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a b s t r a c t

The traditional 2.5-axis volume printing process purely relies on planar and parallel slicing layers,
which imperatively requires the support structure when dealing with overhanging features on the
part. The advent of multi-axis additive manufacturing inaugurates a brand new type of printing process
with an adjustable build direction, based on which the support structure can be successfully reduced
(if not completely eliminated) upon a proper process planning. Presented in this paper is a curved
layer based process planning algorithm for multi-axis printing of an arbitrary freeform solid part.
Given a freeform solid model represented as a watertight mesh surface, our algorithm starts with
the establishment of a surface embedded field, whose value at any particular point is exactly the
geodesic distance to the specified bottom of the model. Any iso-level contour induced from this field
is first flattened, filled by a Delaunay triangular mesh, and then mapped back to 3D space through the
Harmonic mapping to interpolate the original 3D contour, thus generating a curved layer. After the
entire model is decomposed into curved layers by the proposed adaptive slicing strategy, the multi-axis
printing paths are then generated on these layers in a contour-parallel fashion. Finally, following the
strict increasing order of iso-levels, the contours are printed one by one till the final formation of the
part. Preliminary tests in both computer simulation and physical printing of our algorithm have given
a positive validation on its effectiveness and feasibility in eliminating the need of support structure.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Additive manufacturing (AM), also known as 3D printing, is
one of the primary choices for fast prototyping and customized
production of parts with complex design features [1]. The major-
ity of up-to-date commercial AM systems are still simply based
on the 2.5-axis configuration, in which the part is first decom-
posed into parallel thin layers with uniform thickness, and the
AM nozzle deposits materials sequentially from bottom up along
a fixed printing direction (+Z). Though easily implemented, such
a 3D printing platform with highly restricted printing motions
comes along with several issues (see Fig. 1 for illustration). The
first and most prominent issue is the excessive usage of support
structure constructed prior to those overhanging features [2],
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which obviously leads to material and time waste. Another perti-
nent problem of the support structure is that the residue artifacts
staying on the contact surface even after a delicate cleanup pro-
cess leads to a compromised surface quality. The second issue of
the 2.5-axis platform is the poor surface quality at those non-
vertical faces caused by the staircase effect [3], as demonstrated
in Fig. 1(b). Restricted by this 2.5-axis configuration, people have
spent great endeavor trying to reduce the support volume as
well as the staircase effect, either by finding an optimal build
direction [4] or by adaptively adjusting the slicing layer thick-
ness [5–8]. However, these two issues always exist just because
of the nature of 2.5-axis deposition.

Inspired by the five-axis numerical controlled machining with
additional two rotary axes, the concept of multi-axis 3D printing,
as already realized in some prototypes, is expected to offer an
ultimate solution to the aforementioned issues. The advent of
multi-axis 3D printing can successfully bypass these two issues
by dynamically adjusting the printing direction [9]. Considering
the gravity effect that the fused material needs to be deposited
vertically, two additional rotary DOFs are usually integrated on
the platform either formed by a rotary table or a robotic arm.
Based on this configuration, it becomes possible that the additive
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Fig. 1. (a) Support structure and (b) staircase effect in 2.5-axis AM process.

process can be conducted in a theoretically support-free manner
(when the potential nozzle collision is not considered), while
achieving a much more enhanced surface finish quality. However,
situation becomes particularly intricate in multi-axis fabrication.
In terms of hardware, as the nozzle orientation can constantly
change during the fabricating process, a delicate motion control
to synchronize the deposition rate with the nozzle movement
(including rotation and translation) is indispensable. On the other
hand, the trickiest part is the layer decomposition of the target
model, which still lacks a versatile strategy towards the objec-
tive of support-free fabrication. This newly emerged area has
attracted researchers to develop various hardware and software
solutions for additive fabrication of complex parts. Some of the
recent developments are summarized below.

1.1. Related work

In terms of hardware system, Pan et al. [10] developed a CNC
based accumulation platform to realize five-axis motions, which
was successfully utilized for fabricating conformal features on
existing surfaces. Another hardware configuration based on Stew-
art platform [11] was later devised for a low-cost FDM process,
in which a laser-camera system was employed to correct the
backlash errors in real time. Its major deficiency is still the lack of
software system for automatic generation of the printing path. To
facilitate the process planning while achieving multidirectional
printing, a 3D printer named ‘‘RevoMaker’’ [12] was introduced
lately. As the core of this system, a cuboidal base with embedded
functional components was first extracted from the 3D model,
and the external features were then printed directly on the six
facets of the base, in respective order. The drawback of this
system is the need of multiple setups for the workpiece during
the process. A novel decompose-and-pack idea was presented
recently [13], which divided a complex geometry into printable
parts and stacked them up to minimize the pile height subject to
the overhanging feature constraint. Similarly, Attene [14] inaugu-
rated a disassembling strategy to minimize the packing volume,
i.e., the bounding box, to practically facilitate a batch production.
Keating and Oxman [15] integrated a 6-DOF robotic arm into the
FDM process and successfully realized a proof-of-concept multi-
axis printing process. Wu et al. [16] recently presented another
robotic system named RoboFDM that incorporated both hardware
and software for support-free FDM — a robotic arm providing
six degrees of freedom was employed to realize multidirectional
motions, while the printing nozzle remained vertically fixed to
guarantee a correct material deposition along the gravity.

