Global Solutions
of
Well-constrained Transcendental Systems
using
Expression Trees and a Single Solution Test

Maxim Aizenshtein®, Michael Barton®, Gershon Elber®

@Technion — Israel Institute of Technology, Haifa 32000, Israel

Abstract

We present an algorithm which is capable of globally solving a well-constrained
transcendental system over some sub-domain D C R", isolating all roots. Such a
system consists of n unknowns and n regular functions, where each may contain
non-algebraic (transcendental) functions like sin, exp or log. Every equation
is considered as a hyper-surface in R™ and thus a bounding cone of its normal
(gradient) field can be defined over a small enough sub-domain of D. A simple
test that checks the mutual configuration of these bounding cones is used that,
if satisfied, guarantees at most one zero exists within the given domain. Nu-
merical methods are then used to trace the zero. If the test fails, the domain
is subdivided. Every equation is handled as an expression tree, with polyno-
mial functions at the leaves, prescribing the domain. The tree is processed
from its leaves, for which simple bounding cones are constructed, to its root,
which allows to efficiently build a final bounding cone of the normal field of the
whole expression. The algorithm is demonstrated on curve-curve intersection,
curve-surface intersection, ray-trap and geometric constraint problems and is
compared to interval arithmetic.

Keywords: mnon-algebraic equation system, root solver, single root criteria,
expression tree, bounding cone

1. Introduction and Previous Work

Solving nonlinear algebraic and/or transcendental systems of equations is a
crucial problem in many fields such as computer-aided design, manufacturing,
robotics, kinematics and many others. Robust and efficient algorithms that solve
such systems are in strong demand. For instance, the problem of intersecting a
parametric space curve with a parametric surface leads to a system consisting of
three equations and three unknowns. Similarly, the problem of computing the
closest point(s) on a curve or surface to a given point leads to a well-constrained

Preprint submitted to Elsevier April 5, 2011

polynomial/transcendental system (see, e.g., [19, 20]). In these and similar
applications, all solutions of a system of equations within a certain domain D,
which is typically a box in R™, are sought for.

For polynomial systems, various methods exist. The symbolically oriented
approaches like Grébner bases and similar elimination-based techniques [5] map
the original system to a simpler one, preserving the solution set. Polynomial
continuation methods start at roots of a suitable simple system and transform
it continuously to the desired one [17]. These methods handle the system in a
purely algebraic manner and give a general information about the solution set.
These methods are typically not well-suited if only real roots are required.

Contrary to this, a family of solvers which focuses only on real roots has
been introduced. These subdivision based schemes handle the polynomials as
hyper-surfaces in R™ and exploit the convex hull property of its Bernstein-Bézier
representations [6, 10, 12, 13, 15, 16]. The domain is subdivided, sub-domains
which can not contain a root are clipped away and (a set of) sub-domain(s)
which may contain roots are returned. The subdivision is usually stopped if
some numerical threshold is reached. In [10], a termination criterion which
guarantees at most one root within a sub-domain has been proposed for isolating
roots. Many others polynomial root-finding techniques exist. One survey can
be found in [11].

In contrast, for the case of transcendental solvers, schemes which also sup-
port trigonometric and transcendental terms, the literature is not so extensive.
Local root tracing techniques, such as Newton-Raphson iterations, are clearly
employed once a close-to-a-root guess is available. One family of solvers is based
on the reduction of the original n-dimensional system to one-dimensional non-
linear equations, see [8] and related work cited therein. Every function of the
system is evaluated at n — 1 variables and solved with respect to the remain-
ing one. The root of the univariate function and the partial derivatives of f;,
t=1,...,n — 1 in the root are then used as the coefficients of the linear sys-
tem which computes the improvement of the first n — 1 values. The process is
iteratively repeated, converging quadratically to the root. Even though these
methods use a reduction to a single equation, a good initial guess of the root is
again needed and the detection of all the roots is not guaranteed.

Another iterative method was proposed in [9]. Every function of the system
is considered as an objective function. The goal is to minimize these functions
and the problem is essentially reduced to a multiobjective optimization prob-
lem. An evolutionary algorithm is proposed and a sequence of candidates that
approximate the root is created. Again, similarly to [8], the process is iterative
and a good initial guess is required to reach the root.

A different subdivision based approach that handles some transcendental
systems was presented in [7]. The method presented therein is capable of solving
an Extended Chebyshev (EC) systems and is well suited for systems consisting
of exp function(s). In contrast, ”if sin or cos functions are involved, its difficult
to decide whether the system is EC or not.” [7], (p. 94, section 4.3 and p.
82, 1st paragraph of Section 4.2). Making this decision fully automatic is an
even more complex task. In contrast, our approach requires to subdivide only

polynomial leaves that contain the variable which needs to be subdivided (and
can be therefore efficiently achieved by using deCasteljeau algorithm). The
numerical subdivision in [7] is based on multiplying a subdivision matrix, which
is expensive and the numerical stability is guaranteed only for low-dimensional
systems, see [7], (p. 82).

Another family of subdivision based solvers that support also transcendental
functions relies on interval arithmetic [14]. These methods typically construct
an interval bound on values that given function may attain over given domain.
If zero is outside of the bound of some function of the system, the particular
domain is discarded. Again, these schemes are difficult to guarantee numerical
stability during subdivision and no root isolations are offered.

A major drawback of many subdivision solvers stems from its exponential
dependency on the dimension of the problem. In [6], an alternative represen-
tation of the equations, in a form of expression trees, is shown to present only
polynomial dependency. Herein, we exploit another advantage of expression
trees [1], and show how they can be used to find the roots of sets of transcen-
dental functions.

