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ABSTRACT 

 
              The connection between kinematics and mechanisms to algebraic 
constraints is well known.  This work presents a general kinematics simulator that 
allows end users to define planar and/or spatial arrangements, even along 
freeform curves and surfaces.  The mechanical arrangement is then converted into 
a set of algebraic constraints and the motion of the arrangements is computed 
with the aid of a multivariate polynomial constraint solver. 
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1. INTRODUCTION 
For many mechanical systems, the possible configuration of the mechanism may be considered as a 
zero set of, typically non-linear, polynomial system where its equations express geometrical 
constraints among components of the mechanism [13]. The motion of the mechanism is than 
understood as a function of only geometric relations among its parts. Searching for all feasible 
positions of the mechanism, known as kinematic/mechanism synthesis, has been of major interest in 
recent decades [11][19][21].  With over two thousand electro and/or mechanical samples of 
mechanisms [2], the vast majority of them are planar [9], of which more than half are linkages [21] and 
mechanisms with fixed-axes. 
 
Since the synthesis is made possible by solving polynomial systems, two main streams of solution were 
followed.  The first reaches the solutions algebraically, for instance by a sequential elimination of 
variables using resultants or by transforming original system to simpler one via, for example, Gröbner 
basis [6][8]. 
 
The second approach is based on numerical solvers, mostly exploiting interval analysis [18] or 
polynomial continuation [22][19]. Numerous work has been published in this field, among others we 
mention [20] which seems to be the first to employ numerical continuation for kinematic synthesis 
purposes. 
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In general, solving a large non-linear system is 
computationally expensive and hence the speed-
up procedures are demanded. [15] presents a 
decomposition technique, called degrees of 
freedom analysis, which is based on finding a 
sequence of actions which move the rigid body 
from the initial to the desired position. 
Geometrical constraints are solved locally instead 
of simultaneous solving set of equations. 
 
Similarly to the degrees of freedom analysis, the 
graph-directed algebraic solvers [5][21] construct 
a graph whose vertices are geometric elements 
(typically points, lines and circles) and edges are 
the constraints between them.  Every edge and its 
two end points, or a cluster, is a basic 
"decomposition" unit. The graph is then 
segmented into mutually independent low-degree 
subsystems (a union of some clusters) and those 
are subsequently solved. At the end of the 
algorithm, a cluster-merging process is required 
to connect them in congruent solution. 
 
Some mechanisms perform a motion even 
though their movability estimations expect only 
finite number of its configurations. Such 
overconstrained mechanisms, whose motion 
typically corresponds to a zero set of a well 
constrained system, received special attention 
and treatment [19][15][4]. 
 
This work assumes well constrained 
mechanisms, whose motion is described by n  
(n+1) (piecewise) polynomial constraints, and is 
presenting a 2D/3D kinematic simulation which 
supports motion along free form curves and 
surfaces. 
 
In industry related area [7], many of the real-life 
mechanism's motion are computed with the aid 
of the ADAMS (Automatic Dynamic Analysis of 
Mechanical Systems) [1] commercial package. 
This environment simulates the motion by 
solving the first order Euler-Lagrange equations. 
 

2. BACKGROUND 
 
In this section, we present our employed tools and representations toward the definition of 
mechanisms: 
 
Definition 2.1: A kinematic mechanism M = { E, C }, contains E, a set of elements from which the 
mechanism is built, and C, a set of constraints among them. 
 
Under motion of the mechanism, the constraints C are to be preserved. That is, in every valid position 
of the mechanism all constraints must be satisfied.  We denote such valid position by a placement. 
 

 
Figure 1. Examples of planar mechanisms: a) A piston: 
point P moves horizontally, Q moves along a circle, and 
their distance is preserved (black bar).  b) An 
underconstrained mechanism: 6 unknowns -- 
coordinates of three movable points (white) -- in 4 bar-
length preserving constraints.  The solution space is a 
two-variate.  c) Adding one more constraint makes the 
system "well defined". d) Mechanism is defined as points 
along two trajectories (circle & ellipse), two bar-length 
preserving constraints and one angle-preserving 
constraint. e) "Moving triangle": mechanism is anchored 
by two fixed points (black) while the triangle moves, five 
bar-length constraints are preserved. f) An 
overconstrained mechanism with 3 constraints with 3 
unknowns (the parameters of the trajectory curves) – 
mechanism does not move - only finitely many 
placements could be obtained. 
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We say mechanism M is movable if there exist infinitely many (continuous) placements of E. The vast 
majority of mechanisms yield a motion space that is a univariate. Stated differently, in most 
placements, the local solution space is a curve.  We will denote such a mechanism a univariate-motion 
mechanism or UMM.  In order to compute all placements of a UMM, we expect a system of n-1 
constraints in n unknowns.  We say that the UMM is well defined iff the solution of the system is a 
univariate or a finite set of univariates.  For instance, an underconstrained mechanism will have two or 
more degrees of freedom.  One can clearly note that such a count can be insufficient as a system of n-1 
constraints in n unknowns could be overconstrained at some locations and underconstrained at others. 
While conditions for a fully constrained mechanism in the plane are known [16], this problem is, in 
fact, open for the spatial case.  For now, we, again, assume that if the problem has n-1 constraints in n 
unknowns it is well defined. 
 
