Efficient Solution
to

Systems of Multivariate Polynomials

using

Expression Trees

Gershon Elber
Dept. of Computer Science
Technion — II'T
Haifa 32000, Israel

Tom Grandine
The Boeing Company
Seattle

December 3, 2007

Abstract

In recent years, several quite successful attempts have
been made to solve systems of polynomial constraints,
using geometric design tools, by making use of subdivi-
sion based solvers. This broad class of methods includes
both binary domain subdivision as well as the projected
polyhedron method of Sherbrooke and Patrikalakis [13].
One of the main difficulties in using subdivision solvers
is their scalability. When the given constraint is repre-
sented as a tensor product of all its independent variables,
it grows exponentially in size as a function of the number
of variables. In this work, we show that for many appli-
cations, especially geometric, the exponential complexity
of the constraints can be reduced to a polynomial one
by representing the underlying problem structure in the
form of expression trees that represent the constraints.
We demonstrate the applicability and scalability of this
representation and compare its performance to that of
tensor product constraint representation, on several ex-
amples.
Keywords: interval arithmetic; multivariate polynomial
constraint solver; self-bisectors; Contact computation;
Hausdorff distance.

1 Introduction and Related Work

Sets of multivariate polynomial constraints are frequently
prescribed and solved in many applications in science and
engineering in general, and in geometric modeling, in spe-
cific. A key module in many modern geometric modeling
packages is a constraint solver. Constraints such as dis-
tance, orthogonality, parallelism, and convexity, are all
used to capture desired properties. The constraint solver
has the responsibility of finding (all) valid geometric solu-
tions (configurations) that satisfy these constraints (the

design intent), in the modeling environment.

Solving a set of non linear constraints is a difficult prob-
lem. In the univariate case, the properties of Bézier and
B-spline shapes have been exploited toward this end, to a
great extent [9]. Drawing on the convex hull property [4],
a Bézier/B-spline function cannot contain a zero if all its
coefficients are positive (or all negative). With the ability
to divide a spline function into two, one is provided with
a robust divide-and-conquer algorithm to converge on the
zeros of the function. Hence after, we denote such solvers
as subdivision solvers.

The ability to exhaustively examine the specified do-
main of a function for zeros, allows one to robustly seek
all solutions, and provide a global (optimal) answer. The
extension of this scheme to multivariates was first pro-
posed in [13]. In [13], polynomial functions are consid-
ered and the domain is reduced using (projected) Bézier
clipping [11]. In [7], this work was extended to handle
B-spline functions as well and a proposal was made for a
geometric test for a single solution existence. The division
of the domain could clearly be stopped in the following
cases:

e The domain has no solution (i.e. all coefficients are
positive),

e The domain is small enough, below some user speci-
fied tolerance.

However, in the second case, one can only assume a so-
lution exist in the domain. Moreover, there could be an
arbitrary number of solutions to the function, in the sec-
ond case. Hence, identifying a domain as having at most
a single solution can aid in resolving the topology of the
solution space as well as allow the early termination of
the division process. In [8], an efficient algorithm was
proposed to compute this proposed single solution test as

well as proposed the use of parallel hyper-planes to bound
and further isolate roots in the multivariate solver.

In [10], an orthogonalization approach to precondition
the constraints was suggested so that the Bézier clipping
step is becoming more efficient. [10] also suggested other
improvements such as the use of the upper and lower enve-
lope of the Bézier clipping projection as control polygons
of two new Bézier forms. These Bézier forms still bounds
the original function and hence can be used as a tighter
bound during the Bézier clipping step.

Recently, in [2], a proposal was made to bound a uni-
variate constraint using a second order envelope and clip
the domain of the constraint with the aid of the zeros of
this envelope. With a super-quadratic convergence, this
work was also extended to handle multivariates in [3].

Non linear constraint solvers that are subdivision base
have been successfully used, in recent years, in solving
quite a few geometric problems [7, 10]. Being highly ro-
bust, focused on real roots, and capable of finding the
(global) optimal solutions, these subdivision solvers have
captured their place as an essential tool in handling con-
straints. One main drawback of this type of solvers stems
from their lack of scalability. By typically exploiting the
tensor product representation, the size of the tensor prod-
uct constraint grow exponentially with its number of de-
grees of freedom (variables). Let n be the number of
variables in a constraint, and let £ be the number of co-
efficients in each variable. Then, the size of the tensor
product constraint is of order O(k™). This exponential
complexity renders the use of tensor product impractical
for anything but a few variables.