In this paper, an extension of [4], we present a “divide and conquer” algo-
rithm which is capable of solving transcendental (non-algebraic), well-constrained
system over some domain D C R™. Such a system consists of n unknowns and
n regular functions, where each may contain transcendental functions like sin,
exp or log. Every equation is considered as a hyper-surface in R™ and thus a
bounding cone of its normal (gradient) field can be defined over a small enough
sub-domain of D. The termination criterion of [10] is exploited to check the
mutual configuration of these bounding cones which, if satisfied, guarantees at
most one zero within the given sub-domain, and hence offers a robust scheme
to isolate all roots, globally. A multivariate Newton-Raphson method is then
used to converge to the zero. Moreover, such a condition guarantees that the
subdivision is not terminated until all roots are isolated, with the possibility of
terminating at the permissible subdivision tolerance, in cases such as multiple
roots.

The rest of the paper is organized as follows. Section 2 briefly recalls some
notions, including transcendental systems, single solution criterion, expression
trees and interval arithmetic. In section 3, the introduced solver that is capable
of handling transcendental systems is presented. The construction of bound-
ing cones of differential spaces of transcendental functions is explained and its
arithmetic is introduced. In section 4, the application of the proposed solver is
demonstrated on curve-curve and curve-surface intersection problems, the ray-
trap problem ! and the geometric constraint problem and is also compared to
interval arithmetic. Finally, Section 5 identifies some possible future improve-
ments of the presented method and concludes.

LA ray is considered trapped if it bounces forever between k entities in a loop, bouncing
from the ith object toward the i + 1st object, in a cycle.

Figure 1: (a) System (1) for n = 3, with single solution over some domain D C R". (b)
Complementary (tangent) circular bounding hyper-cone Clc of hyper-surface f1 = 0.

2. Preliminaries

The presented solver exploits both the expression trees representation [6] and
the single solution termination test of [10]. A brief survey on these topics will be
given. In 2.1, a non-algebraic system is defined and the single root termination
criterion for such a system is formulated in 2.2. The notion of expression trees
is recalled in 2.3, and in 3.2 the no-root exclusion test and interval arithmetic
are introduced.

2.1. Well-constrained Transcendental Systems

Definition 1. Function f : R — R is algebraic over Q if there exist a poly-
nomial p(x,y) with integer coefficients y such that p(z, f(x)) = 0. Functions
which are non-algebraic are called transcendental.

Definition 2. Consider the mapping F : R™ — R"™, such that at least one com-
ponent fi, i =1,...,n of F(x) = {f1(x), fa(X),..., fu(x)} is a transcendental
function in variables x = (x1,2,...,x,). Then, every solution x of the system,

F(x) =0, (0

is called a root of F and the set of all roots is known as the zero set of the
transcendental mapping F. The determinant of Jacobian matriz, (%%(x)), is
referred to as a Jacobian of System (1) at x.

In general, System (1) has a zero set of dimension zero. In such a case, we say
that the system is well-constrained. We assume System (1) is well-constrained in
some sub-domain D C R™ and a = (aj,as,...,a,) € D is a root. Additionally,
we assume that Jacobian of System (1) never vanishes in (the vicinity of) any
of its root (the root is regular). In the singular case, the proposed solver will
only subdivide to as close as prescribed neighborhood of the root.

If there is a guarantee that a is the only root of (1) in D, some numeri-
cal technique, like the multivariate Newton-Raphson method [18], can be used
to try to numerically improve the root. This stage, though, may not always
converge, a case which will entail further subdivisions.

2.2. Single Solution Termination Criterion for Transcendental Systems

In [10], a single solution criterion was formulated for (piecewise) polynomial
systems. Considering every f;(x), i =1,...,n, from System (1) as hyper-surface
in R", its bounding hyper-cone of the normal field, and subsequently bounding
hyper-cone of the complementary (tangential) field, was created. From the
mutual position of all n complementary hyper-cones, an existence of at most
one root can be determined. See Fig. 1 and [10] for more.

Since this idea is general, regardless of the type of the system (polynomial
or transcendental), we adopt this approach and, in a similar manner, test the
mutual position of all corresponding tangent bounding hyper-cones. Obviously,
the construction of these hyper-cones, unlike the polynomial case, can not be
accomplished from the control points of hyper-surfaces f;(x) = 0 (there are
no control points anymore) and it will be explained later, in Section 3. Since
the proposed technique is based on the bound of normal fields (gradients), all
hyper-surfaces are required to be regular and C* continuous over the domain of
interest. We start by formulating two definitions:

Definition 3. Consider implicit function f;(x) =0, x € R" i = 1,...,n over
some (rectangular) sub-domain D C R™. We define the normal field of the
implicit function f;(x) = 0 over sub-domain D by

N; ={Vfi(x),x € D}, (2)

where V f;(x) = (2L 01 91iy s the gradient of f;.

Ox1? Oxo’ """ Oz

Definition 4. Consider circular hyper-cone in R™ with the axis in the direction
of unit vector U; and an opening angle o; as

¢ (6, 0i) = {al(@, ;) = ||| cos o}, (3)

We say that CY is a bounding normal hyper-cone of function f; if

(@, 0;) > ||u|cos e, VT €N (4)
By a complementary (or tangent) bounding hyper-cone, CS, we denote
CE (Ui,) = CNY (47, 90° — o). (5)

The tangent bounding hyper-cone, Eq. (5), bounds the complements of the
normal vectors, i.e. the tangent hyperplanes. Therefore, it contains all vectors
perpendicular to those bounded by the normal hyper-cone.

Figure 2: Binary tree for f(s,t) = e** 4 cos(y/s). The bounding normal cone of the whole
expression f is constructed by parsing the tree from the leaves (lower row) to the upper node,
the root, applying the bounding cones’ arithmetic.

