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Abstract

Computer-aided surgical simulation is a topic of increasingly exten-
sive research. Computer graphics, geometric modeling and finite-
element analysis all play major roles in these simulations. Fur-
thermore, real-time response, interactivity and accuracy are crucial
components in any such simulation system. A major effort has been
invested in recent years to find ways to improve the performance,
accuracy and realism of existing systems.

In this paper, we extend the work of [Sela et al. 2004], in which we
used Discontinuous Free Form Deformations (DFFD) to artificially
simulate real-time surgical operations. The presented scheme now
uses accurate data from a Finite-Element Model (FEM), which sim-
ulates the motion response of the tissue around the scalpel, during
incision. The data is then encoded once into the DFFD, represent-
ing the simulation over time. In real-time, The DFFD is applied
to the vertices of the surface mesh at the actual incision location
and time. The presented scheme encapsulates and takes advantage
of both the speed of the DFFD application, and the accuracy of a
FEM. In addition, the presented system uses a haptic force feedback
device in order to improve realism and ease of use.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling; I.6.8
[Simulation and Modeling]: Types of Simulation—Visual

Keywords: Free-Form Deformation, Finite Element Model, Sur-
gical Simulation

1 Introduction

Today, surgical simulators constitute an active research subject.
Surgical simulators allow physicians to practice and hone their
skills inside a virtual environment before entering the operating
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room. Such pre-operative training procedures have been shown
to significantly improve the results of actual procedures [Seymour
et al. 2002]. This is especially true with the recent increase in the
use of endoscopic and laparoscopic procedures.

In order to maximize the potential gain in such virtual-reality train-
ing, a surgical simulation system should replicate the surgical envi-
ronment as closely as possible in terms of look and feel. Conveying
a realistic impression is difficult. Because of the complexity of such
a task, it is best grasped when broken into smaller undertakings.
One of the most important roles of any surgical simulator is to real-
istically animate - in real-time - the way tissue (skin and flesh or in-
ternal organs, etc.) behaves under cutting operations. A virtual cut-
ting simulator should supply the following basic capabilities. First,
it should have some mechanism for real time collision detection.
Such a mechanism should control the location, direction and orien-
tation of a virtual scalpel and constantly test for intersections with
the model. Second, a cutting module should implement geometric
operations that would progressively cut through the model, mod-
ifying its topology and constructing new geometry (the geometry
of the cut) as needed and over time. Third, the cut model should
reflect the physical behavior as accurately as possible, mainly pre-
senting tissue behavior over time. Another important detail not to
be overlooked is the user interface. A haptic force feedback device
is invaluable in providing realistic interaction behavior, both from
the visual and the palpable point of view.

When dealing with surface meshes, the actual task of cutting the
tissue can be divided into two sub-tasks. First, there is the surface
modeling task, in which the model surface should be split along the
route of the scalpel as it advances. Second, the geometry around the
cut should change, reflecting the shape and orientation of the cut-
ting tool and the internal strain and stress properties of the tissue. In
this work, we propose a framework that performs these two tasks.
The framework is based upon an augmented variant of Free Form
Deformation (FFD) [Sederberg and Parry 1986], which allows dis-
continuities and openings to be created in geometric models. The
Discontinuous FFD (DFFD) [Schein and Elber 2005] is continu-
ous everywhere except at the incision, and hence it has the ability
to continuously deform the geometry around the cut. Moreover,
we incorporate previously simulated results, using a Finite-Element
Model, into the deformation function in order to make the behavior
of the cut as realistic as possible.

Because FEM simulations are difficult to compute in real-time, an
alternative approach could apply physical simulations to a low res-
olution representation of the model and encode it into the DFFD
during the interaction, only to be immediately applied to the fine
resolution representation of the geometry. This alternative approach
would, of course, entail a much higher processing overhead, as the
FEM simulation will need to be executed during run time, but on
the other hand it will allow for more adaptable results than the first
approach. In this work, we will concentrate on the first approach,
in which the DFFDs are constructed off-line.

