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a b s t r a c t

In additive manufacturing (AM), slicing is typically used to manufacture 3D models, one layer after
another. Yet, in recent years quite a few hardware platforms were introduced toward the use of multi-
axes AM with general 3D curves as print-paths. This paper presents algorithms for the generation of
such general print-paths that can potentially be used to synthesize superior 3D models using AM. In
slicing, a 3D model is decomposed into a series of parallel planar sections, which in turn are (usually)
decomposed into a set of piecewise linear curves used as print-paths in the AM process. The methods we
propose in this work ease this restriction, namely the print-paths are no longer limited to parallel planes.
Like slicing, the methods we propose achieve a complete covering of a general volume with print-paths
expressed as general curves. However, and unlike slicing, the created print-paths can conform better to
the 3Dmodel, its properties, and even user input. We expect that the added flexibility and freedom in the
specification of AM print-paths, as opposed to limiting them to planar curves, will enable the synthesis
of 3D models (using AM) with superior properties (such as mechanical strength and surface finish). As
a proof of concept, we also present examples of 3D models manufactured with a low-end AM hardware
and using the algorithms described in this paper.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Contemporary additive manufacturing (AM) systems largely
use slicing [1]. Slicing deconstructs a three dimensional object
(often specified by apolygonalmesh) to a series of twodimensional
parallel (to the printing surface) planar sections. These planar
sections, in turn, are decomposed into piecewise linear paths for
the manufacturing process to use. In general, the slicing planes are
not intrinsic to the input object. The surface finish, the strength,
and possibly other properties of an object printed using some
existing AM techniques, are influenced by the slicing orientation
and the print-paths used to create it [2,3]. One of the conclusions
in [2] is that parts fabricated with the expected tensile loads
aligned with the fibers (print-paths) would have greater effective
tensile strength, and could handle greater loads. Additionally, the
experiments in [4] showed that parts manufactured using curved
layers that fit the part geometry (as opposed to the flat layers
used in slicing) performed better under mechanical stresses. An
illustration of the possible advantages of print-paths that conform
to the model geometry over slicing can be seen in Fig. 1. Both
Fig. 1(a) and (b) show the result of printing the same model (a
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section from the model in Fig. 2), on the same printer, using the
same resolution (layer-height is 0.3 mm). However, in Fig. 1(a) the
model was printed using print-paths that conform to the model
geometry, while in Fig. 1(b) slicing was used. Fig. 1(c) and (d)
show the simulated preview of the printing result for (a) and (b)
respectively. As the images show, the slicing result suffers from
surface finish issues due to aliasing, the so called the staircase
effect, that comes from approximating a curved shape with planar
sections. In this effort, we seek to create print-paths that are more
dependent on design goals, and less dependent on constraints
imposed by the printing process, allowing the creation of superior
printed objects in terms of surface finish, strength, etc.

There are quite a few reports on the use of multi-axis robotic
hardware platforms in AM, which would allow non-planar 3D
printing without using slicing [5–8]. Such a hardware platform
would be able to print along the main feature lines of a 3D object
and gain the advantages mentioned before when compared to
slicing. Yet, algorithmic support is lacking. We are aware of no
algorithm that is capable of covering the volume of an arbitrary 3D
object using any general user defined univariate (curve) tool paths,
while also establishing a valid printing order, fully exploiting these
platforms toward multi-axis AM.

Our main contributions in this paper are:

(1) Presenting an algorithm that can generate covering curves
for general 3D objects represented by (possibly trimmed)
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Fig. 1. A comparison between slicing and print-paths that conform to the model
geometry. In (a), the model is printed using curves that conform to geometry of the
model. In (b), traditional slicing is used. In (c) and (d), simulated previews of the
printing results (based on the print-paths) are shown for (a) and (b), respectively.
The model in both cases is a short section (a quarter of a cycle) from the helical
model in Fig. 2, and is shown with the generated support structure.

trivariate volumes, that conform to the geometry of the
trivariate, toward AM.

(2) Supporting the use of an additional external direction field
that can be used to specify AM printing-paths for any gen-
eral B-rep (boundary representation) 3D model (including
polygonal meshes).

(3) Algorithms that enable the use of general (possibly user
defined) 3D printing-paths, while controlling their width,
resolving their accessibility, and establishing valid AMprint-
ing order and coverage.

Note that throughout this paper we assume a generic process,
similar to the FusedDepositionModeling (FDM) orDirected Energy
Deposition (DED) 3D printing process [9]. This means, we assume
some sort of a printing head that extrudes material with a circular
cross section. While we do not address low level printing process
properties (such as, overlaps between adjacent extrusions and the
movement of extruded material), these assumptions were useful
enough to allow us to manufacture physical objects using an FDM
printer (as we show later).

The rest of this paper is organized as follows, Section 2 discusses
previous work that dealt with alternatives to slicing in AM. In
Section 3, we examine the main considerations to employ when
transforming a description of a 3D object into a description of
print-paths (curves) needed to manufacture the object using AM.

Fig. 2. A helical volume created by sweeping a circle along a helix (rotating around
the z axis).

Section 4 presents our covering algorithms and shows how (geo-
metric) design, rather than the printing process, can be the main
consideration in 3D print-path planning. Section 5 outlines how
the covering curves (generated based on geometric design) can be
used to create a 3Dmodel using AM. Some experimental results are
shown in Section 6, while in Section 7, we discuss our results and
suggest future work. Finally, in Section 8, we conclude.

2. Previous work

There have already been several publications that examined
the possibility of printing in ways that differ from the traditional
AM slicing approach. Curved layers are suggested by Chakraborty
et al. [10] as offsets of a parametric surface, which, of course, limits
objects to those that can be expressed as a set of offsets from such
a surface. In [11], Huang and Singamneni show how non-planar
slices can be created and used to print special geometries. Objects
in [11] are limited to geometries that can be expressed as offsets
of polygonal faces [12], starting from the top (facing up) polygonal
surface of the object. Future work mentioned in [11] will seek to
handle more complex geometries by subdividing an object into
parts that can be printed using non-planar slices, and complex
parts that will be printed using traditional slicing. In [13], the
upper and lower boundaries of objects are printed as single layers
using simple z-height maps to plan the paths, while the interior
of the object is printed conventionally. Their implementation uses
non-planar lines parallel to the x (or y) axis to fill the upper and
lower layers. This method limits the objects to those with distinct
upper and lower boundaries that are relatively flat. In the work by
Davis et al. [14], intermediate mappings between an initial object
(designed by the user) and a final object (the one printed) are
the basis for non-planar layers. However, accessibility, coverage,
and other manufacturing considerations are ignored and the main
focus is on producing intermediate layers (surfaces in 3D). Mueller
et al. [15] show how a wire-frame on the boundary of an object
can be printed directly, to quickly create a visual representation
of the object. They generate the wire-frame so that there would
be no need to print downwards in a steeper angle than the slant
of the print head itself, and avoid accessibility issues in that way.
In [16,6], manually planned print-paths are used to create objects
without slicing. The focus in [16,6] is on implementing and testing
the hardware needed to accomplish the prints. In [8], Gao et al.
introduce an additional degree of freedom to 3D printing, and
allow printing around a cuboid (box) object and creating slices in
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six different directions corresponding to the facets of the cuboid.
The resulting object in [8] is, in essence, made of six traditionally
sliced (and manufactured) objects fused together.

