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Abstract

We present a general, unified framework to resolve geometric covering problems. The problem is reduced to a set cover search in
parametric space. We propose and implement different methods for solving the set cover problem, allowing for flexible trade-offs
between solution quality and computation time. Our framework relies on computer graphics techniques and heavily exploits GPU
based computations.

Results are demonstrated in two specific applications: firstly, multi-visibility/accessibility analysis of 3D scenes that guarantees
coverage, possibly redundant, of the target shape(s) by a minimal number of observers. Secondly, illumination design in 3D
environments that ensures the satisfaction of local constraints on illuminance levels using a minimal set of lamps.
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1. Introduction

Geometric covering (GC) problems arise in many different
fields. As part of the manufacturing process, products have to
be entirely validated by a minimal number of inspection de-
vices. In scenarios involving visual surveillance, e.g., in banks
or in museums, critical areas have to be visible to an as-small-
as-possible set of cameras or guards, possibly more than once
for redundancy (see Figure 1). Public spaces require sufficient
illumination while keeping the number of light sources minimal
for energy conservation. In mold design and given a 3D artifact,
a division of the artifact into a minimal set of assemblable mold
parts is desired. When considering antenna networks, the ob-
jective is to achieve certain levels of service quality at different
geographical locations, making it necessary to place a minimal
set of antennas guaranteeing the service quality.

The aforementioned applications pose similar covering ques-
tions of geometric nature, where covering means the satis-
faction of constraints on values assigned to objects in space,
such as illuminance values, visibility requirements or quality-
of-service levels. Due to their importance, GC questions have
attracted a considerable amount of attention from various scien-
tific disciplines such as computer graphics [1, 2], computational
geometry [3, 4], manufacturing and mold design [5, 6], surveil-
lance [7], inspection [8] and sensing theory [9].

In this work, we introduce a framework to tackle GC prob-
lems in a general, unified way. Our approach draws heavily
from computer graphics techniques and offers solutions for the
abovementioned applications as well as other GC queries. Be-
ing considered in various fields, studies about GC problems typ-
ically use different terminologies. For consistency and conve-
nience, we first introduce the terminology used throughout this
work.

Figure 1: Top: A surveillance scenario in which a pavilion has to be inspected.
The two entrances (in green) must be visible to at least two cameras, while the
hull of the pavilion (in yellow) must be covered once. One hundred candidate
cameras are shown. Bottom: Five selected cameras fulfill 98.5% of the cov-
erage constraints specified on the pavilion’s surface. The different colors show
the actual coverage levels (0 - red; 1 - yellow; 2 - green; 3 - turquoise; 4 - blue;
5 - magenta).

Terminology. The space in which the GC problems are exam-
ined in our framework contains three types of objects:

• targets • sensors • occluders

An object in space that requires covering will be denoted
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as a target. Formally, a target, T , is an m-manifold object
in space, where m ∈ {1, 2}. We pose only one constraint on
T : it must possess a parametrization from an m-dimensional
box, DT : [di

min, d
i
max]m−1

i=0 , such that it can be represented as
T = T (d0, d1, ..., dm−1). For example, in R3, the target can be a
bivariate (trimmed) surface or a set of such surfaces, but also (a
set of) 3-space curves. In Figure 1, the surface of an art pavilion
serves as T .

Any object in space that exhibits covering abilities is called
a sensor. The sensors of a set S cover target locations, and can
represent cameras or guards but also cellular antennas or light
sources. Sensors are typically fixed points in space. The space
in which the sensors reside is not required to equal the space in
which the target resides. For example, while the target can be
located R2, the sensors might reside in R3. A possible set of
sensors is illustrated in Figure 1, where one hundred candidate
cameras form S.

The third class of objects, O, are called occluders. Based
on their location in space, occluders reduce or even prevent the
coverage of target locations by sensors. For instance, in GC
problems dealing with visibility, occluders may be opaque ob-
jects blocking any inspection through them. In Figure 1, a tree
serves as an occluder.

The sensors cover target locations with a certain coverage
level. In turn, every target location has a required coverage
level assigned to it. Based on the provided terminology, GC
problems thus reduce to the question of what is the best place-
ment of a (minimal) number of sensors such that the required
coverage levels are satisfied for all target locations.