Remark 1. In the remainder of the paper, if no misunderstanding can occur,
we call the circular bounding normal hyper-cone as bounding normal cone and
the circular complementary bounding hyper-cone as bounding tangent cone.

Theorem 1. [10] Given n implicit hyper-surfaces f;(x) = 0 together with bound-
1ng tangent cones CZ-C, i=1,...ninR", there exist at most one common solution

of System (1) if .
(cf ={o}, (6)

i=1
where 0 is the origin of the coordinate system.

2.3. Fxpression Trees

We recall the notion of a binary tree as a structure that uniquely corresponds
to some, not necessarily algebraic, expression. The leaf nodes of the tree are,
for instance constants and variables, expressed as polynomial parametric forms
and the interior nodes are unary/binary operators, including, in this case, tran-
scendental functions. In the case of a binary operator, its two sub-nodes are the
two operands whereas an unary operator is descended by only one sub-node,
see Fig. 2.

In the context of solving transcendental System (1), we have n functions
(represented as expression trees) f;(x) and our aim is to construct a bounding
normal cone of every f;(x) in order to decide whether there is a single zero inside
some sub-domain D. For every particular tree, f;(x), we start to construct
bounding normal cones bottom-up from every leaf and, using the bounding
cones’ arithmetic described in Section 3, the tree is parsed all the way up to
the root of the tree, resulting with the bounding cone of the whole expression

of fi(x).

2.4. Interval Arithmetic’s Solver and No-Root Exclusion Test

Since interval arithmetic [14] is one alternative to be used for solving non-
polynomial systems (and the proposed method will be compared to it in Section
4), we briefly introduce this method.

In order to eliminate domains which contain no roots (no root exclusion
test), the sign variation of every function f;(x), ¢ = 1,...,n, is tested over a
given domain D. If f;(x) > 0, (or fi(x) < 0) for some i, for all x € D, D is
discarded. For any polynomial leaf, this test is easily achieved by checking the
signs of the corresponding coefficients. If all are positive (negative), the convex
hull property guarantees that no roots exist. For every f;, all its polynomial
leaves are tested and the minimum and mazimum of the coefficients define a
bounding interval of values that the (polynomial) leaves may attain. Since f; is
treated as an expression tree, an interval arithmetic is applied at every interior
node of the tree, giving a new bound on the merged expression. The tree is
parsed from its leaves to the root, only to provide a bound on f; itself.

Interval arithmetic-based solver works as follows. Given the System (1) over
some domain D, subdivide D until either

e some f; is completely positive (negative) and the subdomain is discarded,
or

e the subdivision tolerance is reached and the domain is proclaimed as a
root-containing.

Then, the numerical improvement stage, see Section 3.3, is invoked.

Observe that the answer in the later case is “may-be a root” which means,
unlike the proposed method that exploits the single solution test, that there
may exist several roots inside the domain.

Also observe that the subdivision scheme converges only linearly to a single
root. If a high subdivision accuracy is required, a large number of subdivisions
is expected. On the other hand, the approach based on the single solution test
can isolate single roots much earlier whenever possible and thus allows an earlier
robust invocation of some numeric improvement scheme.

3. Bounding Cones’ Construction and Arithmetic

In this section, we explain how the bounding normal cone of an expression —
an interior node of an expression tree — is constructed, and introduce the bound-
ing cones’ arithmetic which is used when two sub-trees are merged together at
some binary (or even unary) node.

3.1. Truncated Bounding Cones and their Bounding Polytopes

Definition 5. Consider bounding normal cone, Cév(ﬁ, «), of g, over some sub-
domain D C R™. Similarly, consider two positive numbers Vmin and Vmazx,
such that for all x € D,

Vmin < [[Vg(x)|| < Vmaz, (7)

Figure 3: (a) n = 4, a cap of a truncated cone in R*, ball B3, with its wire-frame bounding
orthoplex (an octahedron for B3) consisting of 2(n — 1) = 6 axis-aligned vertices. (b) n =
3, truncated normal cone in R® with axis ¥y and apex V at the origin. The orthogonal
complement of ¥y, By, and its orthonormal basis {Bg4[0], By[1]} is computed to construct a
pair of bounding orthopleces O, O and subsequently the bounding polytope Py.

holds and
(Vg,v) > || Vgl (8)

where « is the spanning angle ofCéV. We further denote by@ = (Cé\r7 Vmin, Vmaz)
the truncated bounding normal cone of function g.

Observe that the bounding normal cone, as defined in Def. 4, always contains
the origin of the coordinate system (the apex of the cone). As will be seen from
the definition of arithmetic operations on bounding cones, a tighter bound which
does not contain the origin, is needed. The truncated cone defined in Def. 5
bounds both the direction and the magnitude of the gradients of g, see Fig. 3(b).

The upper and lower caps of CY (see Fig. 3) are n — 1 dimensional balls,
since their boundaries are n — 2 dimensional spheres, the result of intersections
of the hyper-cone with two hyper-planes perpendicular to its axis.

In order to perform operations with truncated normal cones, we now in-
troduce polygonal bounding regions to these cones, which are referred to as
bounding polytopes. Such a polytope follows the shape of the truncated cone,
conservatively bounds it, and is easy to construct once a polygonal bound on
both caps of the cone are given. Direct operations on (exact) truncated cones
would be very difficult to handle, whereas these polytopes discretize the problem
to treating only a finite number of points (the vertices of the polytope).

Definition 6. Consider an (n — 1)-dimensional ball, B"~', of radius r. An
orthoplex [21] O of ball B"~1 is the set

O={xecR" x| <rvn—1}, 9)
where |.||1 is the L' norm.
Lemma 1. The orthoplex O from Def. 6 bounds B"~!.