Most of the above previous work either dictate printing di-
rections that are independent of the model geometry [8,15], or
limit themselves to specific simple geometries [11,16,6,13,10]. For
example, to the best of our knowledge, themodel in Fig. 2 cannot be
manufactured using any of the above methods without resorting,
at least partially, to slicing. Specifically, none of these methods
would enable printing along the helix, which is likely to result
in a better surface finish (as in Fig. 1), and probably a stronger
model [2]. Additionally, none of these methods allows the user to
easily (if at all) specify the directions of the printing-paths.

AM using slicing is general—the volume of any 3D closed object
can be covered by piecewise linear curves andmanufactured using
slicing. In this work, we strive for a similar general covering AM
solution for any closed 3Dobject,while also offering the freedom to
use almost any set of 3D print-paths. We expect that by accepting
general models as input, and automatically filling (covering) their
entire volume with curves that fit a model’s specific structure and
specific requirements (i.e. stress tensors), better quality models
can bemanufactured using AM technologies such as FDM andDED.

One additional previous work we would like to mention is [17],
which is a part of some of the algorithms presented in this paper.
In [17], an algorithm for adaptively covering freeform surfaces
with curves is presented. The concept behind this algorithm is
simple: given two parallel (in the parametric space) isoparametric
curves on a surface, we can check if they sufficiently cover the
surface area bounded between them. If they do then the curve
coverage is sufficient obviously. Otherwise we add isoparametric
curves between them (where needed according to some distance
measure) and invoke the algorithm recursively for each pairing
of the new curve and one of the original curves. This concept of
adaptively covering surfaces was also used to generate CNC tool-
paths [18]. Similarly, in this work, we show that volume covering
by curves can be used for generating AM print-paths.

3. Considerations for AM print-path planning

Given a description of a 3D closed object (such as a 3-manifold
volume, or a 2-manifold boundary representation), there are sev-
eral considerations to observe when generating the print-paths
needed to manufacture the object using AM. These considerations
are outlined in Sections 3.1–3.4.

3.1. Volume coverage by curves

We start by defining the notion of covering:

Definition 3.1. Consider a volume V of some closed 3D object and
a desired tolerance, ϵ ∈ R+. A valid ϵ curve-covering of V is a set of
n univariate parametric curves C = {C1(t) . . . Cn(t)}, C ⊂ V , so that
for any point pv ∈ V there exists a point pc ∈ Ci(t), Ci(t) ∈ C, for
which ∥pc − pv∥ ≤ ϵ.

Definition 3.1 ensures that when the object is printed using the
curves in C as print-paths, the entire volume will be filled (with
material), as all points in V are close enough to some print-paths
and will be covered by printed material. While all points in the
volume should be covered, over-coverage should be avoided. Over-
coverage occurs when points in the volume are covered too many
times, which will result in an excess of material being deposited
(and the resulting 3D object would likely be deformed).

In slicing, coverage is achieved in a trivial way, each slice covers
the parts of the object in a certain z value range corresponding to
the height of the slice. Internally, each slice is covered by 2D curves
(often as a set of lines parallel to the x or the y axis).

3.2. Accessibility and ordering of the print-paths

At any point during the 3D-printing process, parts of the model
are already printed, while others still need to be printed. The
printing head has a known geometry, meaning it occupies some
known physical space. If there is no way to print some unprinted
portion, without the printing head penetrating an already printed
part, then the printing process cannot succeed: either an unprinted
partwill never be printed, or an already printed partwill be gouged
into and destroyed. Ordering (portions of) the print-paths of the
model so that all of them can be printed is one of the requirements
of the printing process.

In traditional slicingmethods, the geometry of the printinghead
is assumed to occupy the half-space above a plane parallel to the
XY plane, and is always at a certain offset (in the z axis direction)
above the currently printed part. Since slices are printed in planes
parallel to the XY plane, from bottom to top, we are always assured
that no penetration of the printed parts by (the geometry of) the
printing head will occur.

3.3. Generating a support structure

In general, some AM technologies require support [19]. For
any part of a manufactured 3D object that will normally collapse
while it is being printed, a corresponding part must be created, in
advance, to support it and prevent this collapse. The union of all
the extra support parts created is called the support structure. The
generation of the support structure is closely related to the order
in which the model parts are created, as many parts are already
supported by previously printed pieces of the 3D object.

Using slicing, support generation is relatively simple: any print-
path that extends a certain threshold beyond previously printed
slices requires support, and the support is printed in slices, along
with the object itself.

3.4. Design streamlines

Apart from fulfilling the requirements of the printing process,
print-paths should also address the design goals of the user:

Definition 3.2. Given a volume V of some closed 3D object and a
set of design goals prescribed by the user, the curves that form a
valid coverage of V while fulfilling the design goals in an optimal
manner, are denoted design streamlines or simply streamlines of
volume V .

For example, streamline print-paths, possibly defined as a vec-
tor field over V , could be designed so that they create a part with
better mechanical strength and/or surface finish.

In slicing, this effort is usually limited to tracing the outline of
each slice, to enhance the surface finish, and determining the den-
sity with which the slice is filled, to enhance mechanical strength.

4. Generating a streamline coverage

In this section, we present algorithms that can be used to incor-
porate geometric or other streamline design requirements as the
main considerations for planning AM print-paths. Definition 3.2 is
rather amorphous, as it depends on a set of design goals prescribed
by the user. Clearly, given the wide range of possible design goals,
creating one algorithm that will satisfy them all would be next to
impossible. Instead, in this section, we present algorithms that will
provide designers with the tools to achieve their own design goals.
Designers will be able to specify general guidelines for covering
curves, and the algorithmswill automatically generate them, order
them for printing, and optionally generate a support structure.
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Fig. 3. Themodel created by the designer (in either of two forms of input), is covered
by covering curves (using the method described in Section 4.1, or the method
presented in Section 4.2), which are then turned into valid AMprint-paths using the
methods explained in Section 5. The final print-paths can then be used to fabricate
the original input model.

Fig. 3 illustrates the process. In Section 4.1, we present how a cov-
erage by curves can be generated for (possibly trimmed) trivariate
volume objects. Section 4.2 considers a second directional field,
possibly defined as a trivariate as well, to direct the coverage and
support any B-rep based 3D closed object.