The proposed FEM-DFFD synergy is of low real-time computa-
tional complexity while retaining reasonable accuracy. Conse-
quently, the algorithm is capable of handling complex geometric
models at interactive rates. The FEM calculations are conducted



once as a preprocessing stage using a straight-line scalpel path,
whereas the deformation is applied to a limited local set of mesh
vertices at every time step, mapping the straight path to a deformed
path following the virtual scalpel.

The rest of this work is organized as follows. In Section 2, we
give an overview of the previous work on the problems of cutting
through and deforming geometric models. In Section 3, we describe
the proposed cutting simulation approach; Section 4 presents a few
examples and finally, we conclude in Section 5.

2 Related Work

Throughout the years, the problems of cutting through geometric
models and deforming 3D models, for general as well as for med-
ical purposes, have been tackled from many directions. In this sec-
tion, and due to space constraints, we only consider a small subset
of the relevant work. In Section 2.1, we look at work dealing with
cutting through polygonal or tetrahedral meshes and in Section 2.2,
we consider results related to the incorporation of FEM simulation
results into medical simulations.

2.1 Mesh and Surface Cutting

Earlier work on mesh-cutting dealt mainly with surface-based
meshes. Bruyns and Senger [Bruyns and Senger 2001] suggested a
method of cutting polygonal meshes interactively without any post-
processing, simply by splitting the affected polygons into several
new polygons. A different approach proposed by Neinhuys and
Van der Stappen [Nienhuys and van der Stappen 2004] suggested
combining a local Delauny-based triangulation step as part of the
mesh-cutting process. Edge-flip operations are used on the faces
affected by the cutting operation in order to eliminate triangles with
large circumferences. This method can be applied to both 2D and
3D surface meshes. A different approach, by Ellens and Cohen [El-
lens and Cohen 1995], directly incorporated arbitrary-shaped cuts
into tensor product B-spline surfaces. This approach has the advan-
tage of operating over an inherently smooth surface, but requires
modifications to the standard definition of trimmed B-spline sur-
faces.

Other works considered volumetric data models, mostly in the form
of tetrahedral meshes. Using volumetric data models is beneficial
as it can represent both the outer surface of the model as well as its
inner parts. Ganovelli and O’Sullivan [Ganovelli and O’Sullivan
2001] proposed cutting tetrahedral meshes while re-meshing the
tetrahedra around the cut to achieve the required level of smooth-
ness. Since such splitting operations could degrade the quality of
the mesh, they suggested using edge-collapse operations in order to
remove low-quality tetrahedra from the mesh. Bielser et al. [Bielser
et al. 1999] described cutting through tetrahedral meshes based on
the observation that, topologically, there are only five distinct ways
to cut a tetrahedron. Once the system detects a collision between
a tetrahedron and the cutting scalpel, the case is mapped to one of
the five available cutting configurations. The scheme uses a generic
subdivision which replaces every original tetrahedron to be split
with 17 new tetrahedra. This results in the introduction of many
additional tetrahedra into the model and degrades the performance
of the system over time. To circumvent this problem, Neinhuys and
Van der Stappen [Nienhuys and van der Stappen 2001] proposed
locally aligning the edges of the triangular faces around the cut to
the route of the virtual scalpel. The movements of the scalpel inside
a triangle are recorded and the vertices adjacent to the motion-curve
are snapped onto it. Then, the triangles are separated along these

aligned edges. Another approach, proposed by Forest et al. [Forest
et al. 2002], treats cutting through tetrahedral meshes as a material
removal problem. In [Forest et al. 2002], tetrahedra are removed
from the mesh when hit by the pointing device. This trivially con-
serves the three-manifoldness of the tetrahedral mesh but results in
a loss of mass of the volumetric model. Since the fineness of the
cut is tightly coupled to the fineness of the model, this could result
in sharp edges around the incision, something that is infrequently
found when cutting human tissue.