Proof 1. By definition, all the points of B"~' satisfy ||x|l2 < 7. Due to the
equivalence of norms in a finite dimensional space, ||x||1 < A||x||2, for some
X € RT. Hélder inequality

n—1 n—1 n—1
1 1
Yo lewil < Qo whE - Q_ i), (10)
i=1 i=1 i=1
foryi=1,i=1,...,n—1 gives A\ = v/n — 1, which yields in ||x||; < rvn—1.
U

Obviously, the bounding orthoplex O was defined in a way that it bounds
B"~!. Note the advantage that O possesses only 2(n — 1) vertices, compared to
another natural bounding region — the (n — 1)-dimensional cube, which consists
of 2771 vertices. Since the operations on truncated cones are reduced to the
vertices of bounding polytopes, the linear growth with respect to the dimension
is definitely beneficial.

The construction of an orthoplex is straightforward. Consider ball B™~!
with its center at the origin of the Cartesian system. Then, all the vertices v,
V3, ..., Vap_o of the bounding orthoplex are located on the n — 1 axes, at a
distance of +ry/n — 1 from the origin, see Fig. 3(a), so they can be expressed
as all permutations over (£rv/n —1,0,...,0).

Then, ball B*~!, along with all the vertices v; of its bounding orthoplex,
is transformed (rotated and translated) from the origin-related position to the
proper location such that it caps the truncated cone. In order to achieve this
transformation, the destination position of the system is needed. Since the ball’s
basis is the orthogonal complement of the cone’s axis, see Fig. 3, the construction
of the basis is achieved by a Gramm-Schmidt process.

Definition 7. Let @ be the truncated bounding normal cone of g and let O,
O be the bounding orthopleces of the lower and upper caps, respectively. The
convex hull of {O, O} is referred to as the bounding polytope of ClV, denoted by
Py, see Fig. 3.

Apparently, the closed polyhedron P, that bounds @ consists of (at most)
4(n — 1) vertices, as the convex hull of O and O, each of which has 2(n — 1)
vertices. Therefore, the arithmetic operations on the bounding truncated cones
can be efficiently accomplished on their bounding polytopes.

8.2. Bounding Cone’s Arithmetic

We introduce the arithmetic rules for the computation of the resulting bound-
ing cone at a node of an expression tree. In this work, we consider the following
binary operations: summation, subtraction, product, inner-product and tran-
scendental functions: sin, cos, exp, log and square-root, that can act at any
node. The idea is general and can be applied to arbitrary trigonometric function.
However, current implementation handles only the above mentioned functions.

Let f and g be two expressions, two neighboring sub-trees that are being
merged at some node of an expression tree, and let C}V(Uf, ay) and CN (v, ay)
be their truncated bounding normal cones. Sections 3.2.1 to 3.2.5 explain the
action taken for the different operators, as part of the execution of the bounding
cones’ arithmetic.

8.2.1. Addition
Let h = f+ g and let C)¥ be the sought truncated normal cone of h. As
we already mentioned, the exact construction of C¥ from C¥ and Cév would
be complicated. Instead, we use their bounding polytopes P; and Py, as the
following holds
CNccyecy cProP, CC (11)
where the @ denotes the Minkowski sum, and C* is a cone that contains the
Minkowski sum of both polytopes. This construction is reduced to only adding
all possible pairs of vertices of both polytopes. Algorithm 1 summarizes this
process. An explanation of some of its steps follows in more detail:

e Since each of the bounding polytopes consists of at most 4(n — 1) vertices,
their Minkowski sum is obtained by processing all possible pairs, 16(n—1)2
in all. See line 1.1.

e Vminmax is a vector of size 2 holding (Vmin, Vmaz).

o The radii of the orthopleces is set by v/n — 1tan(«) and CT.Vminmax[i]
in lines 1.7 and 1.9 and lines 1.10 and 1.11, respectively.

e In lines 1.2 and 1.3, the orthogonal complements of both axis vectors are
constructed. These orthonormal bases are used to build vertices V¢, ¥4 of
the bounding polytopes, in lines 1.10 and 1.11.

e Bounding cone C* that contains the Minkowski sum of both polytopes is
computed, possibly using the method of [2], and returned in line 1.13.

3.2.2. Subtraction
Since

V(f-9)=Vf+V(-g) (12)

and the bounding cone of —g is achieved simply by flipping C,, the problem is
easily reduced to addition.

10

Algorithm 1: ADDNORMALCONE(CY,CY,n)

input : C]{V(ﬁf,ozf), CN (Uy, ag), truncated normal cones of f and g;
n, dimension;
output: C*, bounding normal cone of f + g, see Eq. (11);
1.1 PointsList « List to hold 16(n — 1)? elements;

1.2 OrthoSystemB; < HyperplaneOrthoSystem(¥s, n);
1.3 OrthoSystemB, < HyperplaneOrthoSystem(v,, n);

1.4 for i< 0to 1 do

1.5 for j+ 0to 1do

1.6 for k<~ 1ton—1do

1.7 Uy < v/n — 1tan (ay) - OrthoSystemB[k][;

1.8 form«+<1ton—1do

1.9 Uy < v/n — 1tan (o) - OrthoSystemB,y[ml;
1.10 Vi @.Vminmam[i] (U £ dyp);
1.11 Vg @.Vminmax[j] (U £ 1y);
1.12 AppendToList (PointsList, ¥ + V,);

1.13 C* < BoundingConeOfVectors (PointsList);
1.14 return C*;

8.2.3. Scaling
Scaling (scalar multiplication) by a non-zero coeflicient A € R is achieved by
scaling all polytope’s vertices.