Notwithstanding recent advancements in hardware of multi-
axis printing, the major challenge still resides on the software
development. In particular, so far there is no definitive answer
to how a general sculptured part with overhanging features can
be fabricated on a multi-axis 3D printer, without the need of

support structure and hence with a better finish surface quality.
Solutions already proposed towards this objective can be roughly
classified into planar and non-planar decomposition. In terms of
planar decomposition, the sliced primitive is still with a planar
base but fabricated along a changing but fixed direction. Zhang
and Liou [17] presented an adaptive slicing method to decompose
a columnar model into layers of non-uniform thickness while
trying to eliminate the support. Lee and Jee [18] proposed an
auto-partitioning algorithm for 3D metal printing, which was
successfully applied to structural parts consisting of prismatic
shapes. Wu et al. [16] developed a support-free decomposition
strategy for sculptured parts based on the extracted skeleton. A
similar idea using 3+2-axis printing motion was reported in our
recent work [19], where a novel downward flooding approach
was devised for the extraction of support-free features. Ding
et al. [20] introduced a decomposition-regrouping workflow for
multi-directional slicing of STL models. However, this scheme is
incapable of handling complex geometries or models with non-
sharp edges. In terms of shell models, Wei et al. [21] recently
developed a skeleton-based partitioning algorithm towards the
goal of minimizing the total number of partitions and the length
of cuts. The partitioned parts were individually fabricated in a
support-free manner and then glued together to form the final
model.

All the above multi-directional strategies are based on planar
layers when fabricating each segment. To fully exploit the kine-
matic capacity of a multi-axis system, recently, some state-of-the-
art research came up with multi-axis continuous fabrication on
curved slicing layers, i.e. using non-planar decomposition. Coupek
et al. [22] proposed a multi-axis FDM process for cylindrical base
models, which were represented and decomposed in a cylindrical
coordinate system. A novel process specifically for slender parts
was presented recently [23], which decomposed the model along
its medial axis into parallel curved fibers in order to achieve
better mechanical properties; the support structure however was
still needed. Dai et al. [24] proposed a support-free curved layer
decomposition algorithm using convex-fronts. Their approach is
versatile towards various freeform models including multi-genus
features. However, one noticeable concern of their work is the
discretization error due to the voxel representation, which also
demands a huge data storage as well as a high computing cost.

1.2. Contributions

All the above endeavors in the area of multi-axis printing
provide great inspiration to us. However, most of them are of lim-
ited utility for an arbitrarily shaped model. A general multi-axis
process for freeform part fabrication towards the goal of reducing
the need of support is particularly scarce in both industry and
academia. Dai’s work [24] is among the most effective ones for
its ability to print a wide range of models without the need of
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Fig. 2. Definition of Hausdorff distance between each two printing layers.

support structure. The key to the success of their algorithm is the
idea of convex growing based on a third-party voxel represen-
tation. Aimed at the same target of support-free fabrication, we
in this paper propose an alternative scheme without the need of
a third-party representation, for the process planning of multi-
axis 3D printing of freeform models. The chief contribution of
this work is the development of a curved layer decomposition,
which is purely based on the original boundary representation of
the input model. To handle the non-uniformity issue caused by
the decomposed curved layers, we also propose a new pattern
of printing path, which is quite similar to Dai’s but offers more
precise control of the depositing rate. As to be elaborated, the
proposed method shows a high versatility for a variety of models,
including those with multi-branches or multi-genus features.

This paper is organized as follows. In the Section 2, we intro-
duce the idea of shape constrained geodesic field and its gen-
eration, and describe how to construct curved layers from this
field. Then, in Section 3, based on the constructed curved layers,
the multi-axis printing path generation algorithm is presented. In
Section 4, the test results of our method are presented, followed
by the conclusion in Section 5.

2. Curved layer decomposition of freeform parts

The task of layered additive process planning can be formu-
lated as a two-phase procedure. Given a solid model Ω which
is conventionally represented by a watertight triangular mesh
surface ∂Ω , the first step is to decompose Ω into layers of
cross-sectional surfaces {Si}. Subsequently, a printing path Ti is
generated for fabricating each Si with a controlled depositing rate.
Pertaining to the former, in the realm of 2.5-axis lamination, the
Hausdorff distance δH between each two consecutive layers Si and
Si+1 can be approximated according to Fig. 2 as:

δH (Si, Si+1) =

⎧⎨⎩ max
p∈∂Si+1

τ

sin
(
cos−1 np · z

) , if np · z < 0

τ , if np · z ≥ 0
(1)

where τ defines the layer thickness. Conceivably, when δH is
large, the staircase effect becomes prominent while the need
of support structure arises, as shown in Fig. 2. Given this, the
Hausdorff distance δH is regarded as the direct culprit that affects
the additive process, which thus needs to be confined to ensure
a firm adherence and better surface quality.