2.2 Finite Element Deformation

Bro-Nielsen [Bro-Nielsen 1998] employed a linear elastic mater-
ial model in order to gain speed at the expense of accuracy. The
problem was that linear elastic models are only sufficient when
dealing with small deformations. In another effort, by Mor and
Kanade [Mor and Kanade 2000], model deformation was achieved
by employing linear FEM over the cut model. Another problem
that was tackled in [Mor and Kanade 2000] is the introduction of
progressive cutting to prevent delays during the cutting procedure.
Neinhuys and Van der Stappen [Nienhuys and van der Stappen
2000] tried to combine a FEM simulation by using an iterative solu-
tion to the set of equations with a conjugate gradient method. This
method allows for alterations of the mesh topology at run time, as
there is no preprocessing required. Vigneron et al. [Vigneron et al.
2004] take advantage of the XFEM method used in fracture me-
chanics to model cuts and resections in human tissue. XFEM does
not require continuity within the mesh element and is thus useful for
modeling cracks and cuts. Nonetheless, this can not be done in real
time, as large systems of equations must still be solved during the
actual simulation. Berkley et al. [Berkley et al. 2004] showed how
constraints can be used to simulate suturing and support general
real-time displacement-based interaction with finite element mod-
els. Wu and Heng [Wu and Pheng-Ann 2004] described a GPU-
assisted system that uses coarse models to support limited real-time
interaction.

Solving a large set of linear equations takes time. Even the use
of iterative solvers is time consuming and rarely yields interactive
frame rates. In our work, we incorporate the data from an off-line
FEM simulation, trying to overcome the problems of solving these
systems of equations at run time.

3 The Algorithm

The proposed algorithm operates in four phases:

• A first preprocessing stage. A FEM is created, simulating the
cutting operation over time and in a canonical setup. Further,
the locations of the individual elements are recorded at every
time step. This stage is described in detail in Section 3.1.

• A second preprocessing stage, in which the data from the
FEM simulation is encoded into a DFFD deformation model
over time. This deformation is described in Section 3.2, and
its encoding is discussed in Section 3.3.

• The real-time cutting stage. While the user is moving the
scalpel along the skin, the skin polygons of the mesh are split
in order to represent the cut. This step is presented in Section
3.4.

• The deformation stage. Following the cutting operation, the
deformation is applied to the polygons around the cut, and



over time, splitting the cut open using the aforementioned de-
formation function. This stage is detailed in Section 3.5.

In addition, the specific support and integration of the haptic device
into this simulation environment is described in Section 3.6.

3.1 Finite Element Model of Skin and Tissue

The finite element formulation used in this research has two sep-
arate element types: one for the skin, and one for the soft tissue
below it. The skin element is a two-dimensional surface element
that is bonded to the soft tissue. It has no stiffness in the transverse
direction and is used to introduce tensile skin pre-stresses into the
model. The soft tissue element is a volumetric element that smears
the subdermal muscles, fat, tendons, etc. into one material repre-
senting the bulk behavior of the inhomogeneous continuum. This
allows for a more accurate modeling of the skin and subcutaneous
tissue, which inherently have very different material properties.

The finite element model is a three-dimensional volume that rep-
resents the patch of tissue being explicitly modelled. This volume
is discretized with triangular constant strain elements and compat-
ible prismatic wedge elements for the skin and soft tissue respec-
tively. Along the sub-dermal boundaries that connect this volume to
the rest of the body, distributed springs simulate the displacement-
traction boundary conditions.

The cut path is defined before meshing occurs, and is used to define
the shape of the mesh. Elements on the boundaries are aligned with
the cut path and duplicate nodes are created along it. The duplicate
nodes represent topologically distinct points on either side of the cut
path. Without any additional constraints, the model represents the
behavior of a tissue patch in which a cut has been introduced. Initial
closure of the cut is imposed through the use of displacement con-
straints, as seen in Figures 1 and 2. These are algebraic constraints
enforcing the condition that corresponding points on either side of
the cut have similar displacements. As the virtual scalpel traverses
the cut path, these constraints are relaxed, allowing the cut to open.

Figure 1: Physical and conceptual representations of the cut while
the displacement constraints are active. Yellow (light) lines indi-
cate locations of the cut whereas red (dark) bars indicate the actual
displacement constraints.