4.1. Covering of a trivariate using curves

Let D be a box domain in R3. Consider a parametric trivariate
volume V (u, v, w): D → R3 and a desired tolerance, ϵ ∈ R.

Definition 4.1. A valid ϵ surface-covering of V is a set ofm bivariate
parametric surfaces S = {S1 . . . Sm}, S ⊂ V , so that for any point
pv ∈ V (u, v, w) there exists a point ps ∈ Si, Si ∈ S, for which
∥ps − pv∥ ≤ ϵ.

GivenDefinitions 3.1 and 4.1,we seek to formulate an algorithm
that will find a valid covering by curves, for a given trivariate
parametric volume V (u, v, w), while limiting the number of re-
dundant curves. The algorithm we present is based on concepts
presented in [17]. The algorithm first adaptively covers a given
trivariate volume with a set of bivariate parametric surfaces. Once
the volume coverage by surfaces is computed, a volume coverage
by curves is obtained by using the algorithm from [17] that covers
the returned surfaceswith curves. The heart of the algorithm stems
from an upper bound on the Hausdorff distance between two
surfaces, that is based on an iso-distance notion:

Definition 4.2. Consider the (piecewise) polynomial or rational
parametric surfaces, S1(u, v), and S2(u, v), sharing a common (u, v)
domain. The vector field

D(u, v) := S1(u, v) − S2(u, v),

is denoted by the iso-distance between S1 and S2, as:

∆iso(u, v) := ∥D(u, v)∥ .

Because ∆iso(u, v) is non-rational (as it contains a square root),
∆2

iso(u, v) (the iso-distance squared, represented as a spline func-
tion) will be used instead. The iso-distance is closely related to the
Hausdorff distance:

Definition 4.3. The Hausdorff distance, denoted dH , between two
surfaces S1, S2, is:

dH (S1, S2) = max
{
sup
a∈S1

inf
b∈S2

∥a − b∥ , sup
p∈S2

inf
q∈S1

∥p − q∥
}

,

and the one sided point-surface Hausdorff distance is:

dHs(a ∈ S1, S2) = inf
b∈S2

∥a − b∥ .

We can now prove the following:

Lemma 4.1. The iso-distance ∆iso(u0, v0), between any correspond-
ing pair of points a = S1(u0, v0), b = S2(u0, v0), is an upper bound on
the one sided point-surface Hausdorff distance of both dHs(a ∈ S1, S2),
and dHs(b ∈ S2, S1).

Proof. Combining the definition of the one sided point-surface
Hausdorff distance and the iso-distance we get:

dHs(a ∈ S1, S2) = inf
b′∈S2

a − b′
 ≤ ∥a − b∥ =

∥S1(u0, v0) − S2(u0, v0)∥ = ∆iso(u0, v0) ,

with a similar result for dHs(b ∈ S2, S1). □

In our calculations, we use ∆2
iso(u, v) instead of the Hausdorff

distances that are far more difficult [20] to compute. Algorithm 1
creates a covering of a trivariate volume, V , with isoparametric
(trimmed) surfaces of V , in the w direction. We will later discuss
the problems arising from the lack of tightness in the proposed
measure (of ∆2

iso(u, v) compared to dH ), and how they can be
mitigated.

Algorithm 1 CoverVolumeWithSurfaces
Input:

(1) V (u, v, w) : D → R3, a trivariate volume, D = [0, 1]3;
(2) m, a minimal subdivision depth to apply to V ;
(3) ϵ, the maximum desired distance from a point in the volume to a

covering surface;

Output:

(1) S = {S1(u, v) . . . Sn(u, v)}, w-isoparametric (trimmed) surfaces
covering V to within ϵ;

1: CoverVolume(V (u, v, w),m, ϵ)
2: Return

{V (u, v, 0)} ∪

CoverSubVolume(V (u, v, w), (0, 1),m, ϵ) ∪

{V (u, v, 1)};

3: CoverSubVolume(V (u, v, w), (wlow, whigh),m, ϵ)
4: S := ∅;
5: D(u, v) := V (u, v, wlow) − V (u, v, whigh);
6: ∆2

iso(u, v) := ∥D(u, v)∥2;
7: if ∆2

iso(u, v) > ϵ2 for some (u, v) or m > 0 then
8: wmid :=

wlow+whigh
2 ;

9: if m > 0 then
10: Stmid(u, v) := V (u, v, wmid)
11: else
12: Smid(u, v) := V (u, v, wmid);
13: Dt (u, v) := {(u, v)|∆2

iso(u, v) > ϵ2
};

14: Stmid(u, v) := {Smid(u, v)|(u, v) ∈ Dt (u, v))}; // Stmid is a
trimmed surface, with trimming domain Dt (u, v).

15: end if
16: S :=

CoverSubVolume(V (u, v, w), (wlow, wmid),m − 1, ϵ) ∪

{ Stmid(u, v) } ∪

CoverSubVolume(V (u, v, w), (wmid, whigh),m − 1, ϵ);
17: end if
18: Return S;

For now assumem = 0 (Algorithm 1, input (2)). Once ∆2
iso(u, v)

is computed (line 6 in Algorithm 1), a determination can be made
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Fig. 4. A trivariate, V , of a quarter of a torus (with a major radius 1, and a minor
radius of 0.2) (a). Adaptively covered by w-isoparametric surfaces and ϵ = 0.4 (b),
adaptively covered byw-isoparametric surfaces and ϵ = 0.1 (c), adaptively covered
by w-isoparametric surfaces and ϵ = 0.05 (d), and adaptively covered by curves
ϵ = 0.1 (e). In (f), the parametrization direction was changed to v-isoparametric
surfaces, to produce a different set of covering surfaces (ϵ = 0.1).

if another surface should be introduced between the two iso-
surfaces of V , at w = wlow and w = whigh, to get a valid coverage,
following Definition 4.1. If ∆2

iso(u, v) < ϵ2, ∀(u, v), no additional
surfaces are needed in between and the algorithm terminates. If
∆2

iso(u, v) > ϵ2 for some (u, v) values, then a trimmed surface
(line 14) is introduced. The tensor product surface Smid(u, v) =

V (u, v, wmid) is trimmed to only include (u, v) values for which
∆2

iso(u, v) > ϵ2. If a middle surface has been introduced then the
algorithm is invoked recursively for the newly created pairs of
adjacent surfaces, (wlow, wmid) and (wmid, whigh), to further verify
that the volume between them is covered.

