employ here:

� Macro-shape trivariate T and the set of implicit
trivariate tiles {Ilmn} are all assumed locally and
globally self-intersection free. Therefore, if we found a
solution to the inverse problem, this is it - it is unique.

� We traverse the pixels one at a time, along the image
plane. Hence, a valid (u, v, w) solution of the next
pixel (xi, yj) in the Ps plane at Z level zslice is going
to be very similar to a previous nearby valid solution,
for example a valid solution of pixels (xi, yj−1) or pixel
(xi−1, yj).

Following [11], we exploit this neighborhood coher-
ence and employ numerical marching from one inverse
solution to the next, refraining from the need to em-
ploy a full subdivision based solution, for each pixel.
This results in one or two orders of magnitudes of
improvement in computation times, compared to the
application of the subdivision solver on every inverse
computation, on each pixel.

Indeed, every application of the subdivision solver on a
pixel, solving Equations (4), is, time-wise, several orders
of magnitudes longer, compared to numerical marching.
However, we are required to examine all pixels in the im-
age, including those that are outside T . T is rarely a rect-
angle that completely fills the image and hence many out-
side pixel, with no valid neighboring solutions, will force a
full subdivision solution, a solution that is bound to fail.

To remedy this difficulty, we first compute the outline
of the domain of T , as is done in B-rep based 3D printing
of homogeneous materials. This outline is derived by in-
tersecting Ps with the boundary surfaces of T . Then, we

4



Algorithm 1 SliceImplicitMicrostructure - Slicing an implicit microstructure at Z = zslice level.

Input:
T (u, v, w) : D → IRk: A parametric volume trivariate of the macro object;
I(x, y, z) : [0, 1]3 → IRk: An implicit function defined over [0, 1]3, that prescribes an implicit tile;
(L,M,N): Number of repeated I tiles in the u, v, w directions of T ;
zslice: The Z-level of the plane to slice the implicit microstructures;
W,H: The dimensions of the sliced image;

Output:
Img: A sliced image;
Algorithm

1: (xmin, xmax, ymin, ymax, zmin, zmax) := Dimensions of D;
2: {Ilmn} := set of tiles populating D, 0 ≤ l, n,m ≤ L,M,N ; // 3D grid of implicit tiles.
3: for i := 0 to W − 1 do // Scan all pixels in the image of sliced plane, Ps.
4: for j := 0 to H − 1 do
5: xi := xmin + ixmax−xmin

W ; // Derive IR3 location of current pixel.

6: yj := ymin + j ymax−ymin

H ;

7: (u, v, w) := T −1(xi, yj , zslice); // Inverse of T - Parametric location in T for this IR3 location.
8: if (u, v, w) invalid then
9: continue; // No valid solution found.

10: (ul, vm, wn) := (u, v, w) in local parameters of tile Ilmn; // (u, v, w) is in the domain of Ilmn.
11: if Ilmn(ul, vm, wn) ≥ 0 then // Inside the tile.
12: if Dimension(Ilmn) > 1 then // Ilmn is heterogeneous.
13: Img(i, j) := HeterogenousMaterialColor(Ilmn, (ul, vm, wn));
14: else // Map property coordinates into RGB color.
15: if Dimension(T ) > 3 then // T is heterogeneous.
16: Img(i, j) := HeterogenousMaterialColor(T , (u, v, w));
17: else
18: Img(i, j) := Homogeneous material color;

19: else
20: Img(i, j) := background color;

21: Return Img;

only consider the pixels (and evaluate their inverse) that
are inside this outline. With all these improvements, we
typically employ less than a handful of subdivision based
solutions per slice, a slice that can hold millions of pixels.

Graded heterogeneity can be introduced by different ma-
terial values at different tiles or macro-shape locations but
can also be reflected in different tile geometries, in differ-
ent tiles in the microstructure. In [32], it was suggested
to adjust the threshold value of the implicit function as a
mechanism to locally adjust the tile’s geometry:

Ilmn(ul, vm, wn) = C(ul, vm, wn). (5)

C(ul, vm, wn) is a function of the local tile coordinates
(ul, vm, wn) but it can also be a function of the global
macro-shape coordinates (u, v, w) or a function that de-
pends on stress or heat transfer analysis over the struc-
ture, etc. In some previous work, the value of C is fixed
per implicit tile, which results in minute C0 discontinu-
ities between adjacent tile. However, one can control C in
Equation (5) so that adjacent tile will present the same C
values over their shared face, preserving the continuity.
An implicit function can clearly present different bound-

aries in its six faces. Assume Ilmn(ul, vm, wn) is made into

a function that controls the shape of the six boundaries:

Ilmn(ul, vm, wn)

(Xmin, Xmax, Ymin, Ymax, Zmin, Zmax). (6)

