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Abstract

This work considers the problem of metamorphosis interpolation between two freeform planar curves.

Given two planar parametric curves, the curvature signature of the two curves is linearly blended,

yielding a gradual change that is not only smooth but also employs intrinsic curvature shape properties,

and hence is highly appealing. In order to be able to employ this curvature blending, we present a

constructive scheme to derive curvature signatures of parameter curves. Additionally, we propose a

scheme to reconstruct a curve from its curvature signature.

Keywords: freeform curves, metamorphosis, animation, curvature analysis.

1 Introduction

Morphing/metamorphing or the gradual and continuous transformation of one shape into another is a

topic of great importance in computer graphics. Solutions to the metamorphosis problem have been

presented under many domains, including two-dimensional images [2,9,20], planar polygons and polylines

(i.e. piecewise linear curves) [10,14,15,17,18], polyhedra [1], free form curves [5,13,16], and even volumetric

representations [6, 11].

The solution to the metamorphosis problem necessitates the resolution of two independent tasks. The

�rst requires the derivation of a correspondence between the beginning and end objects. The second must

deal with a proper continuous and appealing interpolation between the two shapes. In the context of

piecewise linear planar curves (polylines or polygons), the correspondence problem is typically de�ned as

a vertex correspondence problem. In other words, each vertex in the �rst key polygon is matched against

one vertex (or more) in the second key polygon and vice versa (see [15] for an example). For higher

order polynomial and rational planar curves, matching can be established as an optimization problem. For

example, in [5] one of the two key curves is reparameterized so that the tangent �elds of the two curves

are made as parallel as possible.

The second problem, as yet lacking any better solution, is solved in many cases via a linear interpolation

approach. This approach has a fundamental 
aw that may result in intermediate results that are counter-

intuitive, distorted, shrunken or even self-intersecting. In [14,15], the bending and stretching energy is
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evaluated and employed to optimize the interpolation between piecewise linear curves. Unfortunately, and

while typically achieving a more appealing metamorphosis sequence, the work of [14,15] cannot guarantee

self-intersecting free intermediate results.

The same approach is used in [16] for piecewise polynomial curves. The algorithm pesented in [16]

linearly interpolates the B-spline curves that are matched by minimizing bending, stretching and kinking

work functions in corresponding knot values of the key curves. The authors point to other interpolation

options for the matched B-spline curves, such as [14].

As stated, linear interpolation of the control polygons and control meshes of freeform curves and

surfaces is a common practice. Interestingly, linear interpolation of the derivatives of the two beginning

and end freeforms yields no better results. Let C1(r) and C2(r) be two su�ciently di�erentiable parametric

curves that share the same domain, and denote by C(d) and
R
(d)C the d'th derivative and integral of

C, respectively. Then, the intermediate curve C(r) at time t that resulted from interpolating the d'th

derivatives of C1(r) and C2(r) equals

C(r) =

Z
(d)

C
(d)
1

(r)(1� t) + C
(d)
2

(r)tdt

= (1� t)

Z
(d)

C
(d)
1

(r)dt+ t

Z
(d)

C
(d)
2

(r)dt

= (1� t)C1(r) + tC2(r); (1.1)

up to the integrations' constants. Speci�cally, interpolating the second order derivatives as an approxi-

mation to curvature interpolation yields little advantage and is identical to the interpolation of the curves

themselves.

In this work, we seek a smooth and appealing interpolation scheme between two freeform parametric

curves. By linearly interpolating intrinsic curvature properties, the result is far more appealing and intuitive

than the regular linear interpolation scheme of the curve or its derivatives.

The fundamental theorem of di�erential geometry of curves shows us that the curvature �eld, �(s), of a

planar curve parameterized by arc-length C(s), fully prescribes it [3] up to a rigid motion transformation.

In Section 2, we show how can one uniquely derive the curvature signature of a planar curve and more

importantly, how can one reconstruct the curve C(s) from its curvature signature �(s).