Certain GC problems share the property that the coverage
levels are binary. For instance, in applications concerned with
visibility, the coverage levels encode the states ‘visible’ and ‘in-
visible’. We refer to such GC problems as Binary Geometric
Covering (BGC) problems. However, in many GC problems,
the covering is not necessarily binary. For instance, certain tar-
get locations may be required to be visible by several cameras,
offering some redundancy. Similarly, multiple light sources
may accumulatively illuminate target points to reach the de-
sired illumination levels. A GC problem where the required
coverage levels are above R is, therefore, denoted as a Contin-
uous Geometric Covering (CGC) problem. Analogously, any
GC problem in which the required coverage levels are above
the natural numbers is called a Discrete Geometric Covering
(DGC) problem.

Our Approach. The vast majority of previous work on GC
problems explore the solution in the space in which the sensors
and targets are situated, typically in 2D or 3D Euclidean space.
In contrast, we propose an approach that reduces GC problems
into a generic problem in the parametric domain of the target,
DT . The problem is then discretely solved, exploiting its highly
parallel nature and using computer graphics techniques.

Despite its discrete and therefore approximate character, our
approach offers a simple, robust, and unified framework to ad-
dress a large variety of GC problems, including the aforemen-
tioned ones. Furthermore, by reducing the problem to many
simple (i.e., pixel) problems, we are able to handle and support

local covering specifications. That is, any location on the target
can have its own required coverage level. To the best of our
knowledge, existing GC algorithms can only handle the global
specification of a coverage requirement, i.e., achieving the same
covering level for all target locations.

GC problems are considered difficult to solve. As stated, the
majority of known GC algorithms operate in Euclidean space
and, as part of the solution process, must resolve complex visi-
bility and accessibility queries among different 3D objects, typ-
ically polygons. Moreover, GC problems are typically reduced
to a set cover query and hence of expected exponential time
complexity. In this work, we propose different methods for an-
swering the set cover queries, each involving a different trade-
off regarding solution quality, runtime and extensibility. For
higher efficiency, we take advantage of GPU computation ca-
pabilities wherever possible.

Organization. The rest of this work is organized as follows: af-
ter discussing previous work concerned with different types of
GC problems in Section 2, we provide a formal definition of GC
problems in Section 3. In Section 4, we present our algorithmic
approach for computationally solving GC problems. Two dif-
ferent computer graphics related GC applications are discussed
in Section 5: multi-visibility analysis by cameras or guards and
illuminance satisfaction by multiple light sources. Finally, we
discuss the proposed approach and possible extensions in Sec-
tion 6, and conclude this work in Section 7.

2. Related Work

One of the classical GC problems is arguably the famous Art
Gallery Problem [7]. While an extensive amount of GC prob-
lem variations has since been addressed in literature, we restrict
our discussion mostly to related work solving problems in three
dimensions. Following [10], we refer to problems requiring a
globally defined covering level k as k-coverage problems.

Inspection. Tarbox and Gottschlich [11] sample sensors on a
sphere surrounding a three-dimensional target and choose a set
of locations on the surface of the target. Different heuristic-
based algorithms are used to find a small, but not necessar-
ily minimal set of sensors such that all target locations are 1-
covered. Restricting themselves to simple polyhedra, Roberts
and Marshall [8] attempt to find sets of faces of a given target
in R3 that are 1-covered by a common viewpoint while mini-
mizing the number of viewpoints.

Computer Graphics. Fleishman et al. [1] tackle a BGC prob-
lem aiming at automatically creating a small number of ren-
dered images of a given 3D scene such that most surfaces in
the scene are 1-covered. They furthermore require that any sur-
face be covered at most once, in order to obtain non-redundant
images.
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Mold Design. In mold design, 1-cover must be precisely satis-
fied, i.e., every target location belongs to exactly one mold part.
Liu and Ramani [5] process the geometry in Euclidean space,
while Shragai and Elber [6] work in parametric space. The lat-
ter work is similar to our approach and can be seen as a special
case of it.

Sensor Networks. Lu et al. [9] assign to every sensor s a prob-
ability function mapping every location in R2 to a probability
with which it is detected by s. All required coverage levels are
the same, representing the expected number of sensors detect-
ing the corresponding target location. The resulting k-coverage
problem is solved using a greedy method. Becker et al. [12]
consider 1-coverage of every voxel of a 3D volume, employing
a greedy algorithm to select a small number of sensors.

Lighting Design. GC problems also arise in lighting design
that seeks to automatically place lights such that a prescribed
illumination is achieved. The problem of approximating a pre-
defined illumination setting is tackled by Schoeneman et al. [2],
Marschner and Greenberg [13] as well as Contensin [14] by
means of least squares methods. However, to the best of our
knowledge, no previous work aims at solving the problem of
guaranteeing minimal light intensities at all target locations
with a minimal number of light sources.