To maintain a relatively stable δH throughout the printing
process, in a traditional 2.5-axis printing process it is intuitive to
make adaptive adjustment of the thickness τ for different layers.
However, there is an efficiency issue when τ becomes too small,
and then an accuracy issue when τ is smaller than the resolution
of nozzle extrusion. In our previous work [19], we took advantage
of the multi-axis platform to partition the model into several

segmented parts, each of which can be fabricated along a unique
direction without the need of support structure. This approach
manages to bypass the need of smaller layer thickness and is
able to achieve some plausible results for parts with overhanging
features; however, the adherence at the segment interfaces is
weak. Another recent work of ours [25] verified the feasibility
of curved layer deposition with variable thickness by fully ex-
ploiting the capacity of a multi-axis FDM printer, which set up a
foundation of curved layer fabrication. Inspired by these previous
achievements, here we want to decompose a freeform model in a
more consistent manner, i.e., into stacks of curved layers, towards
the target of support-free and high-quality fabrication. To achieve
this goal, the following requirements for the layer decomposition
should be satisfied:
Rq1: The Hausdorff distance δH of any two consecutive layers
should be confined within a threshold.
Rq2: The layer thickness τ should be bounded inside an admissi-
ble range τ ∈ [τl, τu] to guarantee proper material deposition.

These two requirements can be simultaneously respected by
introducing one criterion, which is the ratio between the Haus-
dorff distance and the layer thickness δH/τ , i.e., the HT ratio. This
ratio evaluates the layer decomposition strategy in terms of the
need of support structure. To ensure a support-free fabrication,
for every decomposed layer this criterion should be restricted
below a threshold value, e.g., 1.5 for most PLA filaments according
to [26].

Bearing these conditions in mind, we now propose a curved
layer decomposition scheme for freeform shapes which is based
on an important and also intrinsic characteristic of shapes, i.e., the
geodesic distance. In a nut shell, we first generate a set of iso-
field-value contours on the boundary ∂Ω of the solid model.
These contours are then filled with triangular meshes by a
rigidity-preserved algorithm. The contour together with its filled
internal surface forms one curved layer. By carefully choosing the
interval (i.e. the Hausdorff distance) of the field value, a stack
of curved layers with no intersection can be generated, based
on which the solid part is decomposed. While the exemplified
procedure is illustrated in Fig. 3, the algorithmic details are given
next.

2.1. Generation of shape constrained iso-geodesic contours

As illustrated in Fig. 4(a), the geodesic distance is a unique
metric defined over a surface domain. As opposed to the Eu-
clidean distance which defines the distance between any two
points p and q in the Euclidean space, the geodesic distance
δ(q, p) is defined as the arc-length of the shortest surface em-
bedded curve between q and p.

Assume that the given solid model Ω has a flat bottom layer
whose boundary curve is denoted as l0 ∈ ∂Ω . We now define a
new geodesic metric δ∗(q) which identifies the shortest geodesic
distance between point q and l0, i.e.:

δ∗ (q) = min
pi∈l0

δ(q, pi) (2)

This geodesic metric effectively induces a scalar field over
surface ∂Ω , which is called a shape constrained geodesic dis-
tance field (SCGDF). As implied by the name, this scalar field is
highly constrained by the shape of the base site (in our case,
the bottom contour l0 whose field value is zero) instead of a
conventional point site. Given a watertight boundary surface ∂Ω

and the prescribed bottom contour l0 ∈ ∂Ω , the scalar field
of Eq. (1) can be computed based on the well-known Mitchell–
Mount–Papadimitriou (MMP) algorithm [27] which gives the ex-
act solution to the discrete geodesic distance between any two
vertices. The calculation can be expedited by adopting an error-
bounded approximated MMP method with a time complexity of
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Fig. 3. Illustration of the curved layer decomposition process on a Stanford Bunny: (a) the original mesh model; (b) the generated iso-geodesic contours; (c) the
reconstructed surface layers with no intersection.

Fig. 4. Geodesic distance from a source point to: (a) destination point; (b)
destination contour.

Fig. 5. The scalar field δ∗ on the bunny model (a larger value of δ∗ is shown in
yellow while a smaller one becomes indigo).

o(n log n) [28]. Fig. 5 depicts one example of the scalar field (the
bunny model with a planar base contour) as computed by our
implemented computer program.

