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Abstract

We present algorithms to derive the precise Hausdorff distance and/or the min-
imal distance between two freeform shapes, either curves or surfaces, in IR2 or
IR3. The events at which the Hausdorff/minimal distance can occur are identi-
fied and means to efficiently compute these events are presented. Examples are
also shown and the extension to arbitrary dimensions is briefly discussed.
Keywords: Bisectors, Antipodal points, Algebraic constraints, Spline geometry,
Collision detection.

1 Introduction and Previous Work

The need to compute the maximal or minimal distance between two entities in
IR2 or IR3 emerges in a whole variety of applications. Both collision detection
calculations and Haptic interaction can greatly benefit from such black boxes [7].
Force feedback for Haptic devices is typically applied once the interaction tool
gets closer to the surface of the approached object and is typically applied in
the direction from the closest point on that surface. Similarly, the Hausdorff
distance computation plays a major role in any approximation method of a
curve or a surface by lower degree curves or surfaces or even piecewise linear
approximations, as it provides L∞ bounds over the approximation.

Given two objects, O1,O2 ∈ IRn, the Hausdorff distance between them is
defined as:

DH(O1,O2) = max
(

max
P∈O1

min
Q∈O2

||P −Q||, max
Q∈O2

min
P∈O1

||P −Q||
)

.

Figure 1 illustrates this definition using the geometric insight that the Hausdorff
distance can sometimes (but not always!) be captured as the last contact point
of the offset of one shape with the other shape, and vice versa.

That said, not much can be found on the problem and its solution for freeform
polynomial geometry or even for piecewise linear polygonal geometry. In [2],
point sampling over two polygonal meshes is proposed as an approximation
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Fig. 1. The Hausdorff distance between two planar curves in (a) could be computed
as the maximum offset amount between the last contact point of the offset front of one
shape with the second shape (b) and vice versa (c).

for the Hausdorff distance between the two polygonal meshes. [2] offered the
’Metro’ point sampling tool that is the acceptable tool in the computer graphics
community to estimate Hausdorff distances over polygonal meshes.

In [8], bounds on the Hausdorff distance of two given curves are presented.
The cases of two implicits, an implicit and a parametric form, and two parametric
form are considered but only to give an upper bound. The bound between two
parametric forms is the worst offered of the three and is derived by examining
the difference vectors of the corresponding control points, bringing both curves
into a comparable representation. This approach further assumes the two curves
are fairly close to each other, an assumption that might yield poor answers if
not.

It is not common that, in principle, a problem is simpler in the piecewise
polynomial domain than in the piecewise linear case. The Hausdorff distance
computation between two objects is one such problem. The fact that the polyg-
onal mesh is not tangent plane continuous, makes it very difficult to track the
exact position when an event of an extreme distance can occur. In [1], the ex-
act Hausdorff distance between points and freeform planar parametric curves is
investigated, taking advantage of the fact that the input is C1 continuous. The
events where the Hausdorff distance can occur are then identified and reduced
to a set of differential algebraic constraints. The finite solution set of these con-
straints is then examined for the actual Hausdorff distance. Our work here builds
upon [1] and while we follow a similar approach, we will lay out the differences
and also go beyond to consider freeform geometry in IR3 and IRn as well.

This paper is organized as follows. In Section 2, we consider the problem of
the Hausdorff distances in the plane. Extensions of the result to IR3 and IRn

are discussed in Section 3. Minimal distances between freeforms are discussed in
Section 4 and examples for distance computations in IR2 and IR3 are presented
in Section 5. Possible extensions, and computational considerations are discussed
in Section 6 and finally, we conclude in Section 7.



2 Hausdorff Distance in the Plane

We following [1], who presents the necessary algebraic constraints for Hausdorff
distances in the plane, and express all the events at which the Hausdorff distance
could occur at, between two planar C1 parametric curves.

Let C1(r), r ∈ [0, 1] and C2(t), t ∈ [0, 1] be two regular 3 C1 continuous
planar parametric curves. Then,

Definition 1. A normal-line to C1(r) at the parameter r = r0 is a line through
C1(r0) that is parallel to the curve’s normal, NC1(r0).