3. Continuous Geometric Coverage Problems

In this section, we provide a general definition of CGC prob-
lems. Consider a target T and recall that DT is the parametric
domain of T . The required coverage levels of the target loca-
tions are prescribed, via DT , by a coverage requirement func-
tion:

Definition 1. The coverage requirement function
R : DT → R≥0 specifies for each parametric loca-
tion, d ∈ DT , a required coverage level that has to
be reached at target location T (d).

The required coverage levels are defined locally, i.e., differ-
ent target locations can be assigned different coverage levels.
This is desirable since in real-world scenarios there may be
some parts of an object that must be covered with a different
coverage level than other parts.

Similar to the required coverage levels, we define the cover-
age levels that a sensor provides to the locations on the target,
potentially influenced by occluders:

Definition 2. The sensor coverage function
CO : DT × S → R≥0 assigns to every paramet-
ric location, d ∈ DT , a value CO(d, s) with which
target location T (d) is covered by sensor s ∈ S, and
which depends on the set of occluders, O.

Coverage levels are usually additive, e.g., if they represent
illuminance values [15] or the number of cameras seeing a cer-
tain target location. Hence, having defined the covering that
each sensor provides to different points of target T , we can con-
sider the cumulative covering contribution of several sensors.

Definition 3. A target location, T (d), is said to be
k-covered by a set of sensors, S, if∑

s∈S

CO(d, s) ≥ k, k ∈ R≥0.

CGC problems can now be defined in the following way:

CGC Problem Statement. Given (S, T , DT , CO, R), find the
set Ŝ ⊆ S of minimal size satisfying∑

s∈Ŝ

CO(d, s) ≥ R(d), ∀d ∈ DT . (1)

Less rigorously, CGC problems ask for a minimal cardinal-
ity set of sensors ensuring that each target location is covered
at least to the extent of its required coverage level. In case
that CO : DT × S → N and R : DT → N, the problem is a DGC
problem. BGC problems are obtained if CO : DT × S → {0, 1}
and R : DT → {1}.

Due to the difficulty of computationally solving CGC prob-
lems as defined above, the continuous domain of the target, DT ,
is discretized. Discretizing DT , being an m-dimensional box,
m ∈ {1, 2}, yields a finite sample of parametric locations which
we denote by D. Recall that the coverage requirement function
assigns a required coverage level to each parametric location
d ∈ DT and hence also every d ∈ D. The discretization thus
provides a discrete m-dimensional map whose values can read-
ily be serialized into a coverage requirement vector R ∈ R|D|

≥0,
e.g., via the lexicographic order of the elements in D. Further,
we assume a finite set of candidate sensors, which yields the
sensor coverage matrix CO ∈ R|D|×|S|≥0 . CGC problems can now
be approximated by the following optimization problem:

Minimize ‖x‖0

sub ject to x ∈ {0, 1}|S|

CO · x ≥ R,

(2)

where ‖x‖0 denotes the number of non-zero entries of x.
A vector x solving optimization problem (2) represents the

optimum choice of the sensors in this discretized solution. Let
the i’th element of vector x be denoted by xi. Furthermore,
assume that the elements in S are enumerated and let si denote
the i’th sensor in S. The solution Ŝ of the discretized CGC
problem is hence given by Ŝ := {si ∈ S | xi = 1}.

Basing the definition of both the sensor coverage matrix CO

and the coverage requirement vector R on DT , the paramet-
ric domain of the target T , allows the reduction of the prob-
lem complexity to a discrete, yet local and dense pixel analysis
which yields several advantages: Firstly, complex and poten-
tially unstable visibility computations in Euclidean space can
be substituted by simple, parallelizable comparisons in para-
metric space. This renders an efficient computation of CO pos-
sible in various applications, as we will show in Section 4.1.
Furthermore, the solution of optimization problem (2) can be
computed in a parallel fashion. Last, but not least, the discrete-
ness and locality of our approach allows the specification of
different coverage levels for distinct target locations.
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In the remainder of this work, we refer to optimization prob-
lem (2) as the discretized CGC problem. The discretized CGC
problem contains the minimum set cover optimization prob-
lem [16] as a special case and is thus NP-hard which is straight-
forward to show. Hence, it is indicated to resort to potentially
non-optimal, but efficient approaches.