With SCGDF calculated on the boundary surface ∂Ω , the iso-
geodesic contour (or simply iso-contour) Cδ0 is essentially the
level set with a constant field value δ0:

Cδ0 = {q|δ∗ (q) = δ0} (3)

For a discretized ∂Ω in the form of a triangular mesh, since the
field value is only calculated on those triangle vertices, the iso-
contour corresponding to any specified field value δ0 in general
does not exactly pass through these vertices. Fig. 6 illustrates
how Cδ0 is calculated by us, which is made of a series of qi lying
on some edges. First of all, a candidate edge p1p2 is sought out
where the field values on its two end vertices satisfy the following
condition:

(δ0 − δ1) · (δ0 − δ2) ≤ 0 (4)

When Eq. (4) holds, there must be a qi lying on this can-
didate edge, whose calculation is simply based on the linear

Fig. 6. Computation of an iso-contour.

interpolation:

qi = p1 +
δ0 − δ1

δ2 − δ1
(p2 − p1) (5)

In this way, the iso-contour Cδ0 is approximated as a group of{
qi

}
, whose geodesic distances to the bottom contour are exactly

δ0. Consequently, the iso-contours of different field levels can be
generated, as shown in Fig. 3(b). Obviously, being a scalar field,
these iso-contours never intersect each other. Apart from this nice
property, the iso-contours establish a smooth transition from the
bottom upwards, giving a natural order of the curved layers to
be generated. However, an iso-contour is only a closed 3D curve,
not a layer. To print the volume of Ω , we need to devise a ‘‘hole
filling’’ operation to generate a layer from an iso-contour, as to
be elaborated next.

2.2. Surface layer construction

There are several requirements that need to be respected
when a surface layer is constructed from an iso-contour. First
and obviously, the layer’s boundary must strictly align with the
iso-contour. Secondly, the construction should be deterministic,
meaning that the solution is unique with no ambiguity, despite
countless possibilities that satisfy the first requirement. Thirdly,
the surface curvature of layer should be as small as possible.

Our overall procedure is illustrated in Fig. 7, which is com-
posed of three steps: (1) the planarization that flattens the iso-
contour into a plane; (2) the filling by triangles of the hole in the
plane; and (3) the mapping of the planar triangular mesh back to
a 3D surface based on the least square fitting.

The planarization is to project the iso-contour
{
qi

}
onto a

target plane, while preserving its shape as much as possible.
Note that the original iso-contour resulting from the iso-geodesic
computation (see Fig. 6) is very likely to have non-uniformly
distributed vertices, as shown in Fig. 8(a), which would lead to
unevenly sized triangles when filling the planar hole. To over-
come this issue, the arc-length based resampling is invoked on
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Fig. 7. Surface layer construction from an iso-contour curve.

Fig. 8. Filling the planar hole: (a) the original planar iso-contour vertices; (b) the resampled vertices; (c) the constructed triangular mesh.

Fig. 9. Rules for creating new triangles: (a) αB
jmin ≤ 80◦; (b) 80◦ < αB

jmin ≤ 130◦; and (c) 130◦ < αB
jmin < 180◦ .

these vertices prior to the planarization as well as the mesh con-
struction process. About this resampling process, the boundary
formed by the original vertices is first expressed by a piecewise
cubic spline passing through all vertices. We then uniformly
distribute the resampled nodes on this spline curve to maintain a
constant arc length γ = q̂lql+1 between each two adjacent nodes.
In order to faithfully preserve the shape of boundary, the qualified
value of γ is computed such as to prevent the chordal error ε
not exceeding the threshold value ε0 (see Fig. 8(b) for a better
understanding of the chordal error).

While resampling is a trivial process, the crux here is the
determination of the projecting direction dp, i.e. the normal of the
target plane. By applying the well-known principal component
analysis (PCA) to the iso-contour vertices, the most irrelevant
principal direction is selected as the projecting direction:

[(
q−

1
)T

, . . . ,
(
q−

n
)T]

·

⎡⎢⎣q−

1
...

q−
n

⎤⎥⎦ =
[
(d1)

T , (d2)
T , (d3)

T ]

·

[
λ1 0 0
0 λ2 0
0 0 λ3

]
·

[d1
d2
d3

]
(6)

where q−

i = qi −

∑
qi

n is the adjusted coordinates of the vertex
whose origin is the centroid of the contour. After going through
the eigendecomposition, the eigenvector corresponding to the
smallest eigenvalue is selected as dp.

Once the iso-contour is projected onto the plane along dp,
the inside of the planar contour is then triangulated. To obtain a
high quality mesh, we adopt a version of triangulation algorithm
that combines the advancing front mesh generation [29] with the

Delaunay triangulation [30]. Specifically, let the 2D boundary con-
tour C2D

=
{
ρi

}
be a front. The angles between each two adjacent

boundary edges formed by
⟨
ρi−1, ρi, ρi+1

⟩
are then calculated and

denoted as {αi}. Next, we find out the minimum angle αm and
its corresponding three vertices

⟨
ρm−1, ρm, ρm+1

⟩
to create new

triangles based on the following three rules (see Fig. 9):

• If αm ≤ 80◦, the new triangle is simply Tri
⟨
ρm−1, ρm, ρm+1

⟩
.