8.2.4. Multiplication
Since the gradient of a product is

V(fxg)=g*Vf+ fxVyg, (13)

the bounding cone is obtained by applying the above discussed operations, where
g - Vf is accomplished by computing the minimum and maximum of ¢, in the
sub-domain D. Note that a constant sign of both f and g over D is required. If
not, the bounding cone would span whole R™ and the solver subdivides in that
case.

3.2.5. Transcendental Functions
exp: Since the exponential function attains only positive values and

V() =el VY, (14)

this case is similar to scaling by min e/ and max e/,
xeD xeD

11

log: We obtain
1

f

the problem is again reduced to scaling and f is required to have a strictly
monotone sign on D.
sin & cos: Analogously,

V(log f) = = -V, (15)

V(sin f) = cos f - Vf, (16)

and scaling by constants max cos f(x) and mig cos f(x) gives the result under
xE x€E

the assumption that cos f does not change sign on D.
In the case of a polynomial leaf, g(x), the bounds of miB g(x) and max 9(x)
x€ pS

are directly obtained from its control points exploiting the convex hull property.
Min/max bounds of interior nodes are computed following the same rules of
interval arithmetic for simple arithmetic and Equations (14) to (16), in case of
transendental functions. In the latter case, f is required to be monotone over
D and f(g(x)) is evaluated at min g(x) and max g(x).

3.8. Numerical Improvements Stage

Once a domain, which contains at most one root is isolated by a single
solution test discussed in Section 2.2, a numerical improvement stage is com-
menced, and techniques, such as the ones presented in [8] or [9] could be clearly
employed. Herein, we use simple Newton Raphson iterations, starting with an
initial solution guess of xy at the mid point of the obtained domain. The ex-
pression tree structure of the equations also allows for an efficient computation
of gj:;, necessary for the Newton Raphson iterations, by using the derivative

rules (such as the addition and multiplication rules, in Section 3.2).

If the iterations do not converge or go outside of the domain, we declare that
there is no root in the domain. One can, in that case, continue the subdivision
steps in the hope that a closer initial guess will be more successful. This, until
some prescribed subdivision tolerance is met. The last case typically hints on
non simple roots, which are prevented by passing the single solution test, or in
some cases, on roots on the boundary of the domain.

8.4. Algorithm — Summary

Every function f; of System (1) is represented by an expression tree. The
solver parses the tree, starts with the simple bounding cones of polynomial
functions at the leaves of the expression tree, and ends up at the root of the
tree with a bounding normal cone of f;. If in some node, the merging process
fails to produce valid bounding cone (i.e. the cone spans the whole R™), the
solver simply subdivides. Recall from [6] that the advantage of subdividing
using expression trees stems from the fact that only the leaves in the direction
of the subdivision are required to be subdivided.

Once the bounding cones of all the f; functions are built, the complementary
bounding cones are constructed (recall Section 2.2) and the single solution test

12

of [10] is executed. If this test succeeds, guaranteeing at most one isolated
root within the domain, a multivariate Newton-Rapshon method is applied.
Otherwise, the solver subdivides further, up to the permissible tolerance.

8.5. Analysis of the Bounding Cone’s Tightness

In this section, we discuss the quality of the bound which was introduced
in Section 3.1. The polyhedral bound, the bounding polytope, of the truncated
normal cone is based on bounds of the cap(s), the (n — 1) dimensional ball(s)
B~ L. For convenience, we shift the index to n, in this section.

Since the tightness of the polytope with respect to the truncated cone follows
the quality of the bound of the orthoplex with respect to B™, we discuss the
quality of this bound. Several criteria of the bound can be considered:

(1) Number of vertices (complexity) of the bounding polyhedron,
(2) distance of the farthest vertex from the center of the ball,
(3) the ratio between the volumes of the bound and the original ball.

As a natural alternative to an orthoplex, an n-dimensional cube comes up
in mind. A comparison of these two bounds follows.
(1) As already mentioned in Section 3.1, an orthoplex consists of only 2n vertices
in contrast to 2" vertices of the cube.
(2) Any vertex of both bounding objects is at the distance of r/n from the
center of B™.
(3) The volume of a cube is V(C™) = (2r)™ and the volume of the inscribed ball
[21], B™, is given by

rE+1)
which can be rewritten using Stirling’s approximation as
n n
2 2 pn
(rym) ~ [£7€ . (18)
Vnm

I(%+1)
The direct computation of the volume [21] of the orthoplex gives

V(O™ = /dx: (rv/n)" / dx = Wﬂﬂ (19)

o lIllx <1

n

Table 1 displays the comparison of the criteria for various n.
Observe also the asymptotic behavior of “,/((g)) and “,/((?l)), in Fig. 4. Using

Stirling’s approximation again, we get

(ry/m" (Zﬂe)g r"

V(B") TEF+D w)2 T.n
= ~ = V2(— 2
Vo) " m e e (20
whereas V) .
" eT . n
~(—)2 — 21
vion ~ %) (21)

Table 1: Cube vs. Orthoplex as a bound on unit ball B" with respect to the dimension n.
The numbers of vertices, volumes and relative volumes with respect to the ball B™ are shown.

NumO fVert Volume Volumetric Ratio
" | orth. | cube | Orth. | Cube Zubre et
2 4 4 4 4 x z
4 8| 16 - I T R =
6 12 64 9% 64 o2 =
8 16 | 256 | 92| o956 | Loor =
10 20 | 1024 | 18090 | 1024 | lsom s

Relative volumes
10

0.8
0.6
0.4

0.2

2 4 6 8 10 12 14
Figure 4: Comparison of the bounding tightness: Relative volumes X((g% (red) and %ﬁé

(blue), as a function of dimension n, are depicted.

which converges to zero much faster.