4. Algorithmic Approach

The target T may consist of one continuous manifold or col-
lections of such. Clearly, the parametric locations in the dis-
cretized set D should approximate the original shapes as good
as possible. Proper sampling of the parametric domain ofT can
lead to a good selection of corresponding target locations which
have to be covered, since the differential geometry of manifold
T and the mapping of its parametrization can be taken into ac-
count. That said, the optimal sampling of the parametrization
of freeform manifolds or mesh models is a question beyond the
scope of this work and was investigated by many (e.g., [17, 18]).
As a first order approximation, a uniform grid in the paramet-
ric space can be sampled. This sampling is used in our imple-
mentation and our examples, where the targets are (trimmed)
surfaces in R3. Note that the definition of the discretized CGC
problem is unaffected from the way the set D is computed.

Since the required coverage levels are known in advance, the
discretization directly yields the coverage requirement vector
R. However, the same often does not hold true for the sensor
coverage matrix CO, which is a necessary parameter required
for solving the discretized CGC problem. In order to obtain
CO, one usually has to explicitly compute the coverage levels
provided by the set of candidate sensors, S. This computation
depends on the specific application, and is discussed in Sec-
tion 4.1.

With a discretized DT and S, one can only hope for an ap-
proximate answer. However, thanks to the discretization, both
computational tasks, creating the sensor coverage matrix and
solving the discretized CGC problem, are highly parallelizable
and we can, therefore, perform the computations on a GPU.

4.1. Computing the Sensor Coverage Matrix

In this work, we address two GC applications in R3. The
multi-visibility problem (MVP) pursues the minimal set of
guards, out of S, that see T with enough redundancy to satisfy
R. The illuminance satisfaction problem (ISP) seeks a minimal
set of lamps, from a given set S, which satisfies some illumi-
nance covering requirements, R, over some target T . We will
further elaborate on these specific problems in Section 5. We
now discuss the computation of CO for these two GC applica-
tions.

Conceptually, the values of CO are easy to determine. In the
MVP, COd,s is 0 if target location T (d) is invisible to sensor s
and 1, otherwise. Determining whether s sees T (d) depends on
both the occluders and the target that can possibly occlude itself
when viewed from certain directions. In the ISP, an entry COd,s
is an illuminance value I ∈ R≥0 received by T (d) from s.

Preprocessing. We assume that T is provided as a set of
(trimmed) NURBS surfaces or as a polygonal mesh model with
corresponding UV parametrization DT . The same assumption
is made for the set of occluders, O, with the difference that no
parametrization is required. Both T and O are tessellated for
graphics processing, keeping the UV values of T at the trian-
gle vertices. A unique ID is assigned to each triangle of T ,
while all triangles of O receive the same ID, distinct from those
assigned to the triangles of T .

Rendering. The remaining step is a two-pass z-buffer rendering
algorithm that is executed for each sensor s separately. Render-
ing pass I is performed in the original 3D Euclidean space. In
this pass, z-buffer rendering is used to scan-convert the tessel-
lated target and the occluders, employing frusta that incorporate
the view properties of s. In case of the ISP, s is a point light
source, and therefore, has a 360◦ field of vision, whereas in the
MVP s represents a camera or a guard with an appropriate field
of view. In both cases, an arbitrary number of frusta may be
used to model the required views. At every pixel, the ID of the
corresponding visible triangle is stored.

In rendering pass II, the actual values of CO are computed. T
is z-buffer scan-converted in the UV parameter space, yielding
the discrete set of target locations D in the form of pixels of a
2D texture. This computation is straightforward, efficient with
regard to both time and space and requires minimal knowledge
about the parametrization. For each pixel representing a para-
metric target location d we check whether the ID of the triangle
to which T (d) belongs matches the ID of the corresponding
target location T (d) projected to the stored z-buffers from pass
I. This comparison enables us to decide the visibility of T (d)
from sensor s without performing complex visibility computa-
tions in Euclidean space. In case of a match, T (d) is considered
visible to sensor s; otherwise it is regarded as invisible. In the
MVP, COd,s is set directly to values 0 or 1 depending on the vis-
ibility. In the ISP and if T (d) is visible to s, COd,s is computed
according to the parameters determining the illuminance.

The required steps are described in a more concise way in
Algorithm 1. Function CoverageLevel in line 14 returns the
coverage level according to the specific problem. In the MVP,
CoverageLevel always returns 1 sinceT (d) is visible to s. In the
ISP, CoverageLevel computes the illuminance value of T (d) in
accordance with the distance between T (d) and s, the luminous
flux of s, the angle of incidence, and additional parameters.