Several suggestions where made, in recent years, to use
triangular hyper-patches, exploiting barycentric blending
functions. For instance, see [12]. While this alternative
somewhat reduces the size of the constraint, asymptot-
ically it remains exponential. Moreover, the triangular
hyper-patches representation is not capable of capturing
all algebraic constraints.

In this work, we propose a different alternative to repre-
sent non linear constraints, an alternative that nicely fits
the way constraints are created in geometric design. This
proposed representation only shows polynomial growth
with the number of variable and hence is far more promis-
ing. The rest of this paper is organized as follows. In
Section 2, we introduce the basic representation which is
expression trees (ET). In Section 3, we introduce a con-
straint solver based on this ET representation, and in
Section 4, some examples are shown, comparing the ET
representation to regular tensor product representation.
In Section 5, some extensions are discussed and finally,
we conclude in Section 6.

2 Expression Trees

Binary trees are a common mean in computer science
to represent (arithmetic) expressions [1]. Techniques for

Figure 1: An example of a binary tree created for the
expression sin(—z)/(z +y * 5).

parsing the common infix notation (where the operator
is between the operands) and converting it into a binary
tree are well known [1]. Expressions are converted into
binary trees, where unary operators (i.e. the unary minus
or the sin function) are converted into degenerate nodes
in the binary trees, with a single son. See Figure 1 for
the arithmetic expression example of sin(—z)/(z +y * 5).

Having infix expressions represented as binary trees
offers numerous advantages in computing. For exam-
ple, symbolic differentiation is reduced to the simple task
of traversing the tree and substituting each note for its
derivative, recursively. As a second example, optimiza-
tion of an expression could be done via the application
of local rules (i.e. substitute 2/1 by z) or by search and
merge of common expressions, converting the tree into a
DAG (directed acyclic graph).

In this work, we deal with algebraic expressions. Hence,
the set of operators one needs to support in expression
trees (ETs) is surprisingly small, namely: addition, sub-
traction, multiplication, and possibly a few others. Deal-
ing with vector functions (i.e. parametric curves and sur-
faces in IR? and IR®), one is also frequently employing
inner products and possibly cross (outer) products. Di-
vision, in many cases, could be posed as multiplications
and in other cases rational forms must be used.

With this representation, we will, in the next section,
explore the potential benefits of ETs in using and solving
sets of algebraic constraints.

3 Expression Trees based Solver

As a simple example that will follow us throughout the
discussion, consider the problem of computing all inter-
section points of two planar parametric curves, C;(t) =
(21(t),y1(¢)) and Ca(r) = (x1(r),y1(r)). Algebraically,

Figure 2: The ET of x1(t) — za(r).

the equivalent constraint are,

x1(t) = xa(r),
) = ya(r), (1)

having two equations and two unknowns. Assume both
curves have k control points. Then, each of the two con-
straint in Equations (1) is a bivariate function with O(k?)
coefficients, if represented as a tensor product. Now, the
same constraints, represented as an ET will look as in
Figure 2, with the memory cost of only order O(k).

In general, a constraint with n degrees of freedoms (i.e.
n curves), each of which has k coefficients (control points),
will have O(n*) coefficients in all, when represented as a
tensor product. In contrast, if this constraint could be
represented as an ET with m operators, its size will only
be of order O(mk).

The increase in memory size when one represents an
operation such as a difference between two curves as a
tensor product, needs some clarification. Denote by a ¢’
a binary operator ("—’, '+’ or ’+’) and let curve C; be a
Bézier or B-spline curve of the form,

ki
t)=> QB
0=0

= Cl() o Ca(r)

= ZQ Bl(
_ SSeiel
0o=0

ZQZBQ

ZZB;“;(T) o i:B Z Q2B2(r)
p=0 0=0

k1 ko ki ko

D IPICHOLACEY DY MAHOLAQ
0=0 p=0 0=0 p=0
k1 ko

= Y D (@i @NBIOBr). 2)
0=0 p=0

In other words, the O(k?) control points of the bivariate
function F(r,t) = Cy1(t) o Cy(r) are (Q}©Q2), as an outer

product of all the O(k) control points of C(¢) and all the
O(k) control points of Ca(r).