3.1.1 Governing Equations

In general, the finite element equilibrium equations are written as
Ku = f whereK is the stiffness matrix assembled from the stiffness
matrices of the skin, soft tissue, and spring boundary elements,u
is the vector of nodal displacements andf is the vector of exter-
nally applied loads. By adding to this system the constraints which
model tissue separation at the cut path, the original system of linear

equations is augmented to form the following2×2 block system:
[

K CT

C 0

]{
u
v

}
=

{
f
0

}
. (1)

C u = 0 are constraints for enforcing closure of the cut. Each equa-
tion expresses the fact that two corresponding points on either side
of the cut have the same displacements, in a given direction, when
the cut is closed at that point. Algebraically, this may be written for
two points A and B as:

∑φi(A)ui −∑φi(B)ui = 0, (2)

whereφi(X) is the value of the i-th finite element nodal shape func-
tion at locationX, and the sum is over all nodal degrees of freedom
in a given direction. The valuesφi(X) are the entries of the coeffi-
cient matrixC. Given the compact support of finite element shape
functions,C is very sparse. The vectorv is a vector of Lagrange
multipliers representing generalized forces necessary for enforcing
the constraints (closing the cut).

Figure 2: Conceptual image depicting the constraints in three di-
mensions. These are two elements that surround the cut, where the
gap between them is part of the cut, but does not represent its full
depth; which is typically modeled using multiple finite element lay-
ers. The linkages connecting the two elements represent the rigid
displacement constraints that restrict the x,y and z displacements of
the two nodes to be the same. Each set of linear prism elements are
connected by four nodal constraints.

3.1.2 Solution Methods

Performing a block Gauss elimination on Equation (1) gives the
following two equations,

CK−1CTv = CK−1f (3)

Ku = f−CTv, (4)

where the solution of Equation (3) provides the values of the La-
grange multipliers and the solution of Equation (4) provides the
displacement field. To advance the simulation as the tissue is cut,
one set of displacement constraints, pertaining to thex, y, andz
components of two attached nodes, is removed fromC and Equa-
tions (3) and (4) are solved. This process is repeated until the cut is
completed.



3.2 The Discontinuous Deformation Model

DFFD extends FFD to support the mapping of continuous domains
into discontinuous ranges. Traditionally, FFD defines a mapping
from D ⊂ IR3 ⇒ IR3, warping a region ofIR3 into another region
of IR3. When such mapping is applied to an embedded geometric
object,O, it also deforms its shape to follow the prescribed space
warping operation.

FFDs may be defined using arbitrary functionsF : IR3⇒ IR3. How-
ever, due to their robustness and controllability, trivariate tensor
product B-spline functions are usually used. Such functions are
defined as,

F(u,v,w) =
l

∑
i=0

m

∑
j=0

n

∑
k=0

Pi jkBo
i (u)Bo

j (v)B
o
k(w), (5)

(u,v,w) ∈ [Umin,Umax)× [Vmin,Vmax)× [Wmin,Wmax),

wherePi jk are the control points andBo
i (u) are the univariate basis

functions of ordero, in all three directions. As a result of using
trivariate B-spline functions for deformation, a wealth of modeling
tools, such as degree-raising and knot-insertion[Cohen et al. 2001],
is made available.

As with any other modeling tool, FFD also possess several lim-
itations. Specifically, FFD cannot support mapping into discon-
tinuous ranges. Nevertheless, there are cases where the ability to
model both the deformation and tearing of an object inside a unified
framework, would be useful. To specify potentialC−1 discontinu-
ity into F , we use a standard knot-insertion procedure [Cohen et al.
1980]. By inserting order knots intot = t0 ∈ {u,v,w} parametric
axis, a potentialC−1 discontinuity is formed along this iso-surface.
For brevity and without loss of generality, we will assume hence-
forth that knot insertion always occur along thev parametric axis
at v = v0 and that are no existing knots atv = v0. As a result of
inserting order knots intov = v0, new control points are formed
that interpolate the iso-surfaceF(u,v = v0,w). By manipulating
the control points that are on or near iso-surfaceF(u,v = v0,w), a
rich family of shapes can be modeled. In particular, for a virtual
incision application the shapes of an arbitrary scalpel can now be
realized.