As observed from the above analysis, the bounding orthoplex is not only
more efficient to process but it also offers a satisfactory bound on B", that is
better than the bounding cube. Hence, the use of the orthoplex as a bounding
volume results in a tight bound of the truncated cone.

4. Examples

In this section, the proposed solver is applied to curve-curve intersection,
curve-surface intersection, ray-trap and geometric constraint problems, and is
also compared to interval arithmetic.

In the first example, an Archimedean spiral is intersected with a parabola,
resulting in four single roots. Grey rectangles at Fig. 5(b) show, when the
single solution test guarantees at most one root. In the next example, see
Fig. 6(a), circle Cy(t) = [10 cos(t), 10sin(t)], t € [0, 27] is intersected with cycloid

14

0.16-

2 014+

0.10

0.08

0.06- A
0.04
14
0.02

124 126 128 130 132 134 136 138 140 142

(b) ()

// o S5 w0 ses |ds 0 des | ae

(d) () (f)

Figure 5: (a) Archimedean spiral C1(t) = [étcos(t), %tsin(t)], t € [0, 6] (blue) vs.
a segment of parabola Ca(s) = [s,/s], s € [0, 7], (green) gives 4 intersection points.
(b) Corresponding points (red asterisks) in the parametric st-space [0, 67] X [0, 7].
The grey domains, rectangles with black polylines as boundaries, report when the
subdivision was stopped with a guarantee of at most one root within the domain.
(¢) A zoom-in on the second root. In the case of the root at the origin [0, 0], the
subdivision tolerance of €4, = 10~3 was reached. Once the subdivision is stopped,
a Newton-Raphson scheme is applied to numerically reach the root. (d) A cycloid
C2(s) = [10cos(s) + 2 cos(10s), 10sin(s) + 2sin(10s)], s € [0, 27] (green) and a circle
(blue) of radius r = 8 possess a tangent contact along 9 points (black asterisks). (e)
An almost-tangent configuration for » = 8.01 with 18 pairwise grouped intersection
points and a zoom on one such a pair (f).

C3(s) = [10cos(s) + 2cos(10s), 10sin(s) + 2sin(10s)], s € [0,27] yielding the
system
10 cos(t) — 10cos(s) — 2cos(10s) = 0,

10sin(¢) — 10sin(s) — 2sin(10s) = 0, (22)

over the Cartesian product of their parametric domains, [0, 27] x [0, 27]. A mod-
ification of the circle’s radius gives the tangent and almost-tangent configuration
as shown at Fig. 5(e,f). Whereas the first case forces the solver to subdivide
until the subdivision tolerance is reached, and the centers of the may-be-root
domains are returned, in the latter case, the roots are isolated by the single
solution test [10]. Observe the relatively small number of subdivisions in Ta-

15

By
o
* g
& 4
* ok
Ry
*
Fog
e 1 1 | Low High
(a) (b) (c)
&)
\oi'ﬂm @
ﬁ Bl
A g Low High

(f)

Figure 6: (a) A cycloid Ca(s) = [10cos(s) + 2cos(10s), 10sin(s) + 2sin(10s)], s €
[0,27] (green) is intersected with a circle (blue), giving 17 intersection points. (b)
Corresponding points (red asterisks) in the solution (preimage) st-space [0, 27] X
[0,27] and sub-domains, that contain at most one root (grey). (c) Red isocurves
indicate locations where the Jacobian of System (22) is zero. Color coding depicts
the L2 norm of the system, dark color corresponds to low values. Green dots are the
roots. Bottom row, (d-f), an analogy for two cycloidal curves defined in (23).

ble 2, when compared to interval arithmetic, especially when higher accuracy is
required.
A more complex example is shown in Fig. 6(d). Two cycloidal curves

Ci(t) = [sin(§)cos(t),sin(L)sin(t)], te[-5F, 3], (23)
Ca(s) = [sin(3s)cos(s),sin(3s)sin(s)], s [-F, 5],

are intersected, having fourteen single roots and a triple root at point [0, 0]. For
a very fine subdivision tolerance £, = 107, interval arithmetic requires almost
three times more subdivisions than the algorithm exploiting single solution test,
see Table 2.

In the next example, two parametric curves

Ci(t) [t,sin(%)}
Co(s) =

[sin(1), s].

S

(24)

are intersected, giving infinitely many solutions over domain D = [-1,1] x

16

Figure 7: (a) Sinusoidal shaped curves Ci(t) = [t,sin(%)], t € [—1,1] (green) and
Ca(s) = [sin(%),s], s € [—1,1], (blue) with infinitely many intersection points in
the vicinity of z- and y-axes. (b) The pre-images of intersection points (red) in the
parameter st-subspace [0.001, 1] x [0.001, 1]. The rectangles correspond to the stage
of the algorithm when subdivision is terminated. Once the subdivision is stopped, a
Newton-Raphson scheme is applied to numerically improve the root. (c) In contrast,
interval arithmetic subdivides until subdivision tolerance of 4,5, = 10~3 is reached.
Bottom row, (d—f), an analogy for curves C1(t) = [t, sin(%)}, t € [0,1] (green) and

Ca(s) = [sin(Z), s], over domain [0.001,1] x [0.1,1].

sD

[-1,1], see Fig. 7. The intersection were sought for over sub-domain D’ =
[0.001,1] x [0.001,1] in order to test the ability of the single solution test to
isolate roots. Black-bounded rectangles indicate when at most one root was
detected. In this stage of the algorithm, the subdivision is stopped and the
numerical improvement stage (in our implementation, a multivariate Newton-
Raphson method) is invoked. Fig. 7(b) shows the root isolation in the pre-image
space. In contrast, by its definition, interval arithmetic subdivides until the
subdivision tolerance is reached. This fact may result in an incorrect number
of roots if the subdivision tolerance is too coarse, or, in a huge number of
subdivisions for fine tolerances. Similar behavior is also observed in the example
at Fig. 7(d-f) for a slightly modified curve Cs(s) = [sin(%),s] and domain
D’ =10.001,1] x [0.1,1].

