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Abstract We introduce a framework for modeling of het-
erogeneous objects in terms of trivariate B-spline functions
and a method for slicing them directly for additive manu-
facturing. We first fit volumetric attribute data associated
with the geometry in terms of trivariate B-spline functions
under the assumption that the geometric volume is already
defined by the trivariate B-spline functions. Then, the B-
spline volume and the associated attribute data are directly
sliced without converting them to stereo-lithography format,
resulting in a tool path with fewer errors. Furthermore, adap-
tive ray shooting is introduced in the slicing plane so that the
zigzag tool path passes through all the tangential intersec-
tion points of the heterogeneous objects to represent all the
feature points in the fabricated model. Complex examples
illustrate the effectiveness of our method.

Keywords Additive manufacturing · Direct slicing ·
Trivariate B-spline function · Heterogeneous object

1 Introduction

The stereo-lithography (STL) format, which defines a tes-
sellated CAD model in terms of Cartesian coordinates of
the vertices of triangles and their unit normals, is the
most commonly used file format in additive manufacturing
(AM) [35]. Since the representation is linear, computation
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is easy and fast; however, it fails to accurately describe the
nonlinear freeform geometry.

Furthermore, the conversion process from the B-spline
CAD model to the tessellated model may induce unneces-
sary additional artifacts and may result in a large number
of triangles that represent the small features in the original
model [35]. Therefore, it is inadequate to approximate CAD
models that contain freeform surfaces by triangular mesh,
as the conversion process not only induces approximation
errors, but also sacrifices the geometric and topological fea-
tures that the original data possess. Additional errors are
induced when the tessellated CAD models are sliced by
planes to generate the tool path for AM machines. To over-
come these defects of STL data, one needs to introduce
direct slicing of the input CAD model without converting it
to the tessellated model [12].

There is a new AM file format, additive manufactur-
ing file (AMF) format, which can express heterogeneous
object representation for AM processes. According to the
document by ASTM [1], AMF format is able to represent
smooth geometry using curved triangular patches. However,
Paul and Anand [30] say that while generating the slices
for manufacturing the part, the curved triangles used in
AMF format are recursively subdivided back to planar trian-
gles, and hence may lead to the same approximation errors
presented in the STL file format.

Nevertheless, research on direct slicing of heterogeneous
objects has not been conducted in the past. We consider
two types of heterogeneous object design. The first type is
a functionally gradient material (FGM) object in which dif-
ferent portions of the material do not have a clear boundary
[10, 26, 32]. In FGM design, the variation in the compo-
sition and structure of the material inside the volume is
determined using specific functions to change the material
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properties. The second is a multi-material (MM) object that
is constructed by pieces of different materials with a clear
boundary between them [10, 26, 32].

In this paper, we consider the abovementioned two types
of heterogeneous object design when the specific function
is a distance function from the boundary of the B-spline
geometric volume. We introduce a novel method to model
heterogeneous data by fitting volumetric attribute data by
trivariate B-spline functions under the assumption that the
geometric volume is already defined in terms of trivariate B-
spline functions. We then slice the heterogeneous B-spline
volume directly by ray shooting without converting it to a
tessellated model to generate the adaptive zigzag tool path
for AM machines.

The main contributions of this study are summarized as
follows:

– A fast volumetric attribute data fitting in terms of
trivariate B-spline functions based on iterative fitting
method is introduced to construct a heterogeneous
model.

– An adaptive direct slicing method is introduced so that
the tool path passes through all the feature points of
heterogeneous objects within the slicing plane.

– Most importantly, it brings together all these techniques
into a robust procedure for the automatic generation of
a tool path for heterogeneous objects.

This paper is organized as follows: In Section 2,
we define the B-spline volume for geometries as well
for attribute data. In Section 3, a volume approximation
method based on iterative fitting algorithm is developed. In
Section 4, adaptive direct slicing is introduced so that the
tool path passes through all the feature points within the
slice of heterogeneous objects. In Section 5, we demonstrate
the effectiveness of the algorithms using some complex
examples. Finally, we conclude the paper in Section 6.

2 Notation of B-spline volumes

In representing curves, surfaces, and volumes, B-spline
/nonuniform rational B-splines (NURBS) have become the
de facto industry standard for representing complex geomet-
ric information in the CAD/CAM/CAE field [31]. In this
section, we define the B-spline volume for the geometry in
Section 2.1, whereas that of the attribute data is defined in
Section 2.2.

2.1 B-spline volumetric geometry model

Let us first introduce the notation used in the remainder
of the paper. An order K̄ B-spline is formed by joining
several pieces of polynomials of degree K̄ − 1 with at

most CK̄−2 continuity at the breakpoints [29, 31]. A set of
non-descending breakpoints t0 ≤ t1 ≤ . . . ≤ tr defines a
knot vector

T = (t0, t1, . . . , tr ) , (1)

which determines the parameterization of the basis func-
tions.