In this work, we mainly focus at the simulation of UMMs, either planar or spatial.  Figure 1 presents a 
few examples of planar mechanisms.  In the rest of this section, we present the elements (in Section 
2.1) of a mechanism and its constraints (in Section 2.2).  Finally, in Section 2.3, we briefly discuss the 
subdivision based solver we employ. 
 
2.1 The Elements of a Mechanism 
 
The basic build block of the mechanism is a kinematic point which is a 2D/3D point.  A point could be 
fixed or anchored, or it could be allowed to move along some specific trajectories.  The following types 
of kinematic points are supported: 
 

 An anchored point -- point that lies fixed and does not change its position during the motion.  
All black points in Figure 1 are anchored. 

 Point on a Curve -- point that can move while its trajectory is constrained to a (not necessary 
planar) curve. For example point Q in Figure 1 (a) is constrained to a circular motion. 

 Point on a Surface -- point that can move while its trajectory is constrained to be on a surface. 
 A free point -- point that can move in any direction. 

 
Nothing in the point's definition constraints the space the point is embedded in.  The point could be in 
 n and be constrained to move along a curve or a surface in  n.  Interested in planar and spatial 
kinematics only, we handle points on curves or surfaces only but if higher dimensions are to be 
handled, points along general manifolds could be considered as well. 

 
Special cases, such as a point along the 
X axis, or a spatial point constraint to 
the XY plane, are already covered by 
the above definitions.  Yet, they could 
possibly be handled more efficiently if 
handled specifically. 
 
Having the kinematic points' building 
block, the other elements of the 
mechanism, kinematic bars and 
kinematic faces, are defined as a pairs 
and triplets of kinematic points, 
respectively.  The length of a bar can 
be specified by the user to be fixed, in 
which case an implicit distance 
constraint between the two points 

defining the bar is introduced. Figure 1 presents fixed length bars (black).  In contrast, bars whose 
length may vary, are plotted (See Figure 2) as white bar. The kinematic face is analogously defined. 
 
2.2 The Constraints in a Mechanism  

 
Figure 2. a) Mechanism with a flexible bar: Contrary to the outer 
black bars with length-preserving constraint, the middle white bar 
is allowed to stretch while moving; tangency constraint of the 
flexible bar to the circle makes the mechanism well defined. b) Part 
of the spatial mechanism: a triplet of kinematic points, mutually 
linked together with one flexible and two fixed bars, forms a 
kinematic face that remains tangent to the surface during the 
motion. 

(b) 
(a) 
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In order to simulate a motion of a mechanism, one must build a set of constraints that bind the 
different elements of the mechanisms together.  The following types of constraints are readily 
available: 
 

1. Distance Constraints: 
 point--point (black bars in Figure 1), 
 point--bar, 
 bar--bar, 
 point--curve, 
 point--surface, 
 bar--curve, 
 bar--surface, 

2. Angular Constraints: 
 bar--bar (see Figure 1 (d)), 
 bar--plane, 

3. Tangency: 
 bar--curve (see Figure 2 (a)), 
 bar--surface, 
 face--surface (see Figure 2 (b)), 

4. Parallelism: 
 bar--bar, 

     
One should recall, when considering these constraints, that the curve or surface element is merely a 
point constraint to the curve or surface.  Moreover, due to the fact that we employ geometrically 
oriented solver (see Section 2.3) regular (piecewise) polynomial curves and surfaces could be employed. 
 