The six faces of each individual implicit tile in M can be
all different while continuity could still be fully preserved.
Recall Equation (3). By having an additional scalar con-
tinuous field Ts in T , as

T = (Tx, Ty, Tz, Ts),

Ts can be evaluated at the center of each face of each im-
plicit tile to prescribe a parameter that controls the geom-
etry of that face. Common faces of adjacent tiles will share
the same Ts value, being at the same location in the do-
main of T . For example, the Xmax face of Ilmn identifies
with the Xmin face of Il+1,m,n, and hence will share a Ts
value. Hence, in all, as long as Ts is continuous, the entire
created model will be continuous. In the next section, we
demonstrate all the options and abilities presented in this
section, on some examples.
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(a) (b)
Figure 2: Two examples of implicit trivariate tiles. The left shows
an implicit 3D cross trivariate tile, with arms with rounded square
cross sections. The right presents an implicit trivariate tile and this
tile has both diagonal and axis-parallel arms. Shown are marching
cubes approximation of the geometry.

4. Experimental Results

We now present several examples of microstructures us-
ing 3D V-rep macro-shapes and implicit tiles. All pre-
sented examples were 3D printed on a J55 printer of
Stratasys [42]. In the forthcoming examples, we present
polygonal approximations that resulted from a marching
cubes algorithm applied to the models as well as slices of
the models, using precise slicing, as discussed in the pre-
vious section, and the final 3D printed results.

Figure 2 shows two implicit tiles. To define these tiles,
we employed a set of user-prescribed curves in the unit
cube, and constructed an implicit trivariate spline that
approximates the distance field to the given set of curves.
Then, a constant distance/level set of the field defines the
implicit. The tile in Figure 2 (a) is a 3D cross tile with
arms with a rounded square cross, whereas the tile in (b)
has both diagonal arms as well as axis-parallel arms. The
tile in (a) is a tri-quadratic B-spline trivariate with a mesh
size of (5 × 5 × 5) whereas the tile in (b) is tri-quadratic
B-spline trivariate with a mesh size of (12×12×12). Mod-
eling the topology of such a tile as in (b), using parametric
forms, can be quite challenging.

The implicit tile from Figure 2 (a) is embedded (many
times) in the domain of a macro-shape wing trivariate V-
rep model, in Figure 3. This wing resides in IR6, for XYZ
but also RGB colors. The wing is a Bézier trivariate of
original orders (2× 2× 4) but it was refined to allow for a
better capture of the gradation of colors along it.

Figure 4 employs the implicit tile shown in Figure 2 (b).
The tile is embedded in a macro-shape twisted trivariate
V-rep torus of a square cross section that also resides in
IR6, for XYZRGB. This torus is of orders (2× 2× 3) and
a mesh size of (2× 2× 42). Figure 5 shows a pair of slices
out of the around 1600 slices computed to 3D print this
model. Each slice is about (1600 × 1600) pixels3. It took
about an hour to compute all those slices on a modern PC
workstation, using eight threads (in parallel computation),
and over ten times that much time to 3D print it. The final
model is about 140mm in diameter.

Figure 6 shows a duck macro-shape model with a Gyroid
implicit tile. The duck is a tricubic trivariate V-rep with a

3note the XY resolution of the printer we employed, the J55, is
300 DPI but the Z resolution is 0.01875mm [42]

mesh size of (13× 8× 17). Close to 4000 slices were com-
puted for this duck model, in several hours, each slice of a
little over (2000× 1000) pixels. The model itself is about
(150× 75× 70) mm in size. Heterogeneity was again pre-
scribed in this model via the macro-shape trivariate that
resided in IR6, for XYZ and RGB, and it can be seen that
colors are varying across the entire duck model. Figure 7
portrays a few snapshots out of these almost 4000 slices.

The most time-consuming task of the slicing algorithm is
in the computation of (u, v, w) parameters in T (u, v, w) for
each pixel coordinate (x, y, zslice) in the image slice. In our
computations, almost 90% of the execution time was spent
on the task of solving these nonlinear equations identifying
(u, v, w) parameters for the given (x, y, zslice) coordinates,
even with outline tests and considering local coherence in
the marching process. The complexity of the slicing al-
gorithm depends on the number of evaluated pixels, and
the computation time of the slicing algorithm decreased
by about an order of magnitude by using outline tests and
locality, to vastly reduce the number of subdivisions’ based
solutions. Further, the proposed slicing algorithm is also
simple to parallelize, as the algorithm can be executed si-
multaneously for each slice, and even can be parallelized
within a slice.

Figure 8 presents another trivariate wing V-rep macro-
shape model with an implicit trivariate tile that also holds
color material. The wing is the same Bézier trivariate from
Figure 3. The tile here is a tri-quadratic trivariate of mesh
size (5 × 5 × 5) in IR4, with coordinates representing the
implicit function and RGB. One tile is shown in Figure 9.