FFD is commonly used to deform polygonal models. In such cases,
the deformation is usually approximated by applying the deforma-
tion function, F , to the vertices of the model. However, in the
case of DFFD, polygons that cross the discontinuity would not be
mapped properly. To ameliorate this problem, the DFFD algorithm
would split crossing polygons such that the edges of the polygon are
clipped against the planev = v0. As a result of this clipping opera-
tion, new, non-crossing polygons replace the old crossing polygon.
The splitting operation occurs in the parametric domain ofF , hence
the edges of a crossing polygon are always clipped against an axis-
aligned plane, making the clipping operation much simpler.

One direct result of the above split operation is that closed mod-
els become open. Since for some applications this is an undesir-
able consequence, the DFFD algorithm should also supply means
to seam the cut. For stability, vertices near the cut are translated in
v by±ε such that each is mapped to either side of the discontinuity.
This operation only guarantees aC0 continuity between the added
geometry and the original one, at the incision location. In the next
section, we will show how the results of an FEM simulation from
Section 3.1 could be incorporated into the process of modeling the
DFFD function.

3.3 Representing the DFFD Over Time

The result of the FEM simulation is a set of points{P j
i } where

P j
i is the location of pointi, at frame j. Our interest lies in the

volumetrically minimal subset that contains the points surrounding
the cut from the first point at which the scalpel breached the skin,
advancing along the cut, and until they reach a steady state, when
the cut is fully open. We approximate the points’ movement over
time using a 4-variate(u,v,w, t) smooth B-spline function, which
will represent the DFFD over time.

In our implementation, we used 4th order (cubic) B-splines and uni-
form open-end knot vectors, with the exception of thev-axis knot
vector in which we added a discontinuity at the middle of the do-
main, simulating the cut (which is along theu-axis). This choice
of orders, number of control points and knot vectors affects the
level of accuracy. For example, increasing the number of control
points (i.e., the degrees of freedom) would provide a DFFD that
more accurately describes the results of the FEM simulation. A
Least Squares (LS) fit problem could be defined which is linear in
the 4-variate’s control points’ coordinates and corresponds to the
following set of constraints:

∀i, j ∑
k,l ,m,n

Qk,l ,m,nBk(u
j
i )Bl (v

j
i )Bm(w j

i )Bn(t
j
i ) = P j

i ,

whereQk,l ,m,n are the 4-variate’s control points of indicesk, l ,m,n,
Bα (β ) are theα ’th B-Spline basis functions of the selected orders
and knot sequences evaluated at parameter valueβ ∈ {u j

i ,v
j
i ,w

j
i , t

j
i }

of P j
i .

The (u j
i ,v

j
i ,w

j
i ) parametric values of points{P j

i } were taken from

the initial frame (i.e. the parametric values of pointP j
i are set to be

the Euclidean coordinates ofP0
i ), and thet parametric value is set

to be j.

This technique’s most significant drawback is evident in the case
of regions in the deformed space that have too few sampled points
and are thus underdetermined. For such regions, the LS algorithm
results in control points being reduced to the zero point. In order
to avoid such problems we modified the equation system’s right-
hand side to beP j

i −P0
i . Thus, the resulting control points’ coor-

dinates are actually the difference between the coordinates of the
desired control points and the control points coordinates’ values
for an identity DFFD with identical orders, knot vectors and do-
main, meaning that the desired result isI + Q whereQ is the least
squares result andI holds the control points coordinates values for
an identity DFFD as specified above, i.e.,I(u,v,w, t) = (u,v,w, t).
The resulting DFFD, and following the off-line FEM simulation,
continuously describes the way the volume of the canonical tissue
surrounding the cut deforms over time. An example is depicted in
Figure 3.