Expression trees can have arbitrary number of opera-
tors in them. While typically small, denote the number
of operators in the tree by m. Then, the actual memory
complexity of an ET is of order O(km), taking into ac-
count both the size of the leaves (each of order O(k)) and
the size of the tree itself (of order O(m)).

Representing the expression x1(t) — z2(r) as an ET not
only reduces the memory consumption but also reduces
the computation cost. In this work, we deal with expres-
sion trees where the internal nodes are, for the most part,
o’ operators, and the leaves are algebraic functions (such
as x1(t) or x2(r)). By keeping algebraic functions that
depends on different variables as separated leaves in the
tree, the tensor product is represented implicitly and the
explosion in data size is eliminated. The tensor product
representation is sparse and a large reduction in memory
consumption can be gained, if avoided.

During the recursive (zero) search iterations of the sub-
division solver, two principal operations are usually per-
formed:

e Examination whether or not the expression can hold
zeros. For a tensor product Bézier/B-spline repre-
sentation, this could amounts to examining all the
coefficients for their minimum and maximum values.

e Dividing and/or reducing the domain where the ze-
ros are sought. For a tensor product Bézier /B-spline
representation, this could amounts to applying a sub-
division/clipping along, typically, one of the param-
eters of the multivariate.

For an n dimensional tensor product, both operations vis-
its all the coefficients of the tensor product multivariate
and hence cost O(k™) time, where k is the size of the
multivariate in one direction. In the next two sections,
we will show how can these two operation be performed
in O(km) time, eliminating the exponential complexity
dependency on the number of variables, n, inherit to the
tensor product representation.

3.1 Zero testing in ETs

Let &4 and €2 be two expression trees and consider some
o’ operation between them. Further, assume the interval
of values &L can assume are between [m;, M;]. Then, the
following rules of interval arithmetic apply:

Lemma 3.1 The following intervals bound the result of
the following ¢ operation:

1.7o = "4 EF + EZ can assume values between

[ml + mg,Ml + MQ]
2.7 ="' EL —E2 can assume values between
[m1 — Ma, My — mo)].

3. 10" = 1. ELxE2 can assume values between
[min(mlmg,m1M27M17TL2,M1M2),
max(m1m27m1M2,M1m27MlMg)].

Proof: As can be seen in Equation (2), the coefficients
of &1 © £F, as a Bézier or B-spline function, are Q} o Q2,
but QL € [my, M;] and Q2 € [ma, Ms]. Hence, the sum
cannot be smaller than m; +ms nor can it be larger than
M7+ M,. Similarly, the difference cannot be smaller than
m1 — M> nor can it be larger than M; — ms.

The product is a bit more involved as signs can change
and hence one must examine all four possibilities of
mime, mi1 Mo, Mime, M1 Ms, for both the minimum and
maximum values.

These rules follow the same ideas found in interval
arithmetic computations. However, examine the compu-
tational complexity of evaluating such a ’¢’ constraint in
an ET. If & contains O(k) coefficients, the evaluation of
the interval of values £+ ¢ £2 can assume is reduced to
evaluating the values £%, i = 1,2 can assume and the cost
of the interval arithmetic operator, following Lemma 3.1,
which is a constant time.

For our example of intersections of two curves (Recall
Figure 2), the interval computation of Cy(t) ¢ Ca(r) cost
O(k) + O(k) + O(1) operations or O(k) operations in all.
If the ET has m operators (internal nodes), it also has
O(m) leaves, the primitive algebraic functions in hand.
With each leaf having O(k) coefficients, a tree of m o’
operators could be tested for the possible values it can
assume, in order O(mk) time.

It should be noted that the interval bounds established
in Lemma 3.1 for these three ¢’ operators in ETs are as
tight as the tensor product representation. This, because
both the tensor product representation and the ET repre-
sentation examines the coefficients with the ¢’ operator
applied to them, by exhaustively examining all possible
pairing of QJ ¢ Q3.

Beyond the three basic ¢’ operators of '—’, '+’ and
%’ it is frequent to employ the inner-product operator
between geometric entities, when forming geometric con-
straints. While one can see inner- (and cross-) products
as generalized sets of products and summations, this is
not always the case as these vector functions intermix dif-
ferent, sometimes independent, functions. Dealing with
vector functions, the interval arithmetic computation be-
comes more complex.