Working in the space of piecewise polynomial curves and surfaces, this set of constraints is piecewise 
polynomial as well.  For example, the d distance--preserving constraint between points P and Q is 
expressed by: 

        
2 2|| ||P Q d              (2.1) 

 
Similarly, an angle angular constraint between two bars PQ and RT, can be written as: 
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Some constraints, such as point--
curve/surface distance, are expressed 
by two or even three individual 
equations since both metric and 
orthogonality factors are concerned.  
Consider point P and surface Q(u, v), 
(see Figure 3 (b)).  Their point--surface 
distance constraint is expressed as 
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             (2.3)   
Figure 3. a) Tangency constraint between flexible bar PQ and curve 
C(t) is expressed by two equations.  b) Point P preserves its 
distance from surface Q(u, v); this constraint is expressed by three 
equations (See Equations (2.3)).  
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where d is again the requested distance. 

 
2.3 The Multivariate Polynomial Solver  
We exploit a multivariate (piecewise) polynomial solver [3] that is capable of handling n-1(piecewise) 
polynomial constraints in n unknowns.  The result is typically a univariate solution that is prescribing 
all possible placements of the UMM. Given the system of constraints 
 

 (x) 0F   (2.4) 

 
the solver is required to solve for the simultaneous zero set of a (piecewise) polynomial system of n-1 
equations with n unknowns or degrees of freedom. 
 
The employed solver [3][12] is a subdivision based solver. That is, the univariate solution is sought in 
some domain D n, by recursively dividing D until a condition for the existence of a single univariate 
solution segment can be met. Then, having a cognizance of the starting and ending points of the 
isolated curve segment on the sub-domain's boundary, the segment is numerically traced up to a user-
defined accuracy. 
 
Two placements of the mechanism are considered disjoint if no path in the solution space connects 
them.  The solution seeking approach of solver [3] ensures the topological consistency of the solution 
and hence one can also analyze the number of disjoint placements of the mechanism using the solver. 
 
In the next section, we will show how a geometric formulation of a mechanism is mapped to a set of 
(piecewise-polynomial) constraints so solver [3] can be employed and solve for the resulting motion. 
 
3. BUILDING THE (ALGEBRAIC) CONSTRAINTS  
In this work, we only focus on piecewise-polynomial constraints that solver [3] can handle.  The 
process of build the constraints could be divided into the following steps: 

 Counting the number of degrees of freedom. 
 Assigning parameters to degrees of freedoms. 
 Defining the domain of the constrained problem. 
 Building the constraints as piecewise-polynomial multivariates. 

 
Every kinematic point which is a 2D or 3D, is assigned between zero and three degrees of freedom as 
follows (Recall Section 2.1): 

 An anchored point is assigned no degrees of freedom. 
 A point on a curve is assigned one degree of freedom, the parameter of the curve. 
 A point on a surface is assigned two degrees of freedom, the parameters of the surface. 
 A free point is assigned two degrees of freedom if planar (x and y) and three degrees of 

freedom if spatial (x, y and z). 
 
Having k kinematic points in a mechanism, each point can be assigned at most three degrees of 
freedom.  The n  3k degrees of freedom are then assigned in sequence.  Every degree of freedom that 
is on a curve or on a surface possesses a domain that is inherited from the curve or surface. For free 
points, the domain is prescribed via a bounding box of the working space as defined by the user. 
 
Consider the example in Figure 1 (a).  Let P be the first kinematic point that is assigned the first degree 
of freedom, t1, to move along a horizontal line.  Then, Q is assigned the second degree of freedom of 
the problem, t2, to move along a circular curve. While P is independent of t2 and Q is independent of t1, 
conceptually one can make all kinematic points be functions of all degrees of freedoms. Hence, in the 
end of this process, P = P(t1, t2) and Q = Q(t1, t2). Then, the single point—point distance constraint of the 
problem is 
 

 
2 2

1 2 1 2( ) ( ) 0P t t Q t t d      (3.1) 



 

 

5 

With two degrees of freedom and one constraint, the UMM is well defined.  Here is an alternative 
consideration of the example in Figure 1 (a).   Let P be the first kinematic point that is assigned the 
first degree of freedom, t1, to move along a horizontal line.  Then, let Q be a free point with two 
additional degrees of freedom, t2 and t3. Q must be at a fixed distance from the fixed kinematic circle 
center point, C, so we now have two constraints in three unknowns: 
 

 

2

2

2

1 2 3

2

1 2 3 1 2 3

( , , ) 0,

( , , ) ( , , ) 0,

Q t t t C R

P t t t Q t t t d

  

  
 (3.2) 

 
where R is the circle's radius.  Here again the (same) UMM is well defined.  This alternative 
consideration should hint at the advantage of having kinematic points defined over curves and 
surfaces that not only allows precise univariate and/or bivariate motion of points (i.e. a point moving 
along a mechanical CAM) but also reduces the dimensionality of the problem at times. 
 