• If 80◦ < αm ≤ 130◦, the new triangles are
Tri

⟨
ρm−1, ρm, ρnew

⟩
and Tri

⟨
ρm, ρm+1, ρnew

⟩
, where ρnew lies

on the bisector of αm.
• If 130◦ < αm < 180◦ (note that the minimum angle

will never be larger than 180◦ for a closed loop), the new
triangles are Tri

⟨
ρm−1, ρm, ρnew1

⟩
, Tri

⟨
ρm, ρnew1, ρnew2

⟩
and

Tri
⟨
ρm+1, ρm, ρnew2

⟩
, where ρnew1 and ρnew2 lie on the tri-

sector of αm.

For the second and third cases above, the newly generated
vertices should be merged with other vertices on the front, if
the distance between them is smaller than half of the shortest
edge length on the front. By doing so, the length of new edges
can be stabilized during the advancing propagation rather than
gradually shortened. The front will then be updated to indicate
the new boundary vertices. By recursively adding new triangles
and evolving the front, the boundary contour will be eventually
filled by the last triangle, when the final front contains only
three last vertices. This front advancing process is guaranteed to
converge as it is carried out in the plane. That we further perform
a Delaunay refinement on the triangulation is for the sake of the
subsequent mapping process, since the Delaunay triangulation
preserves the best the original ‘‘imaginary’’ surface shape.
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Fig. 10. Topology-preserved deformation of a triangular mesh . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

After the planar contour C2D is triangulated, the final step
is to map the planar triangular mesh back to a surface whose
boundary is exactly the original 3D iso-contour C . In the spirit of
minimum surface, i.e., to be as flat as possible while still meeting
the boundary condition, we adopt the Harmonic mapping, which
is known to minimize the Dirichlet energy on the final surface.
Let the vertices of the triangular surface patch to be found be
divided into two groups: {ρB

i } that represent the boundary ver-
tices corresponding to

{
qi

}
, and {ρI

i } that are the internal vertices
and correspond to the internal vertices {qI

i } of the 2D mesh. {ρB
i }

obviously is the original iso-contour, hence already known. Thus,
we have 3×m unknowns of qI

i = (xIi , y
I
i , z

I
i ), where m is the total

number of internal vertices.
With the topology of mesh preserved, the Dirichlet energy

E(
{
qI
i

}
) for a deformed configuration of triangular mesh is simply

the summation of the elastic energy on each internal edge eIi
(shown in red in Fig. 10) which acts as a spring:

E(
{
qI
i

}
) =

∑
eIi

ki
qi,1 − qi,2

2 (7)

where qi,1 and qi,2 are the two vertices of eIi and ki is a spring
coefficient.

There are a number of ways for the determination of ki, and a
classical one is based on the two opposite angles αi and βi shared
by eIi , e.g., α6 and β6 of eI6 in Fig. 10, or specifically:

ki =
cotαi + cotβi

2
=

sin(αi + βi)
2 sinαi sinβi

(8)

Although theoretically ki could be negative when αi + βi >
π , this situation is rarely seen in our case since the Delaunay
algorithm guarantees a good triangulation quality. By substituting
Eq. (8) back into Eq. (7) and calculating the partial differential of
each vertex coordinate, a large sparse linear equation system that
contains 3 × m unknowns can be constructed, i.e.:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂xIi
E(

{
qI
i

}
) = 0

∂

∂yIi
E(

{
qI
i

}
) = 0

∂

∂z Ii
E(

{
qI
i

}
) = 0

(9)

The non-trivial solution of this linear system gives us the final
coordinates of the internal vertices with respect to the original
3D iso-contour.

A caution should be made: though iso-contours never intersect
each other, the surface layers of two neighboring iso-contours
could, especially if the ∆δ∗ between the two is very small and
they are near a local maximum of δ∗, as shown in Fig. 11.

Fig. 11. Possible intersection between neighboring surface layers when they are
close to a local maximum of δ∗ .

2.3. Adaptive slicing of curved layers

In the simple 2.5-axis layered fabrication, the layer thickness
is a constant since all layers are planar and parallel to each other.
This obviously is no longer the case in multi-axis printing as iso-
contours are 3D curves and their induced surface layers are 3D
surfaces. To maintain a relative stable Hausdorff distance δH of
two consecutive layers, it is best to choose a constant interval
∆δ0 between two consecutive iso-contours. This would however
cause intersecting layers in some critical regions. Therefore, an
interrogation of the minimum thickness of the sandwich between
two layers should be conducted once a new layer is formed.
To facilitate the planning, we use the average distance (along
some common direction) between any two neighboring surface
layers to approximate the thickness of the sandwiched slice,
i.e., τ =

∑n
i=1 τi/n. In addition, the minimum thickness τmin

should be sufficient to enable a controllable deposition of fused
filament, which is usually a dependent value τl with respect to
the nozzle specification. To satisfy these two requirements, an
adaptive geodesic interval ∆δ should be sought for the generation
of surface layers, starting from the bottom iso-contour l0.