Implementation Details. The two described rendering passes
share a common property: they perform pixel operations which
are independent of each other and can be performed in paral-
lel on a GPU. Both passes involve the creation of numerous
large textures. The substantial size of the textures is essential
in order to prevent errors caused by the sampling deviation be-
tween the Euclidean projection and the parametric domain. In
our implementation, 26 textures, are computed per sensor in
pass I, covering 360◦. In pass II, the entries of 2D matrix CO

are computed, creating one column for each sensor, where each
column is a vector of linearized 2D textures. We use OpenGL
and GLSL to conduct the computations.

4



Algorithm 1 Computing CO

Input: T ,D,S,O ⊂ R3

Output: CO

1: Tesselate T and O, yielding sets of triangles TT and TO,
respectively;

2: Assign ID 0 to all triangles 4 ∈ TO;
3: Assign unique positive IDs to all triangles 4 ∈ TT ;
4: for each sensor s ∈ S do
5: Pass I:
6: z-buffer render TT and TO from s onto corresponding

projection plane P, keeping only the ID of the visible
triangle at each pixel;

7: Pass II:
8: z-buffer render TT in parametric UV space, yielding D

in the form of pixels of a 2D texture
9: for each pixel d ∈ D do in parallel

10: ID(d)← ID of triangle 4 s.t. T (d) ∈ 4;
11: COd,s ← 0;
12: (x, y)← coordinates of projection of T (d) on P;
13: if ID(d) = ID(P(x, y)) then
14: COd,s ← CoverageLevel(s,T (d));

Due to their high memory consumption, it is usually impos-
sible to store all textures computed per sensor simultaneously
in GPU memory. However, both the set of textures created in
pass I and the texture computed in pass II, representing the cov-
erage sensor matrix CO, can be subdivided. This separability
property allows the two-pass rendering to be performed in sev-
eral iterations and is exploited in our implementation, enabling
us to increase accuracy as much as required despite memory
limitations.

4.2. Solving Continuous Coverage Problems

Having CO, we can now compute a solution of the discretized
CGC problem. Diverse algorithms can be applied for this pur-
pose; in this work, we consider three different methods, each
of which offers a different trade-off regarding solution quality,
runtime and extensibility.

The discretized CGC problem is a linear integer program that
can be solved optimally by a variety of solvers, given it is fea-
sible. Feasibility can be verified by checking whether x := 1|D|

solves the problem. An unfeasible problem can be transformed
into a feasible one by removing the unsatisfiable constraints.
In the remaining work, we assume that the unsatisfiable con-
straints and the corresponding target locations are removed.

1. Optimal Solution. We employ Gurobi Optimizer 5.5 [19]
in order to obtain an optimal solution of the discretized CGC
problem. The sensors in the returned solution guarantee that all
coverage constraints are satisfied by a minimal number of sen-
sors. However, it might be the case that this optimal solution
consists of many sensors, while a much smaller set of sensors
achieves the required coverage levels at almost all target loca-
tions. Such a smaller set might be more practical if the lack of
satisfaction of several required coverage levels is tolerable. In

addition, one might desire more than one solution in order to
be able to filter the involved sensor sets based on other criteria.
It is therefore useful to exhaustively check the sets of sensors
with small cardinality.

2. Exhaustive Exploration of Solution Space. Solving the
discretized CGC problem up to a certain solution quality is
possible by evaluating the coverage achieved by every possi-
ble choice of sensors, i.e. by performing an exhaustive search.
Sensor combinations guaranteeing the required coverage levels
for a sufficient number of target locations are stored, allowing
for sorting or filtering according to different criteria, e.g. the
sum of minimal distances between the sensors.

However, even if both |S| and the allowed number of sensors
in the solution Ŝ are rather small, the total number of poten-
tial solutions is extremely large. In addition, for each possible
sensor choice, the satisfaction of |D| coverage constraints has
to be verified, where D might contain several millions of target
locations. Thus, exhaustive computation is possible only for
sensor combinations involving few sensors. On this account,
fast methods allowing a flexible solution quality are desirable.

3. Greedy Algorithm. A third and very efficient algorithm
computes an approximate solution of the discretized CGC prob-
lem in a greedy fashion. Before describing the greedy algo-
rithm, an auxiliary procedure, Algorithm 2, is defined. The
procedure computes how much a given sensor can decrease the
remaining coverage gap, based on the L1 distance of the corre-
sponding column in CO from the current coverage requirement
vector R.