Once the problem is fully prescribed as n-1 constraints in n unknowns, it is fed to the solver.  The 
solution, one curve or a set of curves hinting to the existence of disjoint components, is returned as 
vector curve(s) in  n.  Each point on a solution curve is defining one placement of the mechanism.  In 
the example of Equation (3.1), the vector curve is in  2 and each point of the curve defines a (t1, t2) pair. 
This (t1, t2) pair is then used to further position the kinematic points P and Q (and display the entire 
placement). Similarly, for the example of Equation (3.2), a vector curve in  3 is returned and each point 
of the curve defines a (t1, t2, t3) triplet.  One can either display individual placements or alternatively 
animate the motion of the mechanism by stepping along the solution curve(s) in small increments. 
 
Typically, going from 2D to 3D can brings some complications and inconveniences. In the presented 
approach, this generalization presents virtually no difficulties and has minor impact on the size of the 
system (3) since the number of equations is directly related to the complexity of the mechanism, 
namely to the number and type of its components, and not to the dimension.  The next section 
provides some examples, planar and spatial, of mechanisms that were simulated using the presented 
scheme. 
 
4. EXAMPLES  
In this section we present several examples of computed mechanisms.  All examples were created 
using the GuIrit GUI user interface (www.cs.technion.ac.il/~gershon/GuIrit) of the Irit solid modeling 
system (www.cs.technion.ac.il/~irit).  This Kinematic simulator was implemented as a shared library 
extension in GuIrit. 
 
While the result could be animated, herein only samples (i.e. placements) of the (univariate) solution 
space could be shown.   Hence, all figures in this section are shown as pairs with two densities of 
samples of placements. The dense version shows the general expected motions of the mechanism 
while a second figure, with only a few placements, allows one to follow each placement precisely.  As 
an example, Figure 4 shows a simple planar mechanism while the points are moving along piecewise 
polynomial curves. 
 
Clearly the strength of this approach is seen when considering kinematic points over freeform curves 
and surface in 3D.  Figures 5-7 shows a few such a examples. 
 
All presented data were tested on PC with an Intel(R) Pentium(R) CPU (2.8GHz), 1 GB of RAM. Time 
values might differ depending on the topological complexity of each specific example and on a 
numerical precision which is required in the stage where the solver is called. Requiring smooth 
simulations with the “motion” step no longer than 0.01. In the most demanding 3D examples it took 
about a minute to compute.  
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Figure 4. Planar motion converter:  Mechanism consists of four points and three consecutive bars. Blue (bottom) 
point is moving along a horizontal line, the yellow point is constrained to a circle, the pink point is fixed and the 
top white point is on a B-spline curve.  The bottom magenta bar is fixed while the other two are flexible, while 
preserving an angle of 30 degrees between them. Four different placements are shown on the right. 
 
 

  

Figure 5. A spatial linkage is defined by two fixed points (at the bottom) and three along-a-surface-movable points. 
Corresponding polynomial system consist of five constraints (lengths of links) and six unknowns (surface’s 
parameter).  Three different placements are shown on the right. 
 
 

  
Figure 6.  Two vertices (in blue and yellow) of a rigid triangle are constrained to move along the two (blue) curve 
trajectories. The third vertex must follow the bottom surface in green. Six different placements are shown on the 
right. 
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5. CONCLUSIONS AND FUTURE WORK 
In this work, we have presented an application of simulated motion of planar and spatial mechanisms 
using a subdivision based solver.  The fact that this solver is geometrically oriented makes it well 
suited to handle geometric constraints.  Hence, the ability to handle freeform motion along a freeform 
curve and/or surface in the plane or in space provides this simulator with unique capabilities. 
 
In [5], a scheme was presented to decompose a large constrained problem into numerous small 
problems. Because, in principle, the complexity of the subdivision based solvers grows exponentially 
with the dimension, such decomposition might be highly beneficial.  Similarly, in [10] a scheme that 
represents the constraints as expression trees is introduced that shows only polynomial grows with the 
dimension of the problem.  The use of expression trees here could be beneficial as well.  
 
As an additional future work, any algebraic constraint may be formulated as a function of time, 
introducing time as an additional parameter, which would allow, for instance, the mechanism to 
change dynamically its shape during its motion. 
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