Referring to Fig. 12, suppose the previous surface layer of
the iso-contour lδ is already constructed. We first extract its
most irrelevant principal direction dp using the PCA method as
introduced in Section 2.2. Given a geodesic interval ∆δ, the next
iso-geodesic contour lδ+∆δ = {qi} is readily computed. Therefore,
the average thickness between the two surface layers is:

τ =

∑n
i=1 ∆δ · sin

(
cos−1(dp · ni)

)
n

(10)
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where ni is the unit surface normal at qi. This equation holds
when ∆δ is small and the geodesic can be approximated as a line
segment. Based on this relationship, a tentatively qualified ∆δ can
be found once its resultant τ equals the specified thickness.

As soon as the δ∗ interval ∆δ is determined, the iso-contour
lδ+∆δ as well as the surface layer Sδ+∆δ is fully constructed. We
then compute the true minimum thickness τmin = min(τi) from
each vertex in Sδ+∆δ to Sδ and rectify ∆δ if τmin < τl by the
following equation:

∆δ′
= ∆δ · τl/τmin (11)

With several iterations (usually less than three in our test
examples), the final geodesic interval ∆δ is determined satisfying
both requirements. Below we summarize the entire curved layer
decomposition process for a given solid model Ω with a flat
bottom contour l0.

3. Multi-axis printing path generation

Once the freeform solid model Ω is decomposed into sequen-
tial curved layers, each layer of the part should be eventually
filled with filament by the printing nozzle along a specified tra-
jectory. Controlling the width of deposition in its fused state is
not an easy task; therefore, the step-over distance of printing
path should be a constant, which is the primary regulation for
path generation. On the other hand, since the layer thickness is
variable due to the way we decompose the model, the material
deposition should synchronize with the feed rate f of the nozzle
to achieve variable thickness deposition. For example, upon a
steady material depositing rate d0, the feed rate needs to be
inversely proportional to the local thickness so as to guarantee
a correct deposition. Due to this consideration, sharp turnings
on the printing path would lead to constant acceleration and
deceleration of the nozzle, making it hard to control the feed
rate. Therefore, a smooth path is desired, which is the second
requirement for path generation.

According to these requirements, the widely adopted
direction-parallel path may not be qualified in this specific task.
Alternatively, we employ the well-known pattern of contour-
parallel curves to facilitate our path generation, which maintains
a constant step-over distance between adjacent iso-contours on
the surface layer. Specifically, for each layer consisting of meshed
triangles, the geodesic distance field with respect to the boundary
contour is constructed based on the MMP method (see Fig. 13(b)),
which is similar to the computation of SCGDF in Section 2.1,
except that the bottom layer l0 now becomes the boundary curve.
The level-set contours induced from this geodesic field are exactly
the desired trajectory for fabricating the layer.

An intuitive choice for nozzle orientation along the path seems
to be the one aligned with the surface normal, which works
perfectly for the inner part of the layer. However, when the
upper layer is overhanging over the one beneath (see Fig. 14),
faulty deposition is likely to occur around the layer boundary
if the nozzle orientation is still fixed along the surface normal
of the layer. To ensure a stable deposition, for each point q on
the path in layer li+1, we search for the closest point q′ in the
lower layer li such that the vector formed by these two points

−⇀
q′q

identifies the nozzle orientation at q. This strategy automatically
adapts the orientation to the surface normal when there is no
overhanging feature, while inclining the nozzle when there is.
Once the nozzle orientation is determined for every point on the
path, a moving average filter is applied to smooth the orientation
vectors. Specifically, for each nozzle orientation vector, we take
out its previous and the following two vectors and project them
onto a Gaussian sphere, as shown in Fig. 15. The centroid of the
pentagon formed by these five points is calculated and taken
to be the final orientation. Fig. 16 demonstrates this smoothing
operation, which is essential and highly effective in improving the
dynamic performance of multi-axis printing.

Once the trajectory as well as the nozzle orientations is all
settled, the volume of the deposited material per unit time needs
to be cautiously synchronized along with the nozzle’s movement,
accounting for the fact that the layer thickness is no longer uni-
form but variable. This volumetric rate is defined as the Material
Depositing Rate (MDR), akin to the material removal rate (MRR)
in machining process. In traditional 2.5-axis fabrication, the MDR
is normally a fixed constant. However, in multi-axis printing, a
properly assigned MDR along the path can effectively reduce the
level of porosity and enhance the mechanical properties of the
part. In FDM, the MDR is fully controlled by the material feed
rate f m assigned to the feeder, as shown in Fig. 17. Suppose the
desired layer thickness at a particular point qi along the nozzle
trajectory is τi, which is the shortest distance to the previous
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Fig. 12. Determination of the initial geodesic interval.

Fig. 13. Contour-parallel path generation based on the geodesic distance field of the curved layer.

Fig. 14. Faulty deposition on the overhanging layer.