Given a knot vector T, the associated B-spline basis
functions Ni,K̄ (t) are defined as

Ni,1(t) =
{
1 for ti ≤ t < ti+1

0 otherwise ,
(2)

for K̄ = 1, and

Ni,K̄ (t) = t − ti

ti+K̄−1 − ti
Ni,K̄−1(t)

+ ti+K̄ − t

ti+K̄ − ti+1
Ni+1,K̄−1(t) , (3)

for K̄ > 1 and i = 0, 1, . . . , r − K̄ .
An order (K̄, L̄, M̄) B-spline volume is a tensor prod-

uct volume defined by a topologically rectangular paral-
lelepiped set of control points (Pijk ∈ R3, i = 0, . . . , nu,
j = 0, . . . , nv , and k = 0, . . . , nw) and three knot vec-
tors (ū = (ū0, ū1, . . . ūnu+K̄ ), v̄ = (v̄0, v̄1, . . . , v̄nv+L̄), and
w̄ = (w̄0, w̄1, . . . , w̄nw+M̄ )) associated with each param-
eter u, v, and w, respectively. The corresponding integral
B-spline volumetric geometry model is given by

V(u, v, w) =
nu,nv,nw∑
i,j,k=0

PijkNi,K̄ (u)Nj,L̄(v)Nk,M̄ (w) . (4)

2.2 B-spline volumetric attribute model

We assume that we are given the geometry of the volume
and the attribute data (xl , al), where xl ∈ R3, l = 0, . . . , N
are points within the volume and al ∈ Rn are attribute data
associated with xl , as shown in Fig. 1a. First, we find the
parameter values (ul, vl, wl) corresponding to xl , as shown
in Fig. 1b, by solving the simultaneous 3 × 3 nonlinear
equations:

V(ul, vl, wl) = xl , (5)

which are based on Eq. 4 using Newton’s method. The
attribute model is a graph function, where the parameters
(ul, vl, wl) are the abscissae and al are the ordinates. There-
fore, the orders and knot vectors of the attribute model can
be different from those of the geometry model, as long
as they share the same parameter values within the vol-
ume. In other words, a simple geometry with complicated
attributes, and vice versa, can be modeled with the desired
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Fig. 1 B-spline volume for the attribute model. a Input data (xl , al )

within the geometry. b Parameterization of input data xl . c Approx-
imated attribute data by the trivariate B-spline function. d Attribute
B-spline volume mapped to the geometry model

accuracy. An order (K, L, M) trivariate B-spline attribute
model A(u, v, w) can be expressed as

A(u, v, w) =
mu,mv,mw∑

i,j,k=0

AijkNi,K(u)Nj,L(v)Nk,M(w),

= (A1(u, v, w), . . . , An(u, v, w)) , (6)

where Aijk ∈ Rn, i = 0, . . . , mu, j = 0, . . . , mv , k =
0, . . . , mw are the B-spline ordinates and u = (u0, u1,
. . . , umu+K), v = (v0, v1, . . . , vmv+L), and w = (w0, w1,
. . . , wmw+M) are the three knot vectors associated with each
parameter u, v, and w, respectively. We emphasize here
that Aijk are not the control points but the B-spline ordi-
nates. Finally, we fit (ul, vl, wl, al ) using (6), as illustrated
in Fig. 1c. Once the data are fit, we map them onto the
geometry space (see Fig. 1d).

3 Fitting of volumetric attribute data

In this section, we study the construction of a B-spline vol-
ume from scientific volume data associated with the geom-
etry using modeling and iterative fitting techniques. We
distinguish between two types of volume fitting: geometry
model fitting and attribute model fitting [25, 28]. Geometry
fitting first associates suitable parameter values (ul, vl, wl)

for each input point xl ∈ R3 within the volume, known as
parameterization of data, and outputs control points that rep-
resent the geometry, whereas attribute data fitting accepts
the attribute data al ∈ Rn associated with the geometric
points, i.e., (xl , al), and generates B-spline ordinates of a

graph function whose abscissae are (ul, vl, wl). Note that
the attribute model shares the same parameter values with
the geometry model, as shown in Fig. 1.

3.1 Related work

Volume fitting is an important problem in many fields,
including additive manufacturing of functionally gradient
materials [14, 19], isogeometric analysis (IGA) [11], and
visualization of measured or computed scientific data [28].
There are many advantages associated with attribute vol-
ume fitting, namely, storage reduction, fast execution, noise
reduction, and robust visualization [24]. Standard B-spline
surface fitting algorithms first conduct a parameterization
of data and form a linear system with control points as
unknowns. Recently, in contrast to the standard surface fit-
ting methods, iterative fitting methods that do not require
the solution of a linear system have received attention [2, 6,
15, 16, 18, 22, 37]. These methods employ a surprisingly
simple geometric-based algorithm that iteratively updates
the control points in a global manner based on a local
parameter distance [18, 37] or a point surface distance [16,
22]. In contrast to research on curve/surface fitting by uni-
variate/bivariate B-spline functions, research on volumetric
data fitting by trivariate B-spline functions is not yet so
widespread, despite its necessity.