The Hausdorff distance could clearly occur at the end (or C1 discontinuity)
points of one of the curves, if the curves are open (or only piecewise C1). See
Figure 2 (a) and (b). This amounts to examining the distance between the end
points of the two curves but also to looking for the normal-lines of C2(t) that
go through C1(r0), r0 = 0, 1, if any, or vice versa. These normal-lines’ locations
could be identified by resolving the following algebraic constraint:

〈C1(r0)− C2(t), C ′2(t)〉 = 0, (1)

having one non-linear equation in one unknown, t, to solve for. The Hausdorff
distance between a point and and curve in the plane is now a simple problem
that could be reduced to examining end-point vs. end-point events as well as the
events satisfied by Equation (1). To consider more events at which the Hausdorff
distance could occur between two planar curves, we also need the following:

(a)

(b)

(c)
(d)

Fig. 2. The Hausdorff distance events (in black) between two curves (in two different
gray colors) can occur at either the end points (a), end point of one curve along a
normal-line of the other curve (b), antipodal locations (c), or when one (dark-gray)
curve intersects with the (think line) self-bisector of the other (light-gray) curve (d).

3 A parametric form is considered regular if its derivatives span the form’s tangent
space, at every point in the domain. For a curve C, this amounts to the constraints
||C′|| > 0.



Definition 2. The line through C1(r) and C2(t) is denoted as a curves’ bi-
normal-line at parameters r = r0 and t = t0, if it is a curve normal-line at
both C1(r0) and C2(t0). Points C1(r0) and C2(t0) are then denoted antipodal
points.

The Hausdorff distance between C1(r) and C2(t) could also occur at antipo-
dal points of the two curves. See Figure 2 (c) for an example. These antipodal
location could be identified using the following set of constraints,

〈C1(r)− C2(t), C ′1(r)〉 = 0,

〈C1(r)− C2(t), C ′2(t)〉 = 0, (2)

having two equations and two unknowns, t and r, to solve for.
Interestingly enough, these are not the only events at which the Hausdorff

distance (event) can occur between two planar curves, and [1] identifies a third
case. Let Bi be the self bisector of planar curve Ci. I.e. the locus of points that
are equidistant from two different locations on Ci. Then, the Hausdorff distance
between C1(r) and C2(t) could occur at the locations where C1(r) intersects
B2 or when C2(t) intersects B1 (See Figure 2 (d)). Algebraically speaking, the
constraint for C1(r) to intersect B2 means that C1(r) is on the intersection of two
independent normal-lines of C2, at C2(t) and C2(s), and further, this intersection
is at equal distance from the two foot points of these normal-lines, as C1(r) is
on B2:

〈C1(r)− C2(t), C1(r)− C2(t)〉 − 〈C1(r)− C2(s), C1(r)− C2(s)〉 = 0,

〈C1(r)− C2(s), C ′2(s)〉 = 0,

〈C1(r)− C2(t), C ′2(t)〉 = 0, (3)

where the first constraint makes sure the distances to the two bisector’s foot
points are the same and the last two constraints ensure the foot directions are
orthogonal to the tangents of the curve. In all, Equation (3) presents three
constraints in three unknowns, r, s, and t. The first constraint in Equation (3)
could be rewritten as

〈C2(t)− C2(s), C2(t) + C2(s)− 2C1(r)〉 = 0, (4)

hinting to the fact that the term (t−s) exists in this constraint. Hence, for t = s,
the first constraint is always satisfied. Further, the last two constraints coalesce so
the solver is likely to return the entire domain as a valid solution to Equations (3).
In [1], a partial remedy that alleviates the problem is offered by adding a fourth
constraint (and a fourth variable u) in the form of 1 − u(t − s) = 0 to ensure
that t 6= s, having u within some finite parametric domain. The solution of [1] is
not only expensive due to the expansion of the formulation into four equations
and four unknowns but will also miss any valid answer where (t − s) is below
the 1/u selected resolution.

A simpler yet more efficient and more robust alternative approach that one
can employ in this specific case, is to divide all input curves at all locations



where the curvature, κ, achieves an extremum. I.e. solve first for the locations
where Ci satisfy κ′i = 0, i = 1, 2, and split the two curves at those extrema. One
should note that while κ is not rational in general, κ2 is. Then, and since s and
t must be on the opposite sides of some curvature extrema parameter value, one
only needs to deal with three different curves, two of which are segments of C2.

An even better and more general solution would aim at eliminating the (t−s)
term from Equations (3) before attempting to solve Equations (3), an approach
we are taking in this work. In [9], we present an algorithm to algebraically
decompose and remove a (t − s) term from a function known to hold such a
term, when the function is in either a Bézier or a B-spline form.