Fig. 15. Orientation smoothing via a moving average filter.

layer, and the step-over of the path is a constant sd; the follow-
ing volume conservation should be satisfied in order to make a
proper deposition:

f mi πr2m = sdτifi (12)

where rm is the radius of the filament, fi is the assigned feed rate
of the nozzle at qi. The computation of the layer thickness τi at
qi is as simple as to calculate the minimum distance between qi
and the previous surface layer. Accordingly, the variable material
feed rate f m can be numerically computed for each point of the
path.

It needs to be reiterated that the minimum thickness of each
decomposed layer is satisfied after calling Procedure Curved_
Layer_Decomposition. However, though rare, there is chance
that the layer thickness could exceed the upper bound τu (i.e. in
our case τu = sd), which violates the Rq2 in Section 2. Even though
the material deposition volume is controllable by adjusting the
material feed rate f m, the final shape of the fused material is hard
to preserve once the layer thickness is too large. To cope with this
issue, we further rectified the fabricating process by dividing the
unqualified layer into multiple sub-layers, as depicted in Fig. 18.
For the example demonstrated in Fig. 18, the layer is eventually
divided into two sub-layers whose thickness satisfies Rq2. In prac-
tice, instead of making additional layer decomposition, we rectify
the material feed rate f m of the path to achieve controllable
material deposition. For the case in Fig. 18, it essentially needs
two rounds of fabrication to sequentially construct sub-layer1
and sub-layer2, with rectified material feed rate accordingly to
each printing path. Fig. 18(c) shows the stacking two-layer paths
for fabricating one curved layer with varying but qualified f m.
Note that this case is extremely rare in the testing models to be
demonstrated later, as most decomposed layers by our algorithm
still exhibit controllable thickness.

By now, we have described, for each curved layer, how to
generate a complete printing path consisting of the nozzle trajec-
tory, the nozzle orientation, and the proper MDR along the path.
Once the printing path is generated, a post-processing module
developed by us converts the path to an improved G*-code dedi-
cated specifically for the fabrication of non-uniform curved layers.
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Fig. 16. Example of a printing path and the smoothed nozzle orientation vectors.

Fig. 17. The material depositing rate.

In this new G*-code format, each main command line consists
of three parts: the first three entries indicate the position of
nozzle; the next three entries represent the orientation of nozzle
represented in the rotation vector form, and the last one indicates
the accumulated feed value Ej =

∑j
i=1 f

m
i , which is determined

by the variable material feed rate f m according to Eq. (12). Fig. 19
shows a snippet of our G-code*.

Together with the procedure Curved_Layer_Decomposition
to generate a suitable set of curved layers, we are now ready
to present our final process planning algorithm for multi-axis
printing of an arbitrary solid model Ω with a prescribed base
contour l0, as follows.

Step 1. Call procedure Curved_Layer_Decomposition to gen-
erate a set of curved layers {S0, S1, . . . , Sn} that are ordered on
the δ∗ values of their iso-contours.

Step 2. For each Si, generate a complete multi-axis printing
path made of the nozzle trajectory, the nozzle orientation, and
the proper MDR along the path.

Step 3. Starting from S0, executing the printing path, one
by one, until the last one Sn. In case there are two (or more)
consecutive layers Si and Si+1 that have the same δ∗ value, their
execution order is arbitrary.

4. Results and discussion

The proposed curved layer decomposition as well as the multi-
axis printing path generation algorithms has been implemented
by us in MATLAB. In addition, for the purpose of physical vali-
dation of the proposed algorithms, a prototype multi-axis FDM
hardware system is also developed, which integrates a FDM ex-
truder located on an X–Y table with a 6-DOF UR5 robotic arm
on which the printing bed is mounted. While the total DOF of
the system is redundant, the five-axis printing motion defined
in the workpiece frame is decoupled into X–Y–Z motions and
rotary motions which are synchronized to realize the physical
fabrication. The X–Y translational motions are controlled by the
X–Y table, while the robotic arm is responsible for the Z motions
and the rotary motions. A robotic operation system (ROS) is em-
ployed to control and realize the synchronization of all the axes to
enable continuous printing for layers with variable thickness. The
G*-code is pre-processed and transformed to the corresponding
machine commands and distributed to the Marlin firmware and
UR5 controller during each time cycle (see Fig. 20 for detailed
architecture of the prototype system).

According to the aperture of our nozzle whose diameter is
1 mm, the step-over distance of the printing path sd is set to
1 mm as default, while the initial layer thickness τ0 is set to
0.5 mm. The Stanford Bunny, the Kitten, a multi-branch model
and a genus-one model are selected as representative models for
testing. Shown in Figs. 21 to 24 are respectively the corresponding
curved layer decomposition and the printing path of each testing
model. For the multi-branch and the genus-one model, we have
further performed physical printing on our prototype multi-axis
printer using the generated printing path and the fabricated parts
are shown in Figs. 25 and 26. It is plausible to note that both
models would require a large volume of support structure on a
3-axis printer, or even a 3+2-axis printer. But on a five-axis

Fig. 18. Rectification of one layer process with excessive thickness: (a) original layer; (b) rectified sub-layers with controllable thickness; (c) an example of one layer
fabrication consisting of two layers of printing paths.
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Fig. 19. A snippet of our G*-code for fabricating non-uniform curved layers.