3.4 Splitting the Geometry

DFFDs can be applied to surface meshes, volumetric data sets and
parametric models. For the sake of efficiency, we focus our work on
triangular surface meshes. When cutting through a triangular mesh,
the most basic operation is triangle splitting. Any triangle that has
vertices on both sides of the cut must be split before the DFFD
mapping is applied to it. Moreover, vertices on the cut line must
be treated with care, as will be discussed shortly. This splitting op-
eration is conducted incrementally as the virtual scalpel advances,
one triangle at a time, following the path of the cut, along the skin
surface.



(a) (b)

(c)

Figure 3: Sampling of the 4-variate DFFD att = 0 (a), t = 0.2 (b)
and att = 0.8 (c).

The following notations will be used: LetC(s) be an arc-length
parametric representation of the cut line following the path of the
virtual scalpel. Similarly,N(s) defines the orientation of the virtual
scalpel at every timet.

Usually, splitting a triangular face creates three new triangles; one
triangle on one side of the cut, and two on the other side (see Fig-
ure 4). These three new triangles replace the original face, which is
then purged. These original triangles have both entry and exit cut
locations, found by calculating the closest point on a segment (the
entry or exit edge) toC(s). In addition, we examine how close this
linear approximation of the cut line is. If the straight line between
the entry and exit locations is sufficiently close toC(s), that trian-
gle is split as just described. Otherwise, the triangle must be sub-
divided recursively into smaller triangles before the split can take
place. Figures 5 shows an example of this more complex case.

Figure 4: Triangle split, normal operation. The dashed line indi-
cates the cut path.

If the cut passes very close to a vertex, we handle things a bit differ-
ently, as the splitting method that was proposed above will create
one very small triangle and one very long and thin triangle. In this
case, we move the vertex at hand onto the cut, duplicate it, and use
one copy on each side of the cut, see Figure 6.

While we only process the skin surface, we also seek to model the
deepness of the cut, and model this new geometry on the fly. In
order to do this, the entry and exit locations are duplicated a num-

(a) (b) (c)

Figure 5: When the straight line between the entry and exit points
is not close enough to the cut path, the triangle is subdivided and
the algorithm continues. (a) shows the naive split, (b) shows the
subdivision, and (c) shows the first child triangle after the split.

(a) (b)

(c) (d)

Figure 6: When the scalpel path lies very close to a vertex, the
geometry is split in a different manner. The dashed line indicates
the scalpel path. (a) shows the initial configuration. (b) shows the
splitting of the neighborhood triangles according to the basic algo-
rithm, (c) is an enlargement of the center vertex area. (d) shows our
modified solution for the problem, which moves the original vertex
to the path and splits only two triangles.

ber of times and moved in the direction of−N(s) into the body.
Triangles are then used to tessellate these interior vertices, all the
way to the bottom of the cut. The resulting geometry can be seen in
Figure 7.

3.5 Time Dependant Deformation of the Geometry

The DFFD is applied at regular time intervals to a list,L , of ac-
tive vertices around the cut. The active vertices inL are vertices
of the original mesh near the cut, in addition to the vertices created
when the triangles around the cut were split. A vertex is entered
into L when the scalpel passes near it (in the case of original ver-
tices) or when it is created (for the new ones), and removed fromL
when it is no longer affected by the DFFD application (as is detailed
later on). At every time step,L is updated, and the scalpel path
(C(s)) and scalpel orientation curve (N(s)), are recreated. From
these curves and the width of the cut, we reconstruct the incision
parametrization volume (IPV), see Figure 8. The IPV is actually the



Figure 7: The deepness of the cut polygons modelled and added to
the mesh.

volume inside of which reside all the vertices ofL , or vertices that
will be moved as a result of the next DFFD application. The IPV’s
role is to correlate between a vertex’s Euclidean coordinates and its
coordinates in the (canonical) parametric domain of the DFFD.

(a)

(b)

N(s)

C(s)

Figure 8: IPV construction. The volume is constructed along the
curve, appearing with respective scalpel orientations at regular in-
tervals, as seen in (a). The volume is seen in (b).