Once a valid coverage of V by surfaces is produced using Al-
gorithm 1, a curve coverage is created by covering each trimmed
surface with curves. The coverage by curves is realized by using
the algorithm described in [17] that functions in a similar manner
to Algorithm 1 but with a surface input, starting with two surface
boundary curves and recursively adding additional intermediate
isoparametric curves, as needed. An example of the full process
starting with a volume, V , covering it with surfaces, and then cov-
ering the surfaces with curves, can be seen in Fig. 4. Note how the
surfaces alternate adaptively between full and trimmed surfaces.
Fig. 4 also shows a coverage of V (u, v, w) by surfaces, for different
values of ϵ, and for an alternate parametrization direction, all of
which result in different sets of covering iso-surfaces. The ability to
choose the parametrization (and ϵ), would allow designers to have
a greater control over the resulting covering curves, and ultimately
print-paths. Finally, notem is defined to ensure aminimal depth of
recursive calls, for example in caseV (u, v, w) is a periodic trivariate
(i.e. a full torus), where V (u, v, wmin) = V (u, v, wmax).

We note that Algorithm 1 can also be adapted to trimmed
trivariates [21], by trimming the surfaces according to the trim-
ming information of the trivariate, in addition to the trimming
done in the algorithm. However, only points at a distance of more
than ϵ from the trimmed boundary are guaranteed to be covered
by the same entities that covered them in the untrimmed ver-
sion. Points closer than ϵ to the trimmed boundary may become
uncovered when their covering entities fall outside the trimmed
boundary.

If ∆2
iso(u0, v0) ≤ ϵ2, then any point on the line between

V (u0, v0, wlow) and V (u0, v0, whigh) is covered, as its distance to
one of these surface points is less than ϵ (in fact less than ϵ

2 ).
However, ∆2

iso ≤ ϵ2 for any (u, v) does not imply all points in
the volume V (u, v, wr ), wr ∈ (wlow, whigh) are covered. If some
point pw on the w-isoparametric curve V (u0, v0, wr ) is sufficiently

Fig. 5. Given two close (<ϵ) surfaces (depicted as vertical solid lines), and one of the
iso-curves between them (dashed line) in trivariate V (u, v, w), some points along
the iso-curve may remain uncovered using Algorithm 1.

far from the line between V (u0, v0, wlow) and V (u0, v0, whigh), it is
possible that pw remains uncovered. Fig. 5 shows a situation in
which S1 = V (u, v, wlow) and S2 = V (u, v, whigh) can be within
ϵ, but the volume in between them also contains points (along a
w-isoparametric curve between them) that are too far from both.
To resolve this issue, that in regular trivariates can only happen on
the boundaries, one can enhance the measure of ∆2

iso. One possible
measure, that can ensure complete coverage, can be created by
bounding the arc-length of the w-isoparametric curves. For ex-
ample, given an isoparametric curve from one covering surface to
another, if the arc length of the curve is less than 2ϵ then a full
ϵ-coverage is assured for all points on the curve. Establishing such
bounds for all isoparametric curves can be used to ensure complete
volume coverage. See Appendix for an explanation and a proof of
these claims. This more accurate measure will also eliminate the
need for the parameterm, in Algorithm 1.

It should be noted that as long as a situation like the one
in Fig. 5 does not occur, continuing the recursion with the full
surfaces (as done in Algorithm 1) is equivalent to using only the
common trimmed portion of the surfaces in the recursion. This is
because, given the two input surfaces in some recursion step, as
long as the used distance measure decreases monotonically when
closer (in the w parametric sense) surfaces are used, any region
trimmed by a comparison between the two input (tensor product)
surfaces will be similarly trimmed by a comparison between any
two (trimmed) surfaces between them that were created by the
recursion. For example, ∆2

iso used in Algorithm 1 is not always a
monotonic measure, but the suggested measure based on the arc-
length of the w-isoparametric curves (i.e. Appendix) is.

Finally, consider non-regular trivariate volumes (i.e. volumes
with a vanishing or negative Jacobian) that contain self intersec-
tions. While simple to detect and not very useful in the context of
fabrication, Algorithm 1 can handle such volumes as the distance
bounds are still valid. However, the generated covering surfaces
themselves may also be non-regular, in such cases, and also intro-
duce redundant coverage.

4.2. Object coverage with an additional direction field

Algorithm 1 and the algorithm in [17] can be used together to
cover a trivariate volume using (a subset of) its own isoparametric
curves. This, however, limits the coverage to the parametrization
of the given volume, and the object description to a trivariate. In
cases where a more general set of covering curves and 3D object
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descriptions are needed, an additional directional vector field (that
associates a direction to each point in the volume) can be specified
alongwith the 3Dobject, to define the desired directions of the cov-
ering curves in the object. A good directional field would optimize
attributes like desired mechanical strength or surface finish. The
field can be manually designed or automatically generated using
some form of optimization or analysis. An alternative algorithm
can be devised that, given a 3D object and a 3D directional vector
field (that encompasses the entire object), will create a set of
covering curves for the object that will conform to the prescribed
directions.

We have explored several approaches that implement the cov-
ering of an object using an additional directional field. The one we
found most useful is composed of two stages:

1. First, a curve coverage for a volume containing the 3D ob-
ject along the directional vector field is generated. If the
direction field is given as a trivariate, then the approach
in Section 4.1 can be used. However, since the structure of
the direction field can be chosen to make coverage easier,
other optionsmay be available. For example if all the desired
covering curves were parallel to each other, then creating
one 3D curve and uniformly filling the containing volume
with 3-space general offsets of that curve (according to its
normal and bi-normal) could also be used.

2. Given the curve covering for the containing volume, the
curves are clipped to the 3D object we need to cover. The
clipping can be done by finding the intersections of the
generated covering curves and the object boundary.

The implication of the above approach is that any B-rep model
(regardless of the representation) and any set of curves that at least
cover it, can be used as a basis for generating AM print-paths. Fig. 6
shows how this method allows arbitrary 3D models specified as
B-reps (polygonal meshes), to be covered using arbitrary curves.
In Fig. 6, the curves covering the body of the crocodile (a polygo-
nal mesh) are slightly arched, while the curves covering the legs
were shaped to resemble the main axis of the leg. The creation
of the print paths in Fig. 6 begins by dividing the crocodile (B-rep
polygonal closed) mesh into five separate meshes (body and four
legs). Each of these meshes is assigned a direction field, and the
covering curves of each directional field are clipped to be inside
the correspondingmesh, prescribing the resulting print-paths. The
example in Fig. 7 goes one step further, applying a single arbitrary
field, shown in Fig. 7(a), to the entire model. The crocodile model
examples in Figs. 6 and 7 show that even curves that are possibly
unrelated to the geometry of the object can be used as covering
curves. In the next section, we will see how these curves can be
used as print-paths for AM.

5. Manufacturing 3D objects using univariate paths

In this section, we show how all the coverage algorithms pre-
sented so far can be used to create print-paths to be utilized in AM.
Covering curves (in the sense of Definition 3.1) cover every point
in the volume, and so if they are used as AM print-paths, every
location in the volume will be 3D-printed. However, adapting the
approaches described in Sections 4.1 and 4.2, to AM, also intro-
duces several challenges wewill have to address and are discussed
below. Section 5.1 discusses the proper ordering of the cover-
ing curves (that are also potentially subdivided) when realizing
them as AM print-paths in order to ensure printing accessibility,
Section 5.2 explores the amount of material deposition related to
each covering curve, and Section 5.3 discusses the generation of the
support structure. Finally, Section 5.4 demonstrates how different
covering curves can affect the overall printing solution.