The rest of the paper is organized as follows. Following the curvature reconstruction scheme that is

discussed in Section 2, we present in Section 3 a metamorphosis scheme that interpolates two curvature sig-

natures. In Section 4 we present examples of metamorphosis sequences between freeform curves employing

the proposed scheme, and �nally, we conclude in Section 5.
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2 Curve Reconstruction Using Curvature Signatures

Let C(s) be an arc-length planar parametric curve. Then C00(s) = �(s)N(s), N(s) being the unit normal

�eld of C(s). The fundamental theorem of di�erential geometry of curves [3] states that �(s) fully prescribes

planar curve C(s) up to a rigid motion transformation. That is, two planar curves share the same curvature

signature �(s) if and only if one is a rigid motion transformation of the other.

In Section 2.1, we consider the derivation of �(s) from C(s) while in Section 2.2, the reconstruction of

C(s) from �(s) is investigated.

2.1 Computation of the Curvature Signature

Given a non arc-length planar curve, C(t) = (x(t); y(t)), the derivation of the curvature �eld of �(t) is

fairly simple [3]:

�(t) =
x0(t)y00(t)� x00(t)y0(t)

(x02(t) + y02(t))3=2
; (2.1)

assuming C(t) is regular or jjC0(t)jj 6= 0.

Polynomial and rational forms cannot, in general, be reparameterized as arc-length parametric forms.

Yet, one can arbitrary closely approximate t(s), a reparameterization function from t to the arc-length

parameter s. In [8], an algorithm is presented that constructs an arc-length polynomial approximation to

a given polynomial curve. This algorithm can be made arbitrarily precise, using re�nement [4].

Hence, methods to approximate t(s) are both known and tractable. Once t(s) is approximated to within

a certain tolerance, �(s) = �(t(s)) can be evaluated as a composition [8] between piecewise polynomial

functions, to yield

�(s) = x0(s)y00(s)� x00(s)y0(s); (2.2)

because
�
x02(s) + y02(s)

�
= 1. The composition of polynomials [8] can be computed analytically and has a

�xed complexity that depends on the orders of the two curves and lengths of their control polygons.

2.2 Reconstruction of a Curve from its Curvature Signature

The more di�cult question we are about to examine is how can one reconstruct C(s), given �(s). From

di�erential geometry, we know that

C0(s) = T (s); C00(s) = T 0(s) = �(s)N(s);
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where T (s) and N(s) are the unit tangent and normal �elds of C(s). T (s) = (x0(s); y0(s)) is a unit size

vector and hence is always on the unit circle. Let � be the angle between T (s) and the x-axis,

�(s) = tan�1
�
y0(s)

x0(s)

�
and consider �0(s),

�0(s) =

�
tan�1

�
y0(s)

x0(s)

��0
=

1

1 +
�
y0(s)

x0(s)

�
2

�
y0(s)

x0(s)

�0

=
x02(s)

x02(s) + y02(s)

x0(s)y00(s)� x00(s)y0(s)

x02(s)

=
x0(s)y00(s)� x00(s)y0(s)

x02(s) + y02(s)

= x0(s)y00(s)� x00(s)y0(s);

again since
�
x02(s) + y02(s)

�
= 1. But then (compare with Equation (2.2)), �0(s) = �(s). Hence, assuming

�(0) = '0, �(s) =
R s
0
�(~s)d~s+'0. The assumption of �(0) = '0 simply states that the reconstructed curve

will be oriented so that its tangent's angle is '0 at s = 0, pinning down the degree of freedom of the

orientation of the rigid motion.

�(s) is a scalar �eld. In order to derive C(s), which is a vector-valued function, we need to introduce

an arc-length unit circle with which �(s) will be composed. Let Circ(s); s 2 [0; 2�] be an arc-length

parameterized unit circle, Circ(s) = (cos(s); sin(s)). Then, T (s) = Circ(�(s)) = Circ (
R s
0
�(~s)d~s+ '0)

prescribes the unit tangent �eld of C(s). Hence, we can �nally write

C(s) =

Z s

0

T (�s)d�s

=

Z s

0

Circ

�Z
�s

0

�(~s)d~s+ '0

�
d�s+

�
r0x; r

0

y

�
: (2.3)

This result is known (see, for example, page 24, question 9 of [3]). Yet, we now examine the computa-

tional aspects of Equation (2.3) starting with the two of the simplest possible cases of reconstructing the

curve from its curvature signature, thus getting a grasp of the expected complexity. In Section 2.3, we

consider the case of �(s) = 1 and in Section 2.4 we look at �(s) = s. Then, in Section 2.5, we will consider

the computational aspects of evaluating Equation (2.3) for a general polynomial curvature signature.