As a next example, space curve C(t) = [ef, e, L], ¢t € [0,1] is intersected
with surface S(u,v) = [In(14u),In(14v), cos(27 (uv +v)), [u, v] € [0,1] x [0, 1],
giving a system of dimension three, see Fig. 8.

17

(a) (b) (c)

Figure 8: (a) A curve-surface intersection with 2 solutions. (b) The same arrange-
ment seen from the top. (¢) A zoom on a root-containing segment of the solution,
uv X t, space. Colored voxels are reported when the solver stops subdivision, while
the two thick black dots are the roots of the system.

Figure 9: (a) A set of three bouncing rays are trapped between three parametric
planar curves. One solution is shown (black). (b) A zoom on the three curves’
parameter stu-space with the sub-domains (green voxels) where at most a single
solution is isolated. (c) In contrast, interval arithmetic subdivides until the given
subdivision tolerance €4, = 1072 is reached.

The ray traps example is shown in Fig. 9. The ray-trap problem examines
an arrangement of k objects for the existence of ray loops in which a ray is
bounced off one object to the next in an infinite loop. Herein, the k& = 3 objects
are planar parametric curves parameterized by transcendental functions.

As a last example, a problem that corresponds to a 4 x 4 system is shown
at Fig. 10. Vertices V1, ..., Vy of a square (of an unknown size) are constrained
to lie in turn on four algebraic curves oy : (z — 3)%2 + (y — 0.4)?2 = 1, ay :
(=3°+@-3)(y=3)+(y—3°=Lasg:a®—a(y—3)+(y—3)?* =1
and oy : 22 + 2y +y? = 1. Consider V;, i = 1,...,4 as V; = [c1 + kcos(¢ +
W),CQ + ksin(¢ + @)], where C' = [c1,¢2] is the center of the square,
k is the scaling factor, and ¢ is the angle between V; — C and the positive z-

axis. Substituting the coordinates of V; into a; gives the system. Solving for

18

Figure 10: A solution of a 4 x 4 system: A square of an unknown edge’s length is sought such
that each its vertex lies on one of four particular implicit curves (blue). Six solutions were
found (red). One solution is highlighted (bold black).

[c1,c, k, @] over domain [0, 3] x [0, 3] x [0,2.5] x [—7/2,7/2] gives 6 solutions,
see Fig. 10.

Table 2 gives a timing summary of all examples and shows a comparison
of the proposed approach exploiting the single solution test with interval arith-
metic. These timings are obtained from a 2.67 MHz IBM PC running Windows
XP. Every example was executed 60 times and the timings were averaged. For
low accuracies, the timings of both methods are fairly comparable since the ben-
efit of the lower number of subdivisions is eliminated by the computational cost
of the single solution test. On the contrary, in the case of higher subdivision
tolerances, the single solution test shows a substantial reduction of subdivisions
that is also reflected in the timings.

As a post-process, all roots were validated. An existence of false positive
answers (invalid roots) was revealed in example at Fig. 9, see Table 2 where the
number of invalid roots is displayed in italics. This phenomenon appeared in
both methods and is exclusively related to the numerical improvement stage,
see Section 3.3, and goes beyond the scope of this paper. We emphasize that
after the subdivision stage, the single solution method returns a set of domains
which contain “at most one root” whereas interval arithmetic answers “may be
a root”.

The solver has been implemented as a library of the Irit, solid modeling
system 2, written in the C programming language and no third party libraries
were used.

2www.cs.technion.ac.il/~irit

19

Table 2: Statistics on examples computed by the presented algorithm and its
comparison to interval arithmetic for two sets of tolerances: subdivision tolerance
€sup = 1073 and numerical tolerance enum = 1076 and e, = 1076, epum = 1078
(marked by *) over normalized parameter spaces. S indicates the number of do-
mains returned after subdivision stage. Further, the number of total roots after the
numerical stage, the number of invalid roots (italic), the number of subdivisions and
timings (in seconds) of both algorithms are displayed.

Single solution test Interval arithmetic

Example

S ‘ roots ‘ subd ‘ time S ‘ roots ‘ subd ‘ time
Fig. 5(a) 15 4 57 | 0.005 11 4 191 | 0.004
Fig. 5(a)" 15 4 57 | 0.005 13 4 506 | 0.008
Fig. 5(d) 176 9| 879 019 234 9| 1449 | 017
Fig. 5(d)* 551 9 1994 | 0.63 7422 9 | 46260 5.3
Fig. 5(e) 187 18 901 0.16 259 18 1523 0.12
Fig. 5(e)* 200 18 1098 | 0.22 511 18 | 13518 | 0.57
Fig. 6(a) 52 18 640 | 0.056 72 18 990 | 0.035
Fig. 6(a)" 52 18 720 | 0.06 70 18 2334 | 0.07
Fig. 6(d)* 138 17 1305 | 0.26 97 17 3587 | 0.22
Fig. 7(a) 1238 1074 2419 | 0.25 1241 1074 2941 0.17
Fig. 7(d) 11927 | 5688 | 18709 | 2.33 11930 | 5688 | 19917 | 1.84
Fig. 8 9 2 42 | 0.02 8 2 237 | 0.008
Fig. 8 9 2 42 | 0.02 8 2 506 | 0.014
Fig. 9 844 | 6+40 | 14934 | 44.6 912 | 2440 | 18659 13.8
Fig. 10" 926 6 | 15817 | 27.9 996 6 | 62198 4.8

5. Conclusion and Future Work

In this work, we have presented a solver that robustly solves well-constrained
n x n transcendental systems. Exploiting the expression trees to construct
bounding normal cones of n transcendental constraints, the subdivision based
solver detects all sub-domains, where at most one root can exist. The root is
then numerically improved by a multivariate Newton-Raphson scheme.