Let & and €% be two vector ETs and consider the
inner product operator e between them. Further, let the
interval of values the j’th element in vector function &
can assume be between [mf , MZJ]. Then,

Lemma 3.2 the interval of values vector functions &
and E2 can assume in X @ E2 is bounded to be between

; Jomd oI MI MIamd NI NI
E min(mqms, m3 My, Mim, MiM3),
J

Zmax(m{m%,m{Mg,Mfmg,MfMg), (3)
J

Proof: To see that Equation (3) indeed bounds the pos-
sible values an inner product can assume, one should first
note we compute the minimum and maximum values each
element can assume, in the vectors, like in a regular prod-
uct, for all the (j’th) elements of the vector.

Then, the minimum bounding value of the inner prod-
uct is set to be the sum of all the minimum values each el-
ement can assume whereas the maximum bounding value
of the inner product is set to be the sum of all the maxi-
mum values each element can assume.
|

Unlike the three ’¢’ scalar operations, the interval
bounds we established in Equation (3) for the inner prod-
uct operation between ETs is not as tight as inner prod-
ucts between tensor products. Internal cancellation be-
tween the different elements of the inner product of the
two vector functions are likely to yield a smaller interval
than the bound we compute for ETs. Nonetheless, this
bound is also established in a constant time (assuming the
size of the vector is constant). We will show, in Section 4
that this bound is sufficiently tight to yield better results
than tensor products constraints, in the vast majority of
cases.

Needless to say an ET can hold zeros, if and only if the
interval of values it can assume contains the zero. In the
next section, we also show how to perform subdivision
operations over ETs.

3.2 Subdivision of ETs

With the ability to efficiently determine if an ET can hold
a zero, the subdivision of the domain of an ET along one
variable, u, is even simpler. The following traversal of ET
needs to be perform:

e Every algebraic expression (leaf) that holds w is lo-
cally divided.

e Every algebraic expression (leaf) that does not hold
u is locally copied.

e Every operator (internal) node is locally copied.

The cost of subdividing an algebraic expression (leaf)
with O(k) control points is O(k) (assuming the degree
is constant). Obviously, copying a leaf of O(k) coeffi-
cients costs O(k). Hence, the overall cost of the proposed
traversal is bounded by the number of coefficients in the
entire ET that needs to be either copied or subdivided.
This number is of order O(mk).

Consider the curve curve intersection example F'(r,t) =
x1(t) — xo(r) (recall Figure 2). A subdivision of F(r,t)
along ¢ (r) can clearly be done in O(k) time: traverse the

tree, copy the root operator and the leaf Ca(r) (C1(t))
and subdivide the other leaf Cy(t) (C2(r)). The total
cost is hence O(1) + O(k) + O(k) or O(k) in all.

Being able to perform the two principal operations of
a subdivision solver in a computational cost that is no
longer exponential in the number of variables opens the
way to employ this type of solver on a much larger scale
problems. The use of such a solver for more than a few
variables is becoming possible. The next section presents
a few examples of solving non-linear algebraic constraints
using both the tensor product representation and using
this newly introduced ET approach, and compare the two
schemes for scalability in terms of both memory use and
computation times.

4 Examples

In this section, we present several examples of sets of
algebraic constraints formed out of geometric problems.
All measurements where made on a modern PC with 2G
of memory.

Consider the intersection location of three surfaces
in IRS, Si(ui,vi) = (xi(ui,vi),yi(ui,vi),zi(ui,vi)), . =
1,2, 3. Finding the solution location could be formulated
using the following six constraints:

x1(u1,v1) = x2(ug, va2),
$1(U1,U1) = 953(“371)3)’
y1(ur, v1) = y2(uz, v2),
Y1 (i, v1) = y3(us, v3),
2’1(22 u2702),

(4)

having six equation and six unknowns. Figure 3 shows an
example with three quadratic by cubic B-spline surfaces
with 31 x 12 control points. With over 600 control points,
each of the six constraints in Equations (4), is a 4-variate
with over 360,000 = 6002 control points (or over a million
coefficients), as a tensor product.

Solving this specific problem using a tensor product
representation takes several seconds and consumes about
600 megabytes of data. In contrast, using expression
trees, the same system is solved in a fraction of a sec-
ond and only a few megabytes of memory.