2.3 Reconstructing the Curve of �(s) = 1

Substituting 1 for �(~s) in Equation (2.3) one gets

C1(s) =

Z s

Circ

�Z
�s

1 d~s

�
d�s
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(0,1)

Figure 1: The curve of �(s) = 1, '0 = 0 and (r0x; r
0

y) = (0; 0).

Figure 2: The curve of �(s) = s, '0 = 0 and (r0x; r
0

y) = (0; 0).

=

Z s

Circ (�s + '0) d�s

=

Z s

(cos(�s+ '0); sin(�s+ '0))d�s

= (sin(s+ '0) + r0x;� cos(s+ '0) + r0y): (2.4)

It is not surprising that the curve with a curvature of constant one turned out to be the unit circle itself

(see Figure 1). '0 is the gained rotation degree of freedom. Moreover, any translation (rx; ry) of C1(r) in

the plane is also a valid solution for �(s) = 1.

2.4 Reconstructing the Curve of �(s) = s

Substituting ~s for �(~s) in Equation (2.3) one gets

Cs(s) =

Z s

Circ

�Z
�s

~s d~s

�
d~s
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=

Z s

Circ

 
�s2

2
+ '0

!
d�s

=

Z s
 
cos

 
�s2

2
+ '0

!
; sin

 
�s2

2
+ '0

!!
d�s: (2.5)

It is quite unfortunate but even for this simple case of �(s) = s, the resulting curve (See Figure 2)

has no close form solution. Indeed, no close form representation is known for the integrals of Cs(s) in

Equation (2.5).

The curve Cs(s) in Equation (2.5) is known as the Cornu Spiral [19] curve and its shape is of a spiral

of in�nitely decreasing radius (increasing curvature).

2.5 Computational Aspect of General Curvature Signature, �(s)

At this point it is obvious that no analytical solution to Equations (2.3) exists for a general �(s) function.

Assume �(s) is represented as a piecewise polynomial form of degree d�. Then, �(s) =
R s
0
�(~s)d~s is a

piecewise polynomial function of one degree higher [4], d� + 1.

One can clearly represent the unit circle as a rational form. Yet, herein we are required to employ an

arc-length parameterization of the unit circle or Circ(s) = (cos(s); sin(s)). Clearly, Circ(s) is not rational.

Let dCirc(s) be a polynomial approximation of degree dc to Circ(s), Then, dCirc(�(s)) is a piecewise

polynomial vector function that could be evaluated as a composition [8] operation between piecewise

polynomial functions. dCirc(�(t)) is of degree dc(d� + 1).

Finally,
R s
0
dCirc(�(~s))d~s is a piecewise polynomial vector function of one degree higher, dc(d� + 1) + 1.

We exploited the functionality of the IRIT [12] solid modeler to carry out all the necessary symbolic

computations following [7], resulting in curve C(s) being a B-spline curve approximating the reconstructed

shape up to the accuracy of the arc-length approximation of Circ(s).

To sum up, in Section 2.1, we have presented a tractable scheme to derive the curvature signature,

�(s), of a given curve C(t). Further, in Section 2.2, we have shown how to reconstruct C(t) from �(s). In

Section 3, we will employ these tools to perform an appealing metamorphosis blend between two parametric

planar curves.

3 Metamorphosis Using Curvature Interpolation

The morphing problem can be de�ned as the continuous deformation M:

M(t; �(s�); �(s�)); t 2 [0; 1];

such that M(0; �(s�); �(s�)) = �(s�);

6



M(1; �(s�); �(s�)) = �(s�);

where the �rst parameter t coincides with the time for �xing the intermediate curve, and �(s�) and �(s�)

are the two given key curves, with arc-length parameterization s� and s� , respectively.

In this work, we present an algorithm to compute the metamorphosis of two-dimensional free-form

parametric curves that exploits intrinsic shape parameters. That is, the shape of the intermediate curves,

denoted by M(t; �(s�); �(s�)), depends on the intrinsic geometric properties of the two given curves �(s�)

and �(s�).