In [1], the subdivision solver of [10] is employed to solve these algebraic
constraint. While [10] supports only Bernstein polynomials, as part of this work
we use a similar solver that is capable of handling piecewise polynomials B-
spline constraints as well [3, 5]. All examples presented in this work employ the
solver [3, 5] over the B-spline domain, that is implemented using the IRIT [6]
solid modeling environment.

3 Hausdorff Distances in IR3/IRn

Interesting enough, Equations (1), (2) and (3) holds for IRn, and specifically,
for IR3. The direct extensions of Definitions 1 and 2 to IRn paves the way to the
rest of the necessary extensions:

Definition 3. A normal-line in IRn to a parametric form F (u), u = (u1 · · ·um)
at the parametric location u = u0 is a line through F (u0) that is also in the nor-
mal space of F at u0.

Definition 4. The line in IRn through F (u), u = (u1 · · ·um) and G(v), v =
(v1 · · · vn), is denoted as F and G’s bi-normal-line at parameters u = u0 and
v = v0, if it is a normal-line at both F (u0) and G(v0). Points F (u0) and G(v0)
are then denoted antipodal points.

We now consider the more involved cases of a curve and a surface (in Sec-
tion 3.1) and two surfaces in space (in Section 3.2), in IR3, while we also portray
the necessary steps for these constraints in IRn.

3.1 Hausdorff Distance Between a Curve and a Surface

In order to further extend the ability to compute the Hausdorff distance and
support it between a curve C and a surface S, similar events to those presented
in Section 2 should first be extended to IR3. If S is open, all its boundary corner
points and boundary curves should be examined against C as space point-point,
point-curve, and curve-curve Hausdorff distances cases. However, we also need
to consider a new type of a Hausdorff event between a space curve, C(t), and a
freeform surface, S(u, v), in IR3.

An equivalent condition to the antipodal curve-curve event, following Defi-
nition 4, can be expressed by requiring that the line through C(t) and S(u, v)



be indeed a bi-normal-line and reside in the normal space of C and the normal
space of S. Algebraically, we have,

〈S(u, v)− C(t), C ′(t)〉 = 0,〈
S(u, v)− C(t),

∂S(u, v)
∂u

〉
= 0,

〈
S(u, v)− C(t),

∂S(u, v)
∂v

〉
= 0, (5)

having three constraints in three unknowns.
Extending Constraint (5) to IRn between parametric manifolds F (u), u =

(u1 · · ·um) and G(v), v = (v1 · · · vn) is fairly straight forward having m orthog-
onality constraints of the form ∂F

∂ui
= 0 and n orthogonality constraints of the

form ∂G
∂vj

= 0, in m + n degrees of freedom, to solve for.
Similarly, we are required to extend the events resulting from intersecting

one shape with the self-bisector of the other. Considering the self-bisector of C
(parametrized twice by independent parameters t and s) yields,

〈S(u, v)− C(t), S(u, v)− C(t)〉
− 〈S(u, v)− C(s), S(u, v)− C(s)〉 = 0,

〈S(u, v)− C(s), C ′(s)〉 = 0,

〈S(u, v)− C(t), C ′(t)〉 = 0, (6)

having three equations and four unknowns. Indeed, this should not come as
a surprise as the self-bisector sheet of C in IR3 is a bivariate surface and its
intersection with S yields the univariate solution space that Equation (6) seeks.
Let NS(u, v) be a normal field of S(u, v). Interested in the extreme distances only
along this univariate, Equation (6) could, for example, be augmented with the
extreme distance condition, that occurs when the three vectors of C(t) − C(s),
C(t)+C(s)

2 − S(u, v) = 1
2 (C(t) + C(s)− 2S(u, v)), and NS(u, v), are all coplanar,

or,

〈(C(t)− C(s))× (C(t) + C(s)− 2S(u, v)), NS(u, v)〉 = 0. (7)

Figure 3 shows this special case, with this augmented constraint.
The first constraint in Equation (6) could be rewritten as

〈C(t)− C(s), C(t) + C(s)− 2S(u, v)〉 = 0, (8)

clearly hinting once more to the fact that the term (t−s) exists in this constraint
as well. By subdividing C at the locations of maximum curvature, or better yet,
algebraically eliminating the (t−s) term from Equations (6) altogether, we avoid
the need to introduce an additional parameter, as in [1].