Algorithm 2 Remainder

Input: s ∈ S,CO ∈ R|D|×|S|≥0 ,R ∈ R|D|
≥0

Output: r
1: r ← 0;
2: for each d ∈ D do in parallel
3: r ← r + max{0,Rd − COd,s};

The problem can now be solved by iteratively adding the
sensor which reduces the coverage gap the most and updating
the coverage requirement vector R accordingly. This greedy
method is formalized in Algorithm 3. In case that the GC prob-
lem under consideration is a DGC problem, i.e., both CO and R
contain only natural numbers, Algorithm 3 provides a solution
of bounded size. Dobson [20] shows that in this case the solu-
tion size is at most O(|Ŝopt | log a), where Ŝopt is a solution set
of minimal size and a = maxs∈S

∑
d∈D COd,s, i.e., the maximal

sum of all coverage levels of a sensor.

Implementation Details. Since the coverage constraints are in-
dependent of each other, verifying their satisfaction can be done
in parallel. We implemented both the exhaustive and the greedy
algorithm in OpenCL [21], exploiting the computational power
of the GPU. In lines 2-3 in Algorithm 2 and lines 8-9 in Algo-
rithm 3, simple parallel computations are performed for each
parametric location. In practice, these computations are exe-
cuted by separate OpenCL work-items.
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Algorithm 3 Greedy Approximation Algorithm for discretized
CGC Problems
Input: D,S,CO ∈ R|D|×|S|≥0 ,R ∈ R|D|

≥0

Output: Ŝ ⊆ S
1: if CO · 1

|S|
� R then

2: return “no solution”;
3: Ŝ ← ∅;
4: while R , 0 do
5: s← arg mins∈S

{
Remainder(s,CO,R)

}
;

6: Ŝ ← Ŝ ∪ {s};
7: S ← S\{s};
8: for each d ∈ D do in parallel
9: Rd ← max{0,Rd − COd,s};

The exhaustive algorithm computes every combination of
sums of columns of CO and compares the resulting vector
element-wise with R. For each combination, the number of
satisfied coverage constraints is stored in GPU memory. Due to
the vast amount of combinations and the consequently arising
memory issues, the computation is performed in iterations, each
treating thousands of combinations. Between the iterations, the
stored data is passed to the CPU for further processing.

5. Applications

The presented definition of CGC problems subsumes many
geometric covering problems arising in different scientific
fields. In this work, we present solutions to two computer
graphics-related GC problems:

The Multi-Visibility Problem (MVP). The objective of the
MVP is to place a minimal number of observers in a scene such
that every target location in the scene is visible to enough ob-
servers. The MVP is a special case of a DGC problem in the
following way: the observers, e.g. cameras or guards, form
the set of sensors S. The occluders are opaque obstacles limit-
ing the visibility of the sensors. A sensor can have a restricted
field of view and it can have limits on the maximal distances
it covers. These limitations are encoded in the sensor coverage
matrix, CO, computed in the rendering process (i.e., by Algo-
rithm 1). Visibility is usually considered a dichotomic notion,
assuming two states - ‘visible’ and ‘invisible’. The entries of
CO are consequently binary, indicating the visibility of the tar-
get locations by the sensors, while the entries of R range above
the natural numbers, representing for each target location the
number of sensors it must be visible to.

The Illuminance Satisfaction Problem (ISP). In the ISP, light
sources have to be placed such that every target location T (d)
is lit at least with the illuminance value defined by the corre-
sponding entry of the coverage requirement vector R. Like in
the MVP, occluders are assumed to be opaque objects in the
scene. The illuminance induced by the light sources is incorpo-
rated into CO and depends on several parameters: the visibility

of T (d) by point light source s, the luminous flux of s, the dis-
tance betweenT (d) and s, and the angle of incidence. Although
the ISP is a CGC problem, we discretize the range of possible
levels for the illuminance values and consider an approximately
equivalent DGC problem with 28 distinct illuminance levels.

We demonstrate our results based on two MVP examples and
two ISP instances. The finite set of candidate sensors is pre-
determined manually in a way which attempts to adhere to the
nature of each specific example. After computing the sensor
coverage matrix, solutions of the GC problems are computed
using the three described algorithms. Due to its complexity, the
exhaustive algorithm is run with a limited maximum size of the
solution set. Table 1 provides statistics on the sizes of the used
data sets and the corresponding computation times.

MVP Example 1 (Pavilion). Our first MVP was introduced in
Figure 1 and is based on a real pavilion1 in London (see Fig-
ure 2). In the example, the coverage constraints require every
target location in the two pavilion entrances to be visible to at
least two cameras, while every target location on the pavilion’s
hull must be seen by at least one camera. Figure 1 presents a
solution involving five cameras which has been computed by
the exhaustive algorithm. The composition of the solution is
shown in Figure 3. In each frame one camera is added, show-
ing the progressively achieved coverage. Jointly, the five cam-
eras satisfy the coverage constraints at 98.5% of the target loca-
tions. Satisfaction of all coverage constraints requires the em-
ployment of seven cameras.