Let r 2 [0; 1] and denote by L� and L� the lengths of curves �(�) and �(�), respectively. Further, let

s� = rL� and s� = rL� be the arc-length parameters of the two curves that correspond to the former

value r. Then, the idea of the presented approach is to linearly interpolate the curvature signatures of the

curve M(t; �(s�); �(s�)) from the two curvature signatures of �(s�) and �(s�), ��(s�) and ��(s�):

�t(st) = �t(rLt) = (1� t)��(rL�) + t��(rL�) = (1� t)��(s�) + t��(s�); (3.1)

where Lt = (1 � t)L� + tL� is the length of the interpolated curve M (t; �(s�); �(s�)) at time t. Note

the length Lt of the intermediate curve is a monotone change of length function between length L� and

length L�. Once the curvature, �t(st), of the intermediate planar curve is known, we can recover the

curve, following Equation (2.3). One may also apply rigid motion transformation to the interpolated result

in order to set the curve's orientation and position properly (recall that the curvature is rotation and

translation invariant).

3.1 Piecewise Interpolation

We should remember that, thus far, the above approach has not considered the correspondence between

the parameterizations of the curves �(�) and �(�).

Assume that we are given a set of N matched points,
n
s�i ; s

�
i

oN
i=1

, along the two key curves, �(s)

and �(s). Subdivide curves �(s) and �(s) at parameter values s�i and s
�
i , creating N + 1 pairs of curve

segments (assuming �(s) and �(s) are open curves), and then use the curvature interpolation scheme for

each pair of segments. The reconstruction of the whole intermediate curve from its segments necessitates

the rotation and translation of each segment so as to match the end position and tangent of the previous

curve segment, achieving G2 continuity, as the curvature is matched by construction.

An important feature of this reconstruction scheme is identity preserving. That is, if the matched

values are proportional in each pair
n
s�i ; s

�
i

o
; 8i, or s�i = riL� and s

�
i = riL� , for all i 2 f1; : : : ; Ng, then
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the metamorphosis sequence is identical to the one that is received via a simple curvature interpolation of

the curves, as a whole.

3.2 Metamorphosis of Closed Curves

While interpolating between two, beginning and end, closed curves, the intermediate reconstructed curve

Ct(s) may end up open, i.e. Ct(0) 6= Ct(Lt). The method to overcoming this di�culty, used in [14],

is employed herein as well. Nonetheless, instead of the polygon's vertices we move the control points of

the control polygon of Ct(s). Let P0 and Pn be the two end points of the control polygon of Ct(s). We

distribute the error ~e = Pn � P0 evenly, between the points of the control polygon of the curve:

Pi = Pi �
i

n
~e;

where 0 � i � n. Now, the new control polygon
n
Pi

on
i=0

is closed, having P0 = Pn. Nevertheless, tangent

continuity is still not guaranteed. The following conditions must be satis�ed for C1 continuity:

Pn = P0 and P0 � P1 = 
 (Pn � Pn�1) ; 
 > 0:

C1 continuity could be accomplished as follows. Let ~v = Pn�1 � (2P0 � P1). Then, assuming Pn = P0,

Pi = Pi �
i� 1

n� 2
~v; where 1 � i � n� 1:

This process a�ects the G2 continuity at the end. A similar propagation scheme of the end condition error

can be de�ned using P0; P1; P2 and Pn; Pn�1; Pn�2 to update Pn�2 and regain curvature continuity.

4 Examples

We now consider some illustrative examples of metamorphosis sequences that have been created using our

scheme. The �rst example (see Figures 3 and 4) presents metamorphosis sequences between a Cornu spiral

with curvature ��(s) = s (see Equation (2.4)) and a Cornu spiral with curvature ��(s) = �0:5s.

The sequence in Figure 3 is generated by our proposed algorithm. The curve is reconstructed as

described in Section 2. Compare this metamorphosis sequence with Figure 4 where a regular linear inter-

polation between the control points of the spirals has been performed. The regular linear interpolation

results in self-intersections of the intermediate curves and unnatural looking deformations. The respective

curvature signatures of the metamorphosis sequences of Figures 3 and 4 are presented in Figures 5 and 6.