Now consider the intersection of the self-bisector of S (parametrized inde-
pendently twice as S(u, v) and S(r, s)) with C(t), to yield,

〈S(u, v)− C(t), S(u, v)− C(t)〉
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Fig. 3. The Hausdorff distance event between a surface S and a curve C can occur at
the intersection of S with the self-bisector of C, BC . While this intersection is a (black)
curve in (a), we only seek the extreme distances along this curve, using, for example,
a condition that occurs when the three vectors of C(t)− C(s), C(t) + C(s)− 2S, and
NS , the normal of S, are all coplanar (b).

〈S(r, s)− C(t), S(r, s)− C(t)〉 = 0,〈
S(u, v)− C(t),

∂S(u, v)
∂u

〉
= 0,

〈
S(u, v)− C(t),

∂S(u, v)
∂v

〉
= 0,

〈
S(r, s)− C(t),

∂S(r, s)
∂r

〉
= 0,

〈
S(r, s)− C(t),

∂S(r, s)
∂s

〉
= 0, (9)

having five equations and five unknowns.
Unfortunately, Equations (9) form, again, a singular set of constraints as

every location for which u = r and v = s is identically satisfying the first
constraint in Equations (9). The solution is again to eliminate the terms (u = r)
and (v = s), a process that is beyond the scope of this paper. See [4] for more
on this algebraic decomposition.

3.2 Hausdorff Distance Between Two Surfaces

Continuing to the most general case of the Hausdorff distance in IR3 between two
different surfaces, S(u, v) and R(r, s), we now need to consider the computation



of bi-normal-lines and detect all antipodal locations between these surfaces,
〈

S(u, v)−R(r, s),
∂S(u, v)

∂u

〉
= 0,

〈
S(u, v)−R(r, s),

∂S(u, v)
∂v

〉
= 0,

〈
S(r, s)−R(r, s),

∂R(r, s)
∂r

〉
= 0,

〈
S(r, s)−R(r, s),

∂R(r, s)
∂s

〉
= 0, (10)

having four equations and four unknowns.
Considering the self bisector of one surface, say R (parametrized as R(r, s)

and R(a, b)), against the other surface S would again yield a univariate solution
as the intersection of one (self-bisector of R) surface with another (S). Interested
in the extreme distance only, we once more augment this set of constraints with
an extreme distance constraint, having in all,

〈S(u, v)−R(r, s), S(u, v)−R(r, s))〉
〈S(u, v)−R(a, b), S(u, v)−R(a, b)〉 = 0,〈

S(u, v)−R(a, b),
∂R(a, b)

∂a

〉
= 0,

〈
S(u, v)−R(a, b),

∂R(a, b)
∂b

〉
= 0,

〈
S(u, v)−R(r, s),

∂R(r, s)
∂r

〉
= 0,

〈
S(u, v)−R(r, s),

∂R(r, s)
∂s

〉
= 0, (11)

and one possible co-planarity extreme distance constraint to fully constraint the
system of equations, following Equation (7), of

〈(R(a, b)−R(r, s))× (R(a, b) + R(r, s)− 2S(u, v)) , NS(u, v)〉 = 0,

having six equations and six unknowns, in all.

4 Minimal Distance Between Curves and Surfaces

Having all this machinery we developed so far, it can also be used to determine
the minimal distance between two curves or surfaces in IR2 or IR3. The minimal
distance events could occur at either the boundaries (end points for curves,
boundary curves and corner points for surfaces) or at the interior of the domain
at antipodal locations. Since we have already seeing how to compute these events,
we can deduce the minimal distances as well. Note that the self-bisector event
is not relevant here.

In the next section, we presents some examples of both the Hausdorff distance
computation and the minimal distance testing.



5 Examples

In this section, we present a few examples of the implemented-so-far portion of
the computation of distances portrayed in Sections 2, 3 and 4. We present results
of deriving the Hausdorff distance and minimal distance between curves in IR2

and IR3.
Figures 4 to 7 presents four examples of increasing complexity starting from

an approximation of a sine function in the plane (Figure 4), a circular function
in IR3 (Figure 5), a helical function in IR3 (Figure 6) and a general space curve
(Figure 7). All curves are B-spline curves of degrees 3 or 4. The Hausdorff dis-
tance computation times are between a few seconds to several dozens seconds
for the most complex example of Figure 7, on a modern PC workstation. The
minimal distance computation took a small fraction of that.

Fig. 4. The Hausdorff distance between a polynomial sine function approximation and
a perturbed sine function, in the plane. Both curves are quadratic with 21 control
points.