Figure 2: The real pavilion used in Figure 1. Used with permission.

MVP Example 2 (Car Chassis). Another scenario in which
multi-visibility is required can be seen in Figure 4. The chassis
of a manufactured car needs to be visually inspected at certain
locations, and with certain redundancy. While 18 cameras (out
of 170) are necessary for satisfying all coverage constraints,
four cameras are enough to satisfy 99.9% of the constraints as
is revealed by the exhaustive algorithm.

ISP Example 1 (Ruins). In Figure 5, we present an instance
of an ISP involving a scene of ruins. Illumination coverage
requirements are assigned to specific parts of the ruins and a set

1See also http://www.kreod.com
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Figure 3: From left to right: The solution illustrated in Figure 1 and computed by the exhaustive algorithm is shown in parts, iteratively adding cameras. The same
color coding for the coverage is used (0 - red; 1 - yellow; 2 - green; 3 - turquoise; 4 - blue; 5 - magenta).

Figure 4: Left: A car chassis during an inspection process. Twelve patches of target locations have to be inspected with different redundancy (1 - yellow; 2 - green;
3 - turquoise; 4 - blue). 170 different positions for the cameras are allowed. The transparency is for better visualization only. Right: While 18 cameras are required
for complete coverage, by means of the exhaustive algorithm we find that merely four cameras guarantee sufficient coverage for over 99.9% of the target locations.

of candidate light sources is provided. Due to the intricacy of
the model, almost all sensors have to be used for achieving full
coverage. However, the exhaustive algorithm finds a solution
of only five light sources sufficiently illuminating over 70% of
the selected area.

ISP Example 2 (Sculpture). Our last example consists of a
sculpture for which we seek partial illumination (see Figure 6).
The entries of the coverage requirement vector R, i.e. the il-
luminance values we attempt to reach, are provided by an ap-
proximate area light source illuminating the sculpture from one
side. We sample sensors representing point light sources around
the target and solve the ISP problem using the three different
algorithms. In order to satisfy all coverage constraints, nine
sensors are required. In contrast, by means of the exhaustive
algorithm we find a solution satisfying over 87.7% of the con-
straints, while consisting of only four point light sources.

Observations. As can be seen in table 1, executing Algorithm 1
on the GPU made the construction of the sensor coverage ma-
trix CO feasible within a few minutes despite the vast number
of involved operations. The required coverage levels of some
target locations cannot be reached even by the union of all sen-
sors due to various reasons such as self-occlusion of the target,
the rather sparse sampling of the candidate sensor set or — in
case of the ISP — too low luminous fluxes.

In our examples, the greedy method performs not much
worse than the optimal one. Also in comparison with the ex-

haustive procedure, the greedy algorithm performs well. In ad-
dition to the results displayed in table 1, we find that the greedy
algorithm needs one sensor more than the exhaustive method
in order to achieve at least the same percentage of coverage.
These findings suggest that the greedy method is suitable for
efficiently computing a solution of reasonable quality.

6. Discussion and Future Work

Geometric covering problems surface in many disciplines.
Unfortunately, their relation to set cover renders them very dif-
ficult to solve, even beyond the complexity of processing the
involved geometry in a numerically stable way. In this work,
we perform a pixel level analysis in a different parametric space
which reduces the geometric complexity, much like the z-buffer
mechanism. By exploiting computer graphics tools, we get a
dense sampling of the continuous problem and achieve a rea-
sonable covering approximation of the geometry. The quality
of this approximation can be adjusted conveniently by changing
the sampling density and employing different solving methods.

Extensibility. As long as one can evaluate the contribution of
sensor s to T , our framework can be used for a diverse set of
GC problems, e.g.,

• placement of cellular antennas, taking into account the de-
cay in electromagnetic transmission due to concrete walls,

7



Figure 5: Left: A scene comprised of ruins which have to be sufficiently lit by a minimal number of point light sources. The required illumination on the target
is provided in gray, while the yellow areas depict parts of the model for which no required coverage levels have been specified. Right: The exhaustive algorithm
computes a solution consisting of five light sources (shown as white bulbs) that guarantee the required coverage levels at more than 70% of the relevant area. In
contrast, almost all sensors are required for maximum satisfaction of the coverage constraints (see table 1). The deviation between the required coverage levels and
the coverage levels induced by the light sources in the solution is shown. The colors linearly blend from red over yellow to green, indicating for each target location
which percentage of its required coverage level has been reached (0% - pure red; 50% - pure yellow; 100% or more - pure green).