Our last example employs tiles that are size-
parametrized (Recall Equation (6)). Two examples of size-
parametrized 3D cross tiles are shown in Figure 10, where
the six arms of the tiles are all of different diameters. These
tiles are exploited in the wing that is shown in Figure 11.
Here, a V-rep trivariate model of a wing is shown, that re-
sides in IR4, prescribing the 3D geometry but also a scalar
size field that controls the diameters of the six arms of in-
dividual tiles in the wing. Each tile in this V-rep model
receives six parameters prescribing the six diameters of its
arms, from the size scalar field of the wing. Color property
is also added locally here for the tiles, via a second RGB
field that is provided alongside the parametrized tile. Two
slices out of the around 1600 slices to 3D print this wing
microstructure, each of size (2500 × 1800), are shown in
Figure 12.

5. Conclusions and Future Work

In this work, we have presented a geometric modeling
framework for constructing conforming microstructures
that consist of implicit tiles. Graded heterogeneity can
be encoded via the V-rep macro-shape or augment the im-
plicit tile, tiles that can be of different types, closed form or
trivariate-based, and arbitrary shapes and/or topologies.

In the current work, we assumed no local and global
self-intersection of the trivariate volumes. No local self-
intersection can be guaranteed by verifying that the Jaco-
bian of trivariate mapping never vanishes, which can be
done quite efficiently by conventional techniques for mul-
tivariate equation solver [2, 10, 16]. On the other hand,
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Figure 3: A 3D printed model of an heterogeneous wing tiled with the trivariate implicit cross tile from Figure 2 (a). Top row shows the
computer 3D model (marching cubes) whereas the bottom row shows the 3D printed model.

Figure 4: A twisted torus heterogeneous V-rep trivariate model in IR6
using the implicit trivariate tile in Figure 2. Top row shows the

computer model whereas the bottom row shows the 3D printed result. The twisted torus macro-shape is also shown on the top left in black
wireframe.

the condition of no global self-intersection is considerably
more difficult to deal with in an efficient manner. In a
recent work, Park et al. [33] introduced a new approach
to the surface self-intersection computation that is based
on a ternary tree structure for the surface bounding vol-
ume hierarchy. We may extend this basic approach to
the global self-intersection test for trivariate volumes, the
technical details of which are beyond the technical scope
of the current work and thus will be explored in future
work.

Throughout this work, we assumed that the domains
of implicits are cubes. However, one can restrict the im-
plicit to any desired domain, much like trimming. Then,
any regular or semi-regular or general tiling of a region of
3-space (the domain D of T ) can be employed, populat-
ing each element in this generalized tiling with an implicit

form, while making sure the tiling is continuous.

Direct analysis of implicits is an emerging topic [36]
and the representation here can directly interface with
such analysis tools, including the support of heterogene-
ity. In fact, with the aid of analysis and optimization tools,
one can (automatically) adjust the geometry and topology
as well as material context of individual tiles in the mi-
crostructures, especially using implicit forms that can be
parametrized to adjust their geometry and material con-
tent.

While TPMS implicits are quite common in the state-
of-the-art, mostly due to their periodicity and simplicity
of use, the physical advantages of TPMS, in a variety of
applications, are unclear. The presented framework of-
fers an alternative that can employ functionally graded
heterogeneous implicit tiles of arbitrary shape and topolo-
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Figure 5: A few slices of the model shown in Figure 4.

gies. We conclude with the hope that with proper analy-
sis and (topological) optimization, the solutions that this
framework can offer will be of some superior value. Fi-
nally, it is plausible that with the aid of deep learning,
efficient otimization of such heterogeneous geometries can
be achieved.
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Figure 8: A 3D printed model of wing, tiled with a heterogeneous trivariate implicit cross tile that is shown in Figure 9. The geometry of
this wing macro-shape model is the same model as in Figure 3.

Figure 9: The implicit trivariate tile used in Figure 8.

Figure 10: Parametrized implicit tiles that are used in the wing
model in Figure 11. This implicit trivariate tile gets six parameters
that control the diameters of the six arms of this cross shape, in
Umin, Umax, Vmin, Vmax, Wmin, and Wmax. Two examples are
presented.
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Figure 11: The top row shows a smooth heterogeneous wing model tiled with parametrized implicit trivariate tile, in three different views.
Wireframe drawing of the wing macro-shape itself is also shown on the left. The bottom row shows the same wing model, 3D printed, from
similar views. The arms of the 3D cross tile are of varying diameters across the wing. See also Figures 10 and 12.

Figure 12: Two slices out of around 1600 used to 3D print the wing with parametrized implicit tiles, shown in Figure 11.
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