Fig. 20. A prototype multi-axis FDM system.

Fig. 21. Simulation results of the Stanford Bunny model: (a) the iso-contours, (b) the curved layers and (c) the accumulated printing path (trajectory only).

Fig. 22. Simulation results of the Kitten model.

printer using our process planning algorithm, they can be suc-
cessfully fabricated without any support structure.

In Table 1, we give the model complexity as well as the com-
puting time of our tests on a desktop PC (i7 6770k, 8 GB ram). It is
noted that nearly two thirds of the total computing cost is spent
on the layer decomposition process, which takes up to 693 s for
handling a mesh model with over 104 facets. It should be clarified
that the most time consuming process in our layer decomposition

is actually the calculation of thickness between two consecutive
layers. Since no special data structure is utilized in this proof-of-
concept implementation, the time complexity for computing the
minimum distance between two layers is theoretically o(n2) using
brutal force, which is also confirmed by the data in Table 1.

Finally, to prove that the proposed curved layer decomposition
scheme can substantially reduce the need of support structure
(if not completely eradicated), we analyze the HT ratio for each
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Fig. 23. Simulation results of the multi-branch model.

Fig. 24. Simulation results of the genus-one model.

Fig. 25. Physical fabrication of the multi-branch model.

Fig. 26. Physical fabrication of the genus-one model.

Table 1
Computing statistics of the proposed algorithms on the testing models.
Model Number of

facets
Time for curved layer
decomposition (s)

Time for printing
path generation (s)

Bunny 13 000 693 208
Kitten 8 260 310 106
Multi-branch 6 496 157 61
Genus-one 4 170 85 64

decomposed layer and compare the result with the conventional
planar layer decomposition with the same total number of layers,
as given in Fig. 27. Note that the HT ratio as derived in Sec-
tion 2 directly reflects the need of support structure during the
fabricating process. It can be observed in Fig. 27 that the HT ratio

distribution of curved layers is successfully allocated inside an
acceptable range (δH/τ < 1.5), except for the Kitten model which
will be explained later, while the HT ratio for planar layers can
be as large as 4 (see the Bunny case), which obviously needs
support structure prior to the fabrication. The outcome of HT ratio
distribution indicates the effectiveness of our proposed curved
layer decomposition scheme, which largely avoids the need of
support structure when fabricating complex models. There is one
exception for the Kitten case that the HT ratio seems to exceed
the threshold. A preliminary explanation is that the Kitten model
is of non-zero genus and with drastic change of curvature. We
will further investigate this issue and see if a variant of the
proposed scheme can handle such case.
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Fig. 27. The histograms showing the HT ratio of the four examples using the curved layer and planar layer decomposition.

5. Conclusion and future work

By taking advantage of the multi-axis printing configuration,
we have proposed a general process planning scheme for five-
axis fabrication of freeform solids, based on the principle of
curved layer decomposition. The core of the proposed scheme
is the establishment of the geodesics on surface, from which
well-defined and non-intersecting iso-geodesic contours can be
extracted. These contours are then filled with triangles with the
minimized Dirichlet energy to form curved surface layers of a
natural shape. With a contour-parallel printing path generated
on each layer and following the strict increasing order of iso-
geodesics to print the layers, an entire multi-axis fabricating
process is fully determined.

There are two potential limitations of the current scheme.
First, and most critically, is the potential local interference when
fabricating the curved layers (see Fig. 28(a)). The convexity of
surface layers is not guaranteed since they are purely constructed
based on the Harmonic mapping principle. While the iso-contours
as well as its internal surface layer are deterministically con-
structed, local interference may happen due to the concavity
feature of the later constructed surface layer. The chance of this
glitch increases at those areas where the curvature of the model
profile changes drastically, leading to twisted iso-contours and
hence curvy surface layers. This issue can be alleviated by adopt-
ing a slender nozzle head, while a better resolution by devising a
convexity-preserved surface layer construction algorithm will be
our next target.

The second limitation of the proposed strategy is the low pro-
ductivity encountered during the physical printing experiments.
As the decomposed layers are non-planar, nozzle orientation
keeps changing along its working trajectory when fabricating
each layer. This constant change of orientation tremendously
increases the overall processing time. There are two proposals to
handle this issue. The first one is to incorporate more advanced
path smoothing scheme into the printing path generation stage,
such as the one from our early work [31]. A smoothed multi-
axis path leads to a better execution of the machine axes, and
hence a shorter time. The other idea is to roughly decompose
the model into curved layers, find an adequate build direction
for the intermediate part between two consecutive layers, and
further decompose this part into planar layers along this fixed
build direction. We will conduct more exploration into this in the
future.

Fig. 28. Illustration of local interference between the nozzle and the part.
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