Contact point computations between freeform shapes
play, for instance, a major role in design, robotics, and
NC machining. In this second example, we seek to de-
rive the contact point between two C' freeform surface
shapes, S1(u1,v1) and Sao(u2,vs2), in IR, when one sur-
face is stationary and the second is moving according to
some scale and translation transformation T'(t). At the
contact points, the surfaces are tangent to each other, a
condition that can be formulated algebraically as,

T(t)[w1(u1,v1)] = z2(u2, v2),
T(t)[y1 (u1,v1)] = ya(uz,v2),

Figure 3: An example of three general B-spline surfaces
intersecting in a single point (in yellow).

T(t)[z1(u1, v1)] = 22(uz, v2),
<8T(t)[5’1(u1,v1)] 852(U2,U2) % 852(%2,1}2)> _ O

aul au2 61)2
6T(t) [Sl (ul, ’Ul)] 852 (UQ, Ug) % 852 (UQ, Ug) -0 (5)
oy ’ Ous O0va ’

where T'(t)[-] denotes the transform (translation and
scale) operator.

In Figure 4, the two surfaces are biquadratic B-spline
surfaces with a mesh size of 14 x 7. The motion curve
is a cubic B-spline curve with 29 control points. The
attempt to solve these constraints using expression trees
exploited four Megabyte of memory and took about 60
seconds. The same attempt to solve Constraints (5) using
a tensor product representation failed after five minutes
of computation due to luck of memory (in a 2 gigabyte
machine).

Our third example deals with the Hausdorff distance
between planar curves. In [5], we show how the Hausdorff
distance between two planar curves could be computed by
isolating all the events where this extreme distance can
occur. Consider two planar parametric curves C1(¢) and
C5(r). One case when the Hausdorff distance between
C4(t) and Cy(r) can occur is when C1(¢) intersects with
the bisector curve of Cy(r). This condition could be for-
mulated using the following set of constraints,

Figure 4: An example of seeking the contact point be-
tween two similar freeform shapes. Omne shape is sta-
tionary (blue) and the other is moving (red) along some
freeform trajectory (in green). One computed contact lo-
cations is displayed, and the contact point itself is high-
lighted in yellow. The top left corner shows a snap-shot
of the entire path.

having three equations and three unknowns. Note Cs
is independently parameterized twice, for the two foot
points of its bisector curve. The first constraint in Equa-
tions (6) vanishes for ¢ = s (and the last two coalesce),
a self-intersection problem that is dealt with in [6] and is
beyond this paper. Nonetheless, attempting to solve this
set of constraint using a tensor product representation of
Equations (6), for curves of different number of control
points yields the following result:

[k (#CtlL. Pts) [5 [10 [20 | 50 |
Time (Secs.) | 2.93 | 2.13 | 847 | 326
Space (Mb.) 14 | 145 | 77 | 1470

Using expression trees for the same set of constraints
yields the following comparable result:

[k (#Ctl. Pts) [5 [10 | 20 | 50 |
Time (Secs.) | 2.44 | 1.81 | 2.97 | 23
Space (Mb.) 7 7 75 | 11.5

Examining the scalability of the two representations,
the expected benefits are obvious. Even for small curves
the reductions in time and in memory use are clear. More-
over, for moderate to large curves, the difference is now
between the ability (a few megabytes of memory) and in-
ability (gigabytes of memory) to solve the problem, con-
suming huge amount of memory in the case of tensor
products. Because the first constraint in Equations (6)
is a tensor (outer) product of essentially three curves, if
n = 50, this trivariate constraint, as a tensor product,
has 125,000 = 503 coefficients. In practice, it has more
because the inner product in the constraint doubles the
degrees.

Figure 5: the concept of a ray trap between three planar
curves.

Our last geometric example is the problem of ray-traps
also known as the bouncing billiard balls problem. The
general problem could be consider for k£ general objects
in IR™. Herein, we consider it for planar curves in IR*:
Given k planar parametric curves, C;(t;), i = 1, k, in the
xy plane, a ray-trap of length k is a set of k points P; =
C;(t;) such that a bouncing ray off P; towards P(
will be reflected at P(i+1)m0dk toward P(i+2)m0dk'
Figure 5 that conceptually shows the case of a ray trap
between three planar curves.