The vertices inL are mapped through the IPV, creating theu,v,w
andt coordinates for the DFFD. For every vertexVi in L , let vs =
arg

s
min‖C(s)−Vi‖. Then,u andw are set by their distance toC(vs)

along N(vs) and T(vs)×N(s), respectively, whereT(s) = C′(s).
Thet parameter is, again, the time in which the vertex was entered
into L . Since only parameter values of new vertices, that enterL ,
need to be recomputed for every DFFD iteration, the procedure is
quite efficient.

Hence, we have(u′,v′,w′)=DFFD(u,v,w, t)
= DFFD(IPV−1(x,y,z), t). We then apply the IPV to these
(u′,v′,w′) parametric coordinates in order to find the new Euclidean
location of the vertex.

A vertexVi ∈L , inside the volume surrounding the cut, will move
an amount that is the sum of all the small deformations assigned
to it in all the iterations of all DFFDs, whileVi is in the incision
volume.

3.6 Force Feedback Support

In order to provide a more realistic use for the proposed approach,
we enabled a SensAble(tm) PHANToM Desktop(tm) haptic de-
vice [SensAble Technologies, Inc. ] to work with the system. see
Figure 9. The device consists of a pen-sized handle connected to
a robotic arm with flexible engine-enforced joints. These allow the
arm to move in 6 degrees of freedom (DOF): three spatial coordi-
nates and pitch, roll and yaw. The engines at the arm joints allow the
device to apply force to the holder of the handle, providing it with
force feedback ability. This pen-sized handle was used as scalpel
in our simulation, so when adjusting the haptic resistance correctly,
the combination of the visual and haptic user interface provided us
with a convincing look and feel of an actual incision process.

Figure 9: PHANToM Haptic Device in operation.

Due to the sensitivity of the human tactile system, a force feed-
back device requires update rates of 1kHz in order to provide high
definition simulations (see [Tan et al. 1994]). Therefore, our al-
gorithm must handle collision queries between the virtual scalpel
and model at these rates. A brute force algorithm, which iterated
through all polygons of the model and performed collision tests
with the scalpel, resulted in poor frame rates with models of the
order of tens of thousands of polygons. Therefore, to speed up the
collision detection process, we preprocessed the model data, and
created a uniform voxel grid around the model, where each voxel
holds a list of polygons that intersect the voxel. This limited our
collision queries to only the polygons in the voxels intersecting the
scalpel, and effectively reduced our calculations to a few hundred
line-polygon intersection tests at most, for every collision query be-
tween the virtual scalpel and the model.

Our force feedback model has two stages: a pre-puncture stage and
a post-puncture stage. When light forces are applied to the skin,
a force model is used to simulate the scalpel touching the skin,
without penetrating it [Terzopoulos et al. 1987]. In this model, the
force is a function of the depth to which the scalpel is pushed in
the direction normal to the skin. When the scalpel pierces the skin,
this force is replaced by a viscous drag force (according to Stokes’



model)−bT (t), [Terzopoulos et al. 1987] (whereb is an approxi-
mated constant of viscosity extracted from experiments andT (t) is
the the speed vector of the scalpel’s cutting path). This simulates
the movement of the scalpel while cutting through skin or flesh.
Constants were chosen empirically, to provide realistic touch and
cut force feedback. Eventually, the 6DOF control over the scalpel,
along with the force feedback feature, provided us with intuitive
control over the scalpel, and raised the simulation to a higher level
of realism.

4 Results

Figures 10, 11 and 12 show snapshots from a few incision simula-
tions generated with our implementation. In Figure 10, an incision
simulating a brow-lift is shown, Figure 11 shows a typical incision
made in a face-lift operation and Figure 12 shows a side view of an
incision being made across the bridge of the nose, displaying a side
view of the cut.
The simulations were performed on a P4-2.8GHz desktop computer
with 1GB of RAM. The original head model consists of 12108
polygons. The cuts shown in Figures 10, 11 and 12 added 453,
1443 and 1082 polygons, respectively, including the polygons rep-
resenting the deepness of the cut.

Figure 10: A brow-lift cut simulation.