Fig. 6. (a) shows a 3D model of a crocodile (a triangle mesh downloaded from
https://free3d.com/). (b) shows the samemodel covered by general 3-space curves.
Note the curves covering the body are slightly bent, while the curves covering the
legs resemble the general shape of the leg. (c) shows the leg coverage in better
detail, while the different colors accentuate the differences between the leg and
body covering curves.

Fig. 7. A field created by duplicating offsets of a single arc is shown in (a). This field
is then applied to themesh in Fig. 6(a). Images (b), and (c) show half of the resulting
print-paths, exposing the interior.

5.1. Resolving accessibility—curve ordering

Weneed to ensure the print-paths can be followed by the print-
ing head without gouging already printed parts, during the entire
printing process. We assume printing with a constant orientation
(up direction) printing tool:

Definition 5.1. A curve Ci is below curve Cj and denoted Ci < Cj,
if the geometry of the printing head overlaps with curve Cj when
printing curve Ci. Symmetrically, curve Ci is above Cj (Ci > Cj) if Cj
is below Ci.

Note that Definition 5.1 assumes the build direction is already
known, and is assumed to be the direction of the z axis. Following
Definition 5.1, at any point in time during the 3D-printing process,
only curves that are not yet printed and have no unprinted curves
below them may be printed.

https://free3d.com/
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Fig. 8. The two space curves in (a) cannot be ordered, as the red curve is both
above and below the green curve, creating an inaccessibility cycle. The green curve
is subdivided to enable an ordering (blue, red, then green) (b). (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

Fig. 9. The object used to model the geometry of the printing head (blue), and its
bounding cone (green). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Definition 5.2. Consider a set of n general 3-space curves C =

{C1(t) . . . Cn(t)}. Construct a directed graph Ga(V, E) in the follow-
ing manner: each curve Ci ∈ C is assigned a vertex vi ∈ V . A
directed edge eij ∈ E , from vi to vj, exists if Ci < Cj. We denote by
Ga the accessibility graph for C. Any cycle in the graph Ga is called
an inaccessibility cycle, as it reflects an impossible-to-print set of
curves.

Ga defines the correct printing order for a set of curves. If a path
exists from vi to vj in Ga, it means curve Ci must be 3D-printed
before curve Cj. Any order that complies with the topological order
of Ga [22] would be a valid printing order, since no printed curve
would interferewith curves printed after it. An inaccessibility cycle
means no printing order can be found, and the 3D-printing process
can only possibly be realized by subdividing (some of) the curves
in C into a new set of curves Cnew , that has an acyclicGa, as in Fig. 8.
Clearly, it is better to limit the number of curves we subdivide,
because, for example, a continuous printing path is likely to yield a
stronger part than one made up of separate printed elements [2].

To build Ga for C, we must also be provided with the geometry
of the printing head.We have chosen tomodel the geometry of the
printing head as a downward (axis parallel to the z axis) pointing

Fig. 10. The volume of a sweep of the cone bounding the printing head along the
lower curve, C1 , defines which portions of the upper curve, C2 , are above it, denoted
C2 > C1 .

cone (see Fig. 9), as this cone can serve as a bounding cone for
the shapes of many printing heads. The angle of the cone, θ , and
the z-offset of the tip above the currently printed part, zoffs, are
set according to the geometry of the actual extruder in use. Just
like layer-height in slicing, zoffs represents the limit of the printer
resolution, and anything smaller is considered negligible. Setting
zoffs to a value that is less than the minimal printing width (or
the minimal clearance between two curves), also ensures that no
printed curve will exist in the zoffs clearance between the extruder
and the currently printed curve. To compute if curve Ci < Cj, we
would need to check whether the volume that encloses the sweep
of the cone along curve Ci, intersects Cj (see Fig. 10). An intersection
means Ci < Cj. Doing so for all pairs of curves in C constructs
Ga. In practice, this procedure requires every pair of curves to be
evaluated and would make the construction of Ga slow, even for a
few hundred covering curves, which is not an impractical number.
Instead, we calculate a conservative approximation of Ga, Ḡa. The
conservative approximation can use spatial division acceleration
structures, for example a BVH (bounding volume hierarchy), or a
z-buffer, and can be done relatively efficiently once a curve is sub-
divided into sufficiently (for the acceleration structure) spatially
compact sub-curves. Currently, we are using a BVH query to find (a
conservative approximation of) all sub-curves that are above other
sub-curves. Given the information of which sub-curves are above
other sub-curves we build Ḡa.

Once Ga (or Ḡa) is known, we aim to order the curves. If Ga is
acyclic (a DAG), any order that concurs with the topological order
imposed by Ga can be employed and no subdivisions are needed.
For example, we can initially find all accessible curves (that have
nothing below them) and add them to a list of available print-
paths.We can then keep printing curves from that listwhile adding
new ones as they become accessible. Since the initial set has an
acyclic Ga, this process will successfully terminate. Alternatively,
if inaccessibility cycles exist, we can pursue either a top down, or
bottom up approach to find where to subdivide the curves (in the
cycle). In the top down approach, we start with the full coverage
curves and subdivide them (in away thatwouldminimize the total
number of subdivisions) and rebuild Ga until no cycles remain. The
bottom up approach starts with the curves subdivided into small
sub-curves called fragments:

Definition 5.3. Assume zoffs > 0 (i.e. Fig. 9). Any curve whose
length is less than zoffs will be called a fragment.

Lemma 5.1. In a set of fragments, the lowest fragment (the one that
contains the point with the lowest z value) can always be printed.
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Fig. 11. A helical object (from Fig. 2) covered and printed by nine curves (shown
as tubes), making sure no gouging occurs as the helix is being printed. First 9 sub-
curves are printed in (a). First 18 sub-curves are printed (b). First 27 sub-curves are
printed (c). All 36 sub-curves are finally printed (d), completing themodel. Note the
middle tube has a larger radius.

Proof. Let F = {f1(t) . . . fm(t)} be a set of fragments. Assume f1 is
the lowest fragment, and its lowest point has a z value of z0. Since
the length of the fragment is less than zoffs, the highest point in f1
is lower than z0 + zoffs. Given Definition 5.1, to be below f1 another
fragment would have to contain a point lower than z0. Since f1
contains the lowest point with a z value of z0, no such fragment
exists. As no fragment exists below f1 (following Definition 5.1), it
can be printed. □

Intuitively, Lemma 5.1 states that since the printing head is zoffs
above the print point, it can always print the lowest fragmentwith-
out penetrating other fragments. The implication of Lemma 5.1 is
that any set of fragments can be printed by sequentially printing
the lowest fragment each time and removing it from the set.
Hence, the initial set of fragments has an acyclic Ga (since it can
be printed). In the bottom up approach, we keep merging pairs
of fragments (or the sub-curves resulting from previous merges)
while maintaining an acyclic Ga until we end up with a minimal
number of curves.