The presented solver guarantees to isolate and return all single roots of the
system within a given domain. Other roots are only isolated. This, in contrast
of commercial software such as Maple?, Mathematica?, or Matlab®, which — to
our best knowledge — can locally isolate and provide only one root or a few of
them.

As a future work, an improved algorithm is intended, which better handles

Shttp://www.maplesoft.com/
4http://www.wolfram.com/products/mathematica
Shttp://www.mathworks.com/

20

multiple roots. As of now, the solver only subdivides to such points, up to the
permissible tolerance. In addition, the numerical stage of the algorithm deserves
some further research. For once, under the current scheme, there is no guarantee
that a multivariate Newton-Raphson scheme will converge to the root. Also, if
the system is underconstrained and (at least) one-dimensional solution space is
expected like in [3], a special treatment of the system is more favorable.

Despite the use of expression trees, which are highly efficient during the sub-
division stage, the growth in the number of subdivisions is required to be mini-
mal with respect to the dimension n. Hence, the handling of higher-dimensional
systems is within the scope of our interest.

6. Acknowledgments

This research was partly supported by the Israel Science Foundation (grant
No. 346/07), in part by the Israeli Ministry of Science Grant No. 3-8273, and
in part by the New York metropolitan research fund, Technion.

[1] A. V. Aho, J. D. Ullman and J. E. Hopcroft. Data structures and algo-
rithms. Addison Wesley, 1983.

[2] G. Barequet and G. Elber. Optimal bounding cones of vectors in three and
higher dimensions. Information Processing Letters, 93:83-89, 2005.

[3] M. Barton, I. Hanniel and G. Elber. Topologically guaranteed univariate
solutions of underconstrained polynomial systems via no—loop and single—
component tests. Proceedings of the 14th ACM Symposium on Solid and
Physical Modeling, 207-212, Haifa, 2010.

[4] M. Aizenshtein, M. Barton and G. Elber. Global Solutions of Well-
constrained Transcendental Systems using Expression Trees and a Single
Solution Test Advances in Geometric Modeling and Processing, Lecture
Notes in Computer Science, vol. 6130/2010, 1-18, 2010.

[5] D. A. Cox, J. B. Little, and D. O’Shea. Using algebraic geometry. Springer,
2005.

[6] G. Elber and T. Grandine. Efficient solution to systems of multivariate
polynomials using expression trees. In Tenth SIAM Conference on Geo-
metric Design and Computing, 2007.

[7] J. Gaukel. Efficient solving of polynomial and nonpolynomial systems using
subdivision (in German), PhD thesis, TU Darmstadt, 2003.

[8] T.N. Graspa and M. N. Vrahatis. Dimension reducing methods for systems
of nonlinear equations and unconstrained optimization: A review. Recent

Adv. Mech. Related Fields, 215-225, 2003.

21

[9]

[14]

[15]

[16]

C. Grosan and A. Abraham. A new approach for solving nonlinear equa-
tions systems. In IFEFE Transactions on systems, man and cybernetics:
Systems and humans, (38), No. 3, 2008.

I. Hanniel and G. Elber. Subdivision termination criteria in subdivision
multivariate solvers using dual hyperplanes representations. Computer
Aided Design, (39):369-378, 2007.

J. M. McNamee. Bibliographies on roots of polynomials. In J. Comp. Appl.
Math (47): 391-394, (78):1-1, (110):305-306; (142):433-434, 1993-2002.

B. Mourrain and J.-P. Pavone. Subdivision methods for solving polynomial
equations. J. of Symbolic Computation, 44, 3, 292-306, 2009.

A. Mantzaflaris, B. Mourrain and E. Tsigaridas. Continued fraction ex-
pansion of real roots of polynomial systems. In Proceedings of Conference
on Symbolic Numeric computation (SNC ’09), 85-94, 20009.

A. Neumaier. Introduction to Numerical Analysis. Cambridge Univ. Press,
Cambridge 2001.

M. Reuter, T. S. Mikkelsen, E. C. Sherbrooke, T. Maekawa, and N. M. Pa-
trikalakis. Solving nonlinear polynomial systems in the barycentric Bern-
stein basis. Visual Computer, (24):187-200, 2008.

E. C. Sherbrooke and N. M. Patrikalakis. Computation of solution of non-
linear polynomial systems. Computer Aided Geometric Design, 5(10):379—
405, 1993.

A. J. Sommese and C. W. Wampler. The numerical solution of systems of
polynomials arising in engineering and science. World Scientific, 2005.

J. Stewart. Multivariate Calculus. 2002.

H. Wang, J. Kearney, and K. Atkinson. Robust and efficient computation of
the closest point on a spline curve. In: Lyche, T., et al. (Eds.), Curve and
Surface Design. Saint Malo 2002. Nashboro Press, Brentwood, 397—405,
2002.

J. Zhou, E. C. Sherbrooke and N. M. Patrikalakis. Computation of station-
ary points of distance functions FEngineering with Computers. Vol. 9, No.
4, pp. 231-246, 1993.

G. M. Ziegler. Lectures on Polytopes (Graduate Texts in Mathematics).
Springer, 1998.

22