Let N; denote a normal field of curve C;. Then, this
problem (See also [7]) could be formulated using the fol-
lowing constraint, for each P; contact,

i+1)modk
See

<P(i—1)m0dk - Pi’Ni> B <P(i+1)m0dk - PivNi>
Hp(i—l)modk_PiH ||P(i+l)m0dk - Bl

(7)
or in terms of the k parametric curves,
<C(i—1)m0dk(t(i—1)m0dk) — Ci(ta), Ni>
||C(i—1)m0dk(t(i—1)m0dk) = Ci(t:)]|

<C(i+1)m0dk(t(i+1)modk) = Ci(t), Ni>
IC 4 1ymods it 1ymods) — Ci(t)]]

Due to the normalization factors in the denominator,
the square of the equation is used from now on, which is
algebraic. While C; is required to be regular for N; to be
defined, N; need not be a unit vector fields as it appears
in both sides of the constraint.

For n curves, one needs to handle n constraints of the
form shown in Equation (8). Herein, we consider an ex-
ample with n = 3 and for curves with increasing complex-
ity (number of control points). See Figure 6 as an actual
example for a case of n = 3.

Figure 6: An example of all ray traps between three pla-
nar quadratic B-spline curves, each with 7 control points.
44 ray traps are identified.

Using a tensor product representation of constraints of
the square of Equation (8) we get,

(K (#CtlL Pts) [13] 23 | 33 | 43 |
Time (Secs.) 3 | 40 | 152 Died
Space (Mb.) | 67 | 463 | 1650 | > 1700

Using expression trees for the same set of (squared)
Constraints (8) yields the following comparable result:

[k (#Cil Pts) [13] 23] 33 | 43 |
Time (Secs.) 7| 44 | 139 | 327
Space (Mb.) 5| 71 10 | 18

The reduction in memory use is again substantial.
However, in this case, for small scale problems, the tensor
product computation is faster. This could be explained
by the fact that the expression tree here is larger. Hence,
the benefit in using the ETs is insufficient to compensate
for the traversal cost of large ETs. Nonetheless, for mod-
erate and large size curves, the computation time using
ETs is again becoming better than in the tensor product
representations.

5 Extensions

The use of expression trees in solving sets of non linear
(geometric) constraints can greatly enjoy the vast list of
techniques developed in computer science [1] to process
parsed data and optimize their evaluations. In the case
of arithmetic expression trees, the evaluations of leaves,

being numbers, is typically very simple. Herein, however,
the leaves are parametric forms, and reducing leaves’ pro-
cessing can greatly benefit the overall computation times.
Merge of common sub-expression, which is reduced to
finding identical sub-trees in the ETs, can do just that.
This practice is well known for arithmetic expression eval-
uations and can be clearly adapted here as well. The ex-
pressions will no longer be represented as trees but rather
as directed acyclic graphs (DAGs).

Another example where the processing of ETs could be
further optimized is when operation are applied to only
certain nodes/leaves in the graph. Reconsider the ET
in Figure 2. If we divide/reduce the domain of this ET
in ¢, only z1(t) is to be divided while z5(r) remains un-
modified. Clearly, one can reference the current xs(r)
instead of copying it, using pointer reference counting.
With this data structures’ accounting, the overall com-
plexity of the subdivision/domain reduction computation
in ¢ (r) is down to the size of only x1(t) (22(r)).

Not always ETs should be preferred. If a binary ex-
pression contains operands with the same variables on
both sides, one can consider converting this expression to
a tensor product as no exponential growth is expected.
For example, reconsider the last two constraints in Equa-
tion (5). The cross product of 8525222’”2) X 852((3?}2’”2) could
be precomputed as a tensor product as it stays dependent
on only two variables (ug,vs). Moreover, the cross prod-
uct is a difficult operation to bound. During the execution
of the solver, the processing of 632(%1;22’”2) 055 (uz,va) pq
an ET is eliminated while the size of this tensor product
is only slightly larger than that of the operands (due to
the raised degrees).

6 Conclusions and future work

In this work, we have presented an alternative representa-
tion to sets of non-linear constraints, that yields a signifi-
cant reduction in memory and computational costs. This
representation makes it possible to handle larger sets of
constraints (and variables) than are feasible with the cur-
rent tensor product representation.

Constraints could be created from geometric entities
and their relations. In geometric context, the construc-
tion of ETs is fairly straightforward. However, in other
cases, the sources of the constraint might be unknown
and/or the tensor product of the constraint might be the
only available input. How to efficiently decompose a ten-
sor product constraint into its independent variables, if
at all possible, is a question that deserve further investi-
gation. Clearly one can intermix tensor products inside
ETs but it is desirable to better understand when and if
a given tensor product is decomposable into its indepen-
dent variables.