Figure 6: Left: A facial sculpture illuminated by an area light source. The resulting illumination distribution provides the required coverage levels. Middle: 145
point light source candidates are positioned on a sphere surrounding the target. Right: Four light sources — together reaching more than 87.7% of the required
coverage levels — are found by the exhaustive algorithm. Satisfaction of all coverage constraints involves nine light sources.

Table 1: Runtime data employing Intel R© CoreTMi7-3770 CPU @ 3.40 GHz and AMD R© RadeonTMHD 7970 (3 GB RAM)

Type Model # sensors # target
locations

Computation
of CO

(min:sec)

# removed
unsatisfiable
constraints

Algorithm
Maximum

allowed
solution size

Solution
size Solving time

Percentage
of satisfied
constraints

MVP

Pavilion 100 3,383,528 01:30 4,476

Optimal
Greedy

Exhaustive
Greedy

|S|

|S|

5
5

7
10
5
5

∼ 1 min 20 s
∼ 1.5 s
∼ 10 h
< 1 s

100.000
100.000
98.500
97.400

Car
Chassis 170 907,872 01:36 117

Optimal
Greedy

Exhaustive
Greedy

|S|

|S|

4
4

18
20
4
4

∼ 25 s
∼ 1 s

∼ 48 min
< 1 s

100.000
100.000
99.976
99.125

ISP

Ruins 128 2,609,728 04:59 2,670

Optimal
Greedy

Exhaustive
Greedy

|S|

|S|

5
5

121
123
5
5

∼ 3 min 30 s
∼ 6 s
∼ 10 h
< 1 s

100.000
100.000
70.646
65.833

Sculpture 145 3,086,624 02:02 0

Optimal
Greedy

Exhaustive
Greedy

|S|

|S|

4
4

9
10
4
4

∼ 15 min 40 s
∼ 1 s

∼ 49 min
< 1 s

100.000
100.000
87.734
64.652

• surveillance from the air,

• or, sprinkler placement for fire extinction or plant irriga-
tion.

In addition, one can generalize the problem to allow for upper
covering limits, e.g., in order not to flood the target with too
much light in the case of the ISP.
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Limitations. The main drawback of the framework is its dis-
creteness. While it is highly desirable to directly handle GC
problems where T , S and the coverage requirement function,
R are all continuous, such continuous solutions still constitute
an open question. The discrete sampling of locations on T is
acceptable, considering that the sampling is quite dense. In
contrast, the set of sensor candidates is sampled less densely
which is rather restricting and leads to an approximate answer
that needs improvement. However, due to the complexity of
the problem, neither the optimal solver nor the exhaustive algo-
rithm scale well enough with the number of sensors in order to
allow for a much denser sampling of sensors. Only the greedy
algorithm can cope with a significantly larger candidate sensor
set.

Future Work. The presented framework has room for improve-
ment. A very desirable enhancement that will increase the ac-
curacy of the results will consist in considering the actual area
a pixel covers in the original, typically Euclidean, space. Based
on the parametrization of T , one can use the Jacobian of the
mapping at every pixel in order to estimate the area contribu-
tion of this pixel in the original space. The proposed algorithms
could then be modified accordingly by assigning weights to the
corresponding coverage constraints.

Predetermining the set of sensor candidates, S, is restrict-
ing. Possible directions for future research also include the im-
proved and automated construction of S. Simulated Annealing
techniques [22] or other heuristics could be applied to alleviate
this limitation.

In case of the ISP, it is desirable to compute the intensities
of the light sources as part of the framework, rather than fixing
them from the beginning. Last but not least, it is desirable to
allow sensors which are not limited to a single point in space,
but take up a volume. In this case, area light sources could be
used in the ISP.

7. Conclusion

In this work, we presented a general framework to compute
an approximate solution to geometric covering problems. Un-
like most previous work that typically operates in Euclidean
space, we operate in the parametric space of the target, which
allows for a unified and highly parallelizable approach. In con-
trast to any previous work, our framework supports the speci-
fication of different required covering levels for different target
locations. Several algorithmic methods solving the involved set
cover queries are proposed and applied to two applications of
interest in computer graphics and other fields, namely, multi-
visibility analysis and illuminance satisfaction.
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