Note the extreme curvature values that are reached when linear interpolation is used even for this very

simple case.
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 3: A metamorphosis sequence between two spirals with di�erent linear curvature functions and

signs, using curvature interpolation. Compare with Figure 4.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 4: A metamorphosis sequence between two spirals by linear interpolation. Compare with Figure 3.

The next example (Figures 7 and 8) represents a metamorphosis sequence between the letters `U' (1)

and `S' (10). As in the previous example, Figure 7 is the result of using our method, while Figure 8 has

been created using linear interpolation between the two symbols. Clearly, Figure 7 looks far more natural.

A more interesting example of metamorphosis (between the two human shapes) is presented in Figures 9,

10 and 11. The end user (the artist designing the animation) can anticipate how the intermediate curves

are to behave. Such a natural animation is produced by our algorithm (Figure 10), whereas the trivial

linear interpolation (Figure 11) results in self-intersection in the arm region and distortions of the arms and

legs of the human shapes. A global curvature interpolation has been used in Figure 9, while in Figure 10

9



(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 5: Curvature signature �t(s) for the metamorphosis sequence between the two spirals (see Figure 3)

with di�erent curvature signs and di�erent curvature change rates, using curvature interpolation. Compare

with Figure 6.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Figure 6: Curvature signature �t(s) for the metamorphosis sequence between the two spirals (see Figure 4)

by linear interpolation. Note the extreme curvature values and compare with Figure 5.

we subdivided the periodic curves into nine matched segments and performed the metamorphosis in a

piecewise manner (see Section 3.1). The nine matched pairs of points have been speci�ed manually for this

speci�c example, whereas, for example, an automatic method that �nds curvature extremum points might

also be used.
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 7: Metamorphosis sequence between 'U' (1) and 'S' (10) shapes using curvature interpolation. The

length of the intermediate curves is changing monotonically. Compare with Figure 8.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 8: Metamorphosis sequence between 'U' (1) and 'S' (10) shapes using linear interpolation. Compare

with Figure 7.

While the curvature interpolation scheme produces appealing results, it is also local and hence can

easily handle non-simple curves as in Figure 9 (10), having self-intersecting curves as input.

Our �nal example consists of elephant shapes (see Figures 12 and 13). Again, the metamorphosis

sequence in Figure 12 produced by our algorithm looks more appealing than the linear interpolation in

Figure 13. The tail and the trunk should not shrink or growwider during the animation (compare Figures 12
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(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

Figure 9: Metamorphosis sequence between two human shapes (1) and (12) using curvature interpolation.

Note the blending of the arms. Compare with Figure 10 and Figure 11.

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

Figure 10: Metamorphosis sequence between two human shapes (1) and (12) using curvature interpolation

and curve segmentation at the points that are labeled by circles. Compare with Figure 9 and Figure 11.

and 13). Both given curves have been subdivided into eleven segments and piecewise metamorphosis has

been executed.

5 Conclusion

In this work, a new method to compute the metamorphosis of two-dimensional parametric curves has been

introduced. The solution to the metamorphosis problem requires the solution of two independent tasks.
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(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

Figure 11: Metamorphosis sequence between two human shapes (1) and (12) by linear interpolation.

Compare with Figure 9 and Figure 10.

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

Figure 12: Metamorphosis sequence between two elephant shapes (1) and (12) using curvature interpolation

and curve segmentation at the points that are labeled by circles. Compare with Figure 13.

The �rst derives a correspondence between the two objects. Our focus has been on the second subproblem

that deals with a proper, continuous, appealing interpolation between the two shapes.

The proposed method interpolates linearly between the curvature signature functions of the two given

key curves. When the sequence of the curvature signature functions is known, we are able to reconstruct

the metamorphosis sequence itself.

The resulting animation sequences have a natural appearance without arti�cial shrinkage and distor-
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

Figure 13: Metamorphosis sequence between two elephant shapes (1) and (12) by linear interpolation.

Compare with Figure 12.

tions. The curvature signature can also provide us with global properties such as the winding number of

the curve [3]. Hence, a metamorphosis of the two simple curves will neither introduce a double loop curve

nor a self-intersecting eight shape curve. Regrettably, this new method does not guarantee self-intersection

free intermediate curves even when the given two key curves are known to be simple. This remains an

open question.

Finally, the extension of this work to free form surfaces is an obvious goal of high value and merit.
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