Regardless of which approach we use, finding the optimal sub-
division can be shown to be an NP-complete problem by showing
that the monotone planar 3-SAT problem can be reduced to the
optimal subdivision problem here (the monotone planar 3-SAT
problem is presented in [23]). Given this difficulty in finding the
optimal solution,we resort to heuristic solutions. Algorithm2gives
a short outline of the process:

In Line 4 of Algorithm 2 the function Below(Θ, zoffs, f
j

i ) returns
the set of fragments that are below fragment f j

i (if any), according
to Definition 5.1. Lemma 5.1 proves that at least one fragment
(the lowest one) will be included in B. As explained earlier we
resort to a heuristic solution in identifying the best sequence of
fragments to print each step (Line 5). We choose the fragment
sequence that would introduce the least amount of subdivisions in
the current step, but may ultimately (because of the greedy nature

Algorithm 2 OrderCurves
Input:

(1) C = {C1, . . . , Cn} a set of curves to be ordered for 3D printing;
(2) Θ , zoffs, describe the printing head geometry;

Output:

(1) Cordered, the ordered (for 3D printing) list of (subdivided) curves
from C;

Algorithm:
1: Cordered := ∅;
2: F := Fragments(C, zoffs); // f

j
i marks fragment j in Ci;

3: while F ̸= ∅ do
4: B :=

{
f ji | Below(Θ, zoffs, f

j
i ) ∩ F = ∅

}
;

5: Bbest := GetBest(B) =
{
f ki , . . . , f k+l

i

}
∈ B;

6: F := F \ Bbest ;
7: Cordered := Cordered ∪ Bbest ;
8: end while
9: Return Cordered;

of the choice) result in more subdivisions. The entire procedure is
bound to terminate as at least one fragment is removed from F
every cycle (Line 6). The end result of this greedy process is a list
of sub-curves Cordered (with an acyclic Ga) that can be 3D printed
(using AM).

Fig. 11 shows the result of the process, when applied to the
helical object (from Fig. 2), covered by nine curves.

5.2. Setting thematerial deposition radius along the print-path curves

Another AM print-path concern relates to the amount of de-
posited material along the path. As mentioned in Section 3.1, ex-
trudedmaterial should both cover the entire volume of the printed
object, while also avoiding over-coverage that results from too
much material being extruded. In AM, covering the same location
with more than one covering curve can be problematic: when a
point is covered more than once, material will also be deposited
there multiple times, resulting in excess material being placed.

The print-paths created by themethod described in Sections 4.1
and 4.2, are typically not parallel to each other, and the distance
between adjacent curves would likely vary along their length.
Assuming a circular cross section for the extruded material, the
result will be excessive material deposition unless the extrusion
radius is modified along the length of the curves. To reduce the
amount of excess material extruded, and ultimately control the
extrusion feed-rate for the print-paths, the volume each curve is
assigned to cover must be set in a way that ensures locations are
not covered multiple times, and consequently too much material
is applied. Hence, we assign each curve, at any point, an effective
coverage radius:

Definition 5.4. The material deposition radius (MDR) function of
a print-path or covering curve is the local amount of material that
should be extruded along its length. If the depositedmaterial along
the print-path traces a virtual varying radius tube, as in Fig. 11, the
MDR sets the local radius of the tube, along the path.

The subdivision into fragments, similar to the one used to ap-
proximateGa in Section 5.1, can also be used to determine theMDR
along a covering curve. For each fragment, the closest fragments
are found, and the radius is set according to those neighboring
fragments. This can be done in an iterative process that would
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Fig. 12. A schematic illustration of the helical object (from Fig. 2) covered and
printed by 1216 curves (shown as differently colored tubes), presented along with
the generated support structure (shown as black lines). First 304 sub-curves and
associated support structure are printed in (a). First 608 sub-curves and associated
support structure are printed (b). First 912 sub-curves and associated support
structure are printed in (c). All 1216 sub-curves and associated support structure
are finally printed (d), completing themodel. Compare to Fig. 16(b) where an actual
print using the same type of support structure is shown.

expand the radius of each fragment’s virtual tube until it touches
the virtual tube of another fragment. This sort of process would
ensure that no tube can be further expanded when it terminates.

5.3. Generating the support structure

There are many alternatives to generate support. Here, we
briefly review the simple approach we took to manufacture the
parts presented in Section 6. To generate the support structure,
we use ray casting (vertical rays, in a grid, using the boundary
surfaces of the object) to identify the necessary volume of the
support structure.We then fill the support volume (in a prescribed
density) using a grid. To detect which support print-paths should
be printed, we use the following procedure: given the next print-
path of the object to be printed, the part of the support volume that
is below that print-path, should be printed/filled before the object
print-path. Recall that the volume below an object print-path,
would be the volume enclosed in the sweep of a downward facing
cone along the print-path curve. Overall this ordering ensures all of
the print-paths of the object are supported, and the printing order
of the object and the support print-paths does not cause collisions.
Fig. 12 shows a schematic example of this procedure. Note how
both the support structure and object covering-curves are added
in stages.

5.4. Using alternative covering curves

The solutions outlined in Sections 5.1–5.3 are applicable to any
set of covering curves. As discussed in Section 4.2, we are not

Fig. 13. Partial view of the printing curves (tubes representing radius) for the
volume in Fig. 2. Using the original parametrization (a) resulting in varying radius
values for the tubes. The printing curves, all of the same radius, of a direction field
(the same volumewith a square instead of circle cross-section) (b). Image (c) shows
the printing curves of the direction field from (b) clipped to fit the original volume
of the helix.

necessarily limited to the original parametrization when choosing
covering curves. For example: given a helical object (as in Fig. 2)we
can use a similar helical volume (but with a square cross-section),
that has a more desired parametrization, as a direction field to
achieve more uniformly distributed covering curves. Fig. 13 shows
an example of this.