In this work, we have shown how one can handle the
basic operators ("4, -’ ’*’, ’e’). The interval bound for
the inner product, e, operator is not as tight as in tensor

products and a possible tighter interval bound should be
sought. Other operators, such as the cross product, are
not support and might be useful as well. Interestingly
enough, the support of non algebraic operators, such as a
square root or the sine function, is also feasible under ET's
and worth further investigation. This extension to non-
algebraic constraints opens a whole new horizon, going
into a completely new uncharted domain.

During the solution search of the subdivision solver,
several higher end algorithms are applied at times, such
as gradient estimation [8], verification of a single solu-
tion existence in a domain [8], or quadratic clipping [2].
The expansion of the ETs representation to handle such
higher level algorithms, if possible, should be investigated
as well.

Finally, it worth pointing out that the traditional
subdivision based surface-surface intersection (SSI) algo-
rithms operate much like expression trees. These algo-
rithms converges to the intersection locations by indepen-
dently dividing along the parameter space of one freeform
surface or the other. At no time, one process an explicit
4-variate tensor product representation of the constraint.
Instead, the constraint is implicitly evaluated for possible
intersections, much like the ETs scheme. A subdivision
of one surface does not affect the other and vice versa.
In summary, the ETs scheme is a generalized framework
of handling non linear constraints with a complexity that
captures the complexity of traditional subdivision based
SSI algorithms.

Acknowledgment

This research was supported in part by the Software Tech-
nology Center of Excellence, Technion, in part by Euro-
pean FP6 NoE grant 506766 (AIM@QSHAPE), and in part
by the Israel Science Foundation (grant No. 346/07).

References

[1] A. V. Ano, R. SETHI, J. D. U. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, Menlo
Park, CA, 1986.

[2] BARTON, M., AND JUTTLER, B. Computing roots
of polynomials by quadratic clipping. Comput. Aided
Geom. Des. 24, 3 (2007), 125-141.

[3] BARTON, M., JUTTLER, B., AND MOORE, B. Poly-
nomial solvers with superquadratic convergence. The
tenth STAM Conference on Geometric Design &
Computing, 2007.

[4] E. CoHEN, R. F. RIESENFELD, G. E. Geometric
Modeling with Splines. A. K. Peters, New York, 2001.

[5] ELBER, G., AND GRANDINE, T. Hausdorff and min-
imal distances between parametric freeforms in IR?

[11]

and IR®. Submitted for publication in Geometric
Modeling and Processing 2008.

ELBER, G., GRANDINE, T., AND KiM, M. S. Sur-
face self-intersection computation via algebraic de-
composition. Submitted for publication in Solid and
Physical Modeling 2008.

ELBER, G., AND KiMm, M.-S. Geometric constraint
solver using multivariate rational spline functions.
In Proceedings of the Symposium on Solid Modeling
and Applications 2001 (Ann Arbor, Michigan, 2001),
pp. 1-10.

HANNIEL, I., AND ELBER, G. Subdivision termi-
nation criteria in subdivision multivariate solvers.

Computer Aided Design 39 (2007), 369-378.

LANE, J., AND RIESENFELD, R. Bounds on a poly-
nomial. BIT 21 (1981), 112-117.

MoURRAIN, B., AND Pavong, J. P. Sub-
division methods for solving polynomial equa-
tions. Tech. Rep. RR-5658, INRIA Sophia-Antipolis,
http://hal.inria.fr/inria-00070350/en/, 2006.

NisHiTA, T., SEDERBERG, T. W., AND KAKIMOTO,
M. Ray tracing trimmed rational surface patches. In
SIGGRAPH ’90: Proceedings of the 17th annual con-
ference on Computer graphics and interactive tech-
niques (New York, NY, USA, 1990), ACM, pp. 337—
345.

REUTER, M. Subdivision multivariate solver in the
barycentric bernstein basis. The tenth STAM Con-
ference on Geometric Design & Computing, 2007.

SHERBROOKE, E. C., AND PATRIKALAKIS, N. M.
Computation of the solutions of nonlinear polyno-
mial systems. Computer Aided Geometric Design 10,
5 (1993), 279-405.