Figures 10,11,12 and 13 are all from a real-time film recording of
the actual use of the force feed-back scalpel. The full incision video
and other results are available at:
http://www.cs.technion.ac.il/∼guysela/incision.htm

5 Conclusions and Future Work

We have presented an enhancement to our previous work [Sela et al.
2004] in which we proposed a method to perform real-time incision
simulation using 3D DFFDs. In this enhancement, we detail how to
compute an incision simulation using an off-line FEM simulation
and incorporate this simulation’s results into a 4D DFFD represen-
tation over time. Finally, we demonstrated how this 4D DFFD can

Figure 11: A face-lift cut simulation.

be used to simulate real-time incisions on a 3D model using a hap-
tic device. This method is modular and, therefore, flexible enough
to accommodate different methods of incision simulation as well as
different model representations. It is also computationally simple
enough to yield real-time frame rates on desktop computers.

Future extensions may include the usage of more than one simula-
tion results, i.e., using different FEM simulations and correspond-
ing DFFDs for different types of incisions, handling incisions with
variable width and depth, depending on material properties, and the
application of the method to volumetric data. Another possible ex-
tension could be the exploration of different surface mesh cutting
techniques. Our system uses a recursive, non-adaptive scheme, and
an adaptive one could reduce the number of polygons added to the
model at the expense of additional computation.

Furthermore, the presented framework can be extended to model
different cut shapes, representing bent scalpels, and altogether dif-
ferent deformations of the model such as bend, protrude, twist, etc.,
functioning as a cutting modeling tool.

Another potential use of the technology presented in this paper is to
convey the results of large scale finite element models to scientists
and engineers. Frequently numerical models in many important ap-
plication domains such as structural mechanics simulations, wave
propagation in heterogeneous media, weather prediction, etc. gen-
erate multiple, large-scale 3D data sets. The multiple data sets arise
from simulations that are run with different parameters, discontinu-
ities, boundary conditions, interfaces, etc, in order to fully quantify
a phenomenon or evaluate a design. An important task for the sci-
entist/engineer user is to browse the massive data generated from
these simulations with the goal of finding critical patterns and fea-
tures and assessing changes in the model response due to changes in
loading, size of cracks, contact regions and a myriad of application-
specific model parameters. The task is tedious and time consuming
and in the current state of the art often involves either a round-trip
call to the underlying finite element simulation, or manual access
and parsing of data files from a separate storage subsystem. This
prevents real-time, free style, exploration of the model response.
Further, and perhaps more importantly, thisstaccatomode of ex-



(a) (b)

(c) (d)

Figure 13: Four snapshots of the interactive incision process of the face-lift simulation.

ploring response data is, by its nature, a hinderance for understand-
ing how the response is affected by changes in model structure,
topology, boundary conditions and other parameters. Discontinu-
ous FFD presents a practical mechanism for storing finite element
data sets with discontinuities and conveying them effectively to end
users. We have shown that by using DFFD, even data sets with
spatial discontinuities can be encoded and then replayed, rendered
and manipulated at interactive speeds. This allows users to explore
the data produced by the numerical simulations and quickly find
the specific spatial regions, combination of parameters, or critical
lengths of contacts/discontuities, etc. that are of most interest. This
information can then be used to access portions of the underlying
raw data for additional, more detailed analysis. DFFD provides the
ability to essentially summarize and capture large amounts of fi-
nite element data sets, while allowing users to visualize and browse
warped data, possibly with discontinuities and then ”zoom in” to
access specific data items at interactive rates. This is a key support-
ing technology for the development of scientific computing appli-
cations.

One drawback of the system is the inability to deal with more com-
plex situations, such as large lacerations, tissue removal or the cre-
ation of a skin flap. Another limitation is due to the fact that our

FE model assumes that the entire simulated volume is comprised of
tissue without the presence of, say, bones. As the framework per-
forms the FEM calculation only once, it is not possible to encode
such information into the FFD since the location and orientation
of a bone is unknown during preprocessing. One more notewor-
thy point is the fact that although we used a multivariate B-Spline
function for encoding the FEM data, it is by no means the only
method. Any other representation that captures the simulation data
over time would suffice as long as it can be retrieved quickly enough
when required in real-time for fast calculation of the vertices’ new
locations.
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