In Fig. 13(a) the trivariate from Fig. 2 is shown covered by a sub-
set of its own isoparametric curves using the approach discussed in
Section 4.1. One can easily notice the varyingMDR (Definition 5.4),
and the unacceptably thin print-paths. This is the result of the
fact that the trivariate in question is actually singular, at the four
boundary points of its circular cross-section, with a vanishing
Jacobian there. However, we can still use the approach outlined
in Section 4.2, and use an external direction field to eliminate
this difficulty, and print the model using uniformly distributed
covering curves. To do so, we use a direction field similar to
the model in Fig. 2, except instead of the singular circular cross-
section, the direction field now has a square cross-section without
any singularities. Covering curves for the model with the square
cross-section can easily be generated by uniformly sampling its
isoparametric curves in a grid pattern. The covering curves for the
square cross-sectionmodel can be seen in Fig. 13(b). The generated
covering curves that fall outside the boundary of the model in
Fig. 2 are clipped, as explained in Section 4.2, removing any sub-
curves (or full curves) that are outside the boundary. We are left
with uniformly distributed covering curves that cover the model
from Fig. 2, that can be used as the basis for AM print-paths, and
are shown in Fig. 13(c). Using this approach, virtually any desired
coverage configuration can be achieved, for examplewe could have
easily replaced the grid configuration of the coverage in Fig. 13(b)
with a honeycomb arrangement to achieve a tighter coverage.

6. Experimental results

We have implemented in C/C++ the algorithms outlined in this
work. We then used these implementations to produce G-code
instructions to print 3D objects, using a low-end FDM printer
(seen in Fig. 14). Unless otherwise noted, in these experiments the
nominal print-path covering radius is 0.5 mm (as was zoffs for the
cone), which is coarse but creates more visible print-paths, and
the default cone angle (θ , Fig. 9) is 0.4π . We would like to stress
these models are here as a proof of concept, showing fabrication of
3D models using the methods we outlined is indeed possible. The
actual surface finish quality of the presented models is obviously
limited, because of the low-end printer, and the coarse resolution
we are using (to make print-paths more visible). For all presented
models in this section, the total running time for the algorithms,
including the generation of the G-code files needed to print the
models, is about 2–10 minutes on a 3.4 GHz windows 7 machine
(single thread). Printing the object in Fig. 15 took 4–6 h while the
one in Fig. 16 took about 48 h. Printing themodel in Fig. 16 requires
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Fig. 14. The FDM printer used in our experiments.

Fig. 15. A manufactured model of a twisted bridge, created using the method
outlined in Section 4.2(a). The print-paths used for the twisted bridge modeled as
tubes (and a zoomed view of the cross section) (b).

frequent (and relatively long) z axis motions that are particularly
slow on our printer that uses lead-screws in z. As mentioned
in [15], prints that require frequent z axis motions can be sped up
using a delta style 3D printer.

The model in Fig. 15 was created using the methods outlined
in Section 4.2. Specifically using a B-rep (a B-spline surfaces con-
verted to a triangular mesh) of a bridge, and a rectangular cross-
section trivariate that specified the external direction field for the
print-paths. θ was set to 0.25π so that no subdivisions would
be added. Fig. 16 shows a manufactured object for the model in
Fig. 2. The model in Fig. 16(a), was also created using the method
in Section 4.2, using a triangular mesh of the model’s boundary
(created by tessellating the boundary of a trivariate volume) and
a square cross-section direction field as shown in Fig. 13. Fig. 16
also shows the effects accessibility considerations have. Fig. 16(c)
shows how a subdivision of the covering curves affects the man-
ufacturing process. The effect is minor, as the overall geometry of
the print-paths remain unaffected.

The model in Fig. 17, the spout of a Utah teapot, is modeled as a
volumetric trivariate with some small varying wall thickness. The
model was created using the methods outlined in Section 4.1. The
nominal print-path covering radius is 0.3 mm, but the actual MDR
is determined adaptively and changes along the print-paths.

Fig. 18 shows a manufactured object in the shape of a vase.
The cross section area of the vase differs substantially along its
length. As a result, the number and MDR of the print-paths are
changed adaptively in an effort to maintain a constant coverage of
the volume.

Fig. 16. Manufactured object for the helical model presented in Fig. 2, created using
the method presented in Section 4.2(a). In (b) the same model is shown before the
removal of the support material. Image (c), shows a zoomed view of the transition
(subdivision) area created because of accessibility considerations. See also Fig. 20.

Fig. 17. Manufactured object for the spout of a Utah teapotmodeled as a volumetric
trivariate (from two views), created using the method presented in Section 4.1.

Fig. 19 presents the manufactured result for the model shown
in Fig. 6. The directional field used to cover the model assigns
a single representative guiding curve to each part of the model
(body, and each of the four legs). For each part, a containing volume
is generated by sweeping a square cross section surface (as shown
in Fig. 13(b)) along the representative curve. Then, a set of covering
curves is computed by uniformly extracting isoparametric curves
from this volume. So while the covering curves for this model
match the general shape of the model, they do not match the
boundary of the object, resulting in a worse surface finish com-
pared to the other examples.

7. Discussion and future work

In this section, we discuss some of the technical issues we
encountered in fabricating themodels aswell as related topics that
require further research.

Throughout this work, we have largely neglected the consider-
ation of choosing a build direction. The use of general print-paths,
which partially mitigate the importance of the build direction, is
themain focus of this work. However, the build direction still plays
a major role in determining the quality of the resulting object, as it
still affects the support volume and the number of subdivisions in
the print-paths as discussed earlier. The determination of the best
build orientation, given itsmany implications, has been studied for
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Fig. 18. (a) shows the model of a vase. (b) shows a rendering of the print paths
(object print-paths as colored tubes, support print-path as black lines) used to
manufacture the object. A manufactured object for the vase model (the support
structure was not removed), created using the method presented in Section 4.1 is
shown in (c). Note how additional shorter print-paths are added in wider regions
of the vase.

Fig. 19. Manufactured object for a model of a crocodile (the support structure was
not removed), created using the method presented in Section 4.2. In (a), the whole
object is shown. (b) gives a more detailed view of the back right leg. See also Fig. 6.

Fig. 20. A division to print-paths that only considers accessibility (a). A division to
print-paths that also considers the model’s mechanical strength (b). In both cases,
print-paths are rendered in perspective, modeled as tubes, and colored to highlight
the subdivision.

traditional AM (i.e. [24]). Similar studies should be performed to
assess the best build direction for the AMmethod we propose.

In slicing, each layer is largely supported by the previous layer,
and for sufficiently vertical slopes, no support is required [19].
AM using the methods we describe in this paper means adjacent
’layers’ (or rather curves printed one after the other in this case) are
no longer as similar to one another and as a consequence a printed
part does not offer as much support to the next printed part.
This makes support a much more critical issue, and apparently,
it seems to be forcing us to use more support than would be
required using slicing. Refer to Fig. 1(c), (d) for a comparison of
the support structure for our methods, and traditional slicing for
a simple model. Overall, we have used a rather naive approach to
generate the support, andmore work needs to be done to optimize
the support structure.