Figures 8 to 10 presents computations of minimal distances between two
shapes, for the same pairs of curves as in Figures 5 to 7, for completion. In all
cases, the minimal distance is not zero.

6 Extensions and Computational Comments

We have derived conditions for the computations of the events where the Haus-
dorff distance and/or minimal distance between two regular C1 freeform para-



Fig. 5. The Hausdorff distance between a polynomial circular function approximation
and a perturbed circular function, in IR3. Both curves are cubic with 10 and 24 control
points, respectively.

Fig. 6. The Hausdorff distance between a polynomial helical function approximation
and a perturbed helical function. Both curves are quadratic with 21 control points.

metric shapes in IR2 and IR3 can take place. So far, we have implemented and
tested all the cases for curves in IR2 and IR3, as was demonstrated in Section 5.

The presented constraints, even for curves, impose major computational bur-
dens, when attempting to solve them. Consider a pair of curves, each with O(n)
coefficients. The addition/subtraction and/or product operations between this
pair of curves, in all presented constraints, are typically derived as outer (ten-
sor) products. Hence, any constraint that holds only a pair of independent curves
(i.e. Constraint (2)) will possess O(n2) coefficients whereas a constraint involving
three independent curves (i.e. Constraint (4)) will contain O(n3) coefficients.

In general, having k independent parametric forms, would yield constraints
with O(nk) coefficients. This exponential growth renders this tensor product
representation futile, when more than a few independent variables are involved.
While beyond this writeup, we are working on an approach that reduces this
exponential complexity from O(nk) to O(np), where p is the number of operators
(i.e. addition, subtraction, or product) in the constraint. p is typically small



Fig. 7. The Hausdorff distance between two similar yet general space curves. Both
curves are quadratic with 53 control points.

Fig. 8. The minimal distance between a polynomial circular function approximation
and a perturbed circular function, in IR3. Both curves are cubic with 10 and 24 control
points, respectively. See also Figure 5.

and in the order of k. To get a hint at the expected benefit from using this
approach, both in speedup and in memory consumption reduction, the set of
Equations (3) was solved in both the traditional, tensor product, way and using
the new approach, for a few curves of different sizes. Table 1 summarizes the
result. Using up to 1470 Mbytes when solving for the Hausdorff distance between
two curves of 50 coefficients, the traditional, tensor product, approach converts
the first constraint in Equations (3) into a tensor product trivariate of O(503)
coefficients. Due to the fact that the constraint also involves (inner) products, it
ends up with around one million coefficients. With 8 bytes per double, a single
constraint will consume around 10 Mbytes of memory!

7 Conclusions

In this paper, we have presented algorithms to derive the precise Hausdorff and
minimal distance between regular C1 freeform shapes in IR2 and IR3. We hope
to continue and completely implement all cases in IR3, including surfaces, in the
future.

Clearly some of the posed constraints, like in Equations (1), (2) and (3),
could be extended with ease to IRn. Others, like (6) and (7), are more difficult
to extend. One can expect that the way Equations (6) (Equations (11)) could



Fig. 9. The minimal distance between a polynomial helical function approximation
and a perturbed helical function. Both curves are quadratic with 21 control points. See
also Figure 6.

Fig. 10. The minimal distance between two similar yet general space curves. Both
curves are quadratic with 53 control points. See also Figure 7.

Traditional New Approach

Num. of Time Size Time Size
Coeffs. (Secs.) (MB.) (Secs.) (MB.)

10 2.1 14.5 1.8 7
20 8.4 77 2.9 7.5
50 326 1470 23 11.5

Table 1. A comparison of solving Equations (3) for different pairs of curves, of different
sizes, using the traditional, tensor product, approach and the new approach. Benefits
are clearly significant in both speedup and memory consumption, as the complexity is
increased.



be augmented with an extreme condition (7) (Equations (12)) to yield a zero
dimensional solution space could also be applied to higher dimensions as well.

In all the above constraints, the implicit assumption was that the shapes do
not (self-) interest. Many of the presented constraints vanish at an intersection,
and hence, an implicit preprocessing step to all the above computation should
examine for intersections first and preclude these intersection locations from the
computation.

The overall computation is not fast. The need to solve for the simultaneous
zeros of several piecewise polynomials of many coefficients, makes the computa-
tions consumes seconds of processing, even for curves. Further methods to make
this computation more efficient are to be sought.
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