The solution we found for setting the MDR of print-paths in
Section 5.2 may not be the optimal way to do so. For example,
setting the radius so that there is some overlap between the virtual
tubes of different print-paths may give better results, in certain
cases, compensating for the inherent voids between paths with a
circular cross-section. Further research needs to be done to exam-
inehow tobest use the coverage radius of a covering curve to create
a uniform and accurate coverage of the printed 3D object. Further,
in reality, the extruded material is not circular, and supporting
extrusion models with a non circular cross-section also requires
further study. More work needs to be done to enable accurate
control of the MDR, by either adaptively setting the extrusion
rate, in existing printers, or by adding a dedicated valve mecha-
nism to achieve a more accurate extrusion cross-section, in newer
printers.

In Section 5.1, we discussed how covering curves sometimes
have to be subdivided to create a printable set of curves. However,
this subdivision only considers accessibility and may cause prob-
lems with other design goals. Fig. 20 shows two possible sets of
print-paths,modeled as tubes, for amodel of a single cycle from the
model presented in Fig. 2. In Fig. 20(a) only accessibility considera-
tions were used to subdivide the curves. The resulting subdivision
creates a mechanical weakness in the model: it can be divided
into two pieces held together only by the connection between the
endpoints of the print-paths that make up the two pieces. This
weakness can be alleviated by bonding or welding the endpoints
together. This weakness can also be mitigated by changing the
design of the covering curves. By forcing an additional subdivision,
we were able to create an entirely different subdivision, seen in
Fig. 20(b), that largely eliminated the weakness. Finding a way
to automate this procedure toward, possibly, optimal mechanical
strength, and prevent endpoints from clusteringwould be aworth-
while research goal.

Over-coverage can also occur in Algorithm 1when∆2
iso is overly

conservative in relation to the true Hausdorff distance. One such
case is illustrated in Fig. 21. While rare in practice, reducing this
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Fig. 21. Given these two surfaces (depicted as lines) S1 and S2 , the iso-distance ∆iso
between them (dashed arrow) from Algorithm 1, may be arbitrarily larger than the
one sided point Hausdorff distance (dotted arrow).

skewing effect is highly desirable. By employing the first funda-
mental forms [25] of the adjacent surfaces and their relation in the
local neighborhood in the trivariate, one can compensate for the
variation in these distances between adjacent covering curves.

The ability to print non-planar curves is also applicable in the
context of AM using functionally graded materials. One can alter
material properties along print-paths, much like the MDR.

In this work, we have considered a constant orientation for
both the printing head and the model. Printing using the same
general print-paths presented, but using a multi-axis AMmachine
(such as in [5]) that can alter the orientations, would probably
give superior result. Such a machine would be able to consider
multi-axis accessibility options (rather than the single directionwe
considered), and reduce the need for subdivision of curves.

8. Conclusions

Given the wide range of desired covering curve properties (and
the balance between them) no singlemethod for generating cover-
ing curves would answer all possible needs. While we did present
a method for generating covering curves for trivariate volumes,
since there is a natural set of covering curves in that case, any set
of covering curves can be used as the basis for print-paths.

We have shown how the slicing approach in AM can be aug-
mented by algorithms to generate print-paths that follow any
desired 3D directions. We expect that the added flexibility and
freedom that the presented methods allow in the specification of
general covering curves, will enable the synthesis of 3D models
(using AM) with superior properties (such as mechanical strength
and surface finish).
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Appendix. Arc-Length limit of isoparametric curves in trivari-
ates

Lemma A.1. Let p1 = C(0) and p2 = C(1) be the endpoints of a
3-space parametric curve C(t), t ∈ [0, 1], and let L be the arc-length
of C. If L ≤ 2ϵ and pc ∈ C then

min (∥p1 − pc∥ , ∥p2 − pc∥) ≤ ϵ.

Proof. L is the arc-length of a curve from p1 to p2 that passes
through pc , so we know that:

∥p1 − pc∥ + ∥p2 − pc∥ ≤ L ≤ 2ϵ.

Then, min (∥p1 − pc∥ , ∥p2 − pc∥) ≤ ϵ. □

Consider a Bézier, or a B-spline, trivariate:

V (u, v, w) =

nu∑
i=0

nv∑
j=0

nw∑
k=0

PijkBi(u)Bj(v)Bk(w), u, v, w ∈ [0, 1].

Given i, j, consider one complete control polygon of a
w-isoparametric curve from the controlmesh ofV ,Pi,j = {Pijk | k ∈

0 . . . nw}. Then, let Lki,j be the length of the kth segment in control
polygon Pi,j, Lki,j = ∥Pi,j,k+1 − Pijk∥.

Lemma A.2. Let S1(u, v, 0) and S2(u, v, 1) be the two w bound-
ary surfaces in a trivariate V (u, v, w). The arc-length of any w-
isoparametric curve C(w) in V from S1 to S2 is bounded by∑nw−1

k=0 maxi,j(Lki,j).

Proof. The arc-length of a Bézier or a B-spline curve cannot exceed
the arc-length of its control polygon. For constant values of u = u0
and v = v0, V (u0, v0, w) is a parametric (univariate) curve:

C(w) = V (u0, v0, w) =

∑nw

k=0
σkBk(w),

where σk =
∑nu

i=0
∑nv

j=0Pi,j,kBi(u0)Bj(v0).
Then, the length of the kth segment of the control polygon of

C(w), Lk:

Lk = ∥σk+1 − σk∥

=


nu∑
i=0

nv∑
j=0

Pi,j,k+1Bi(u0)Bj(v0) −

nu∑
i=0

nv∑
j=0

Pi,j,kBi(u0)Bj(v0)


=


nu∑
i=0

nv∑
j=0

(Pi,j,k+1 − Pi,j,k)Bi(u0)Bj(v0)


≤

nu∑
i=0

nv∑
j=0

Pi,j,k+1 − Pi,j,k
 Bi(u0)Bj(v0)

≤

nu∑
i=0

nv∑
j=0

max
i,j

(Pi,j,k+1 − Pi,j,k)
 Bi(u0)Bj(v0)

= max
i,j

(Pi,j,k+1 − Pi,j,k)


= max
i,j

(Lki,j) .

The bound on Lk also establishes a bound on the arc-length of
any isoparametric curve C(w) from S1 to S2:

ArcLength(C(w)) ≤

nw−1∑
k=0

Lk ≤

nw−1∑
k=0

max
i,j

(Lki,j). □

Lemma A.2 establishes that we can efficiently find an upper
bound on the maximum length of any w-isoparametric curve
between S1(u, v) = V (u, v, 0) and S2(u, v) = V (u, v, 1) using
the control mesh of V . Assume we calculate that bound and find
that all w-isoparametric curves are at most of length L ≤ 2ϵ.
Then, any interior point p ∈ V (u, v, w) (w ∈ [0, 1]), is on some
w-isoparametric curve, p ∈ C(w) = V (u0, v0, w), and, following
Lemma A.1 is at most ϵ distance away from either S1 or S2. By
ensuring that any p ∈ V is at most ϵ distance away from either
S1 or S2, we ensure that the volume V is covered by surfaces S1
and S2.
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