Because our focus is on research on volumetric attribute
data fitting, we first briefly review the research on vol-
umetric geometry fitting and continue with a review of
volumetric attribute data fitting. Martin et al. [23] proposed
a method to fit a single trivariate B-spline on the basis
of discrete volumetric harmonic functions to parameterize
a volumetric model from input genus-0 triangle meshes.
The method guarantees that the slices defining the B-
spline do not overlap and only have degeneracies along the
skeleton.

Given six boundary B-spline surfaces, Wang and Qian
[36] presented a method to automatically construct a trivari-
ate tensor-product B-spline volume via a gradient-based
optimization approach. The internal control points are deter-
mined such that the resulting trivariate B-spline solid is valid
in the sense that the minimal Jacobian of the solid is posi-
tive. The above two papers also provide many examples of
a diverse set of applications in IGA. The readers should also
refer to the references therein.

In the following, we review the research on volumetric
attribute fitting. Park and Lee [28] conducted a pioneering
work on a flow visualization model based on a trivariate
NURBS representation. However, they used the same knot
vectors for geometries and attributes, which restricts the
representation of attributes.

On the other hand, Martin and Cohen [25] introduced
a mathematical framework for representing the geometries
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and attributes independently by using different trivariate
volumes. In other words, the order, the dimensions of the
control mesh, and the knot vectors are independent, except
that they share the same parametric domain. However, no
examples were provided to demonstrate the effectiveness of
the mathematical framework.

Liu et al. [19] presented a parametric and feature-based
methodology for the design of solids with local composi-
tion control (LCC). The identified LCC features are those
based on volume, transition, pattern, and (user-defined) sur-
face features. The material composition functions include
functions parameterized with respect to the distance or
the distances to user-defined geometric features and func-
tions that use Laplace’s equation to smoothly blend various
boundary conditions including the values and gradients of
the material composition on the boundaries.

Yang and Qian [38] introduced a modeling method
termed heterogeneous lofting, where heterogeneous profile
surfaces are lofted to generate a heterogeneous volume. In
their work, they used the same order and knot vectors for the
geometry and attribute; accordingly, the attribute represen-
tation is limited. Moreover, the lofting technique is simple
to formulate, but it is quite difficult to implement a robust
and usable lofting capability and often requires a tedious
and iterative process [31].

Kineri et al. [15] introduced an iterative geometric
approximation method for fitting a point cloud in terms of
B-spline surfaces by iteratively repositioning the B-spline’s
control points on the basis of simple geometrical rules.
Lin et al. [17] developed the volumetric geometry approx-
imation. Given a tetrahedral mesh model, Lin et al. [17]
partitioned the model surface into six boundary triangular
mesh patches that intersect at twelve boundary curves and
eight corners. On the basis of this partition, they developed
a discrete volume parameterization method and an iterative
algorithm for fitting a tetrahedral mesh model with a B-
spline solid. The iterative fitting algorithm starts with an
initial B-spline base solid, and then it inserts the knots iter-
atively if the error norm does not become small enough in
some regions.

We extend the method by [17] to the fitting of volumetric
attribute data, which provides a fast and robust procedure
for the automatic generation of trivariate B-spline attribute
volumes.

3.2 Generation of accurate data for fitting

First, we compute the discrete offset surfaces from the
object boundary toward the inside of the volume using the
fast marching method (FMM) [34, 39] to bypass the local
and global self-intersection problems [21]. The FMM gen-
erates offsets via wavefront propagation on a 3D grid with

a resolution chosen according to the desired accuracy, as
illustrated in Fig. 2a, b using a 2D model. In the FMM, the
moving front is restricted to movement in the same direction
by using only the upwind values.

Second, we determine the exact locations of the offset
points with a constant distance d from the boundary, as the
accuracy of the FMM is dependent on the voxel size. As
shown in Fig. 2c∼e, we compute the closest point R(0) on
the boundary surface from the centroid of the offset voxel
Q(0) using Newton’s method and adjust the length of the
vector Q(1) − R(0) so that it will become d. When Q(0) is
close to a self-intersection point/curve, the closest pointR(1)

computed from Q(1) may not coincide with R(0). In such
cases, we repeat these processes until the closest point does
not move. If the point does not converge, we simply remove
the point from approximation. Third, we assign the attribute
data to the points with the constant di for i=1, . . . ,h layers
(see Fig. 2f). In this way, we can design an accurate distri-
bution of the attribute data within the volume, which will be
fit in the downstream process.

3.3 Iterative fitting method

The volumetric attribute data approximation algorithm takes
a set of attribute data al associated with data points xl ,
l = 0, . . . , N as an input and generates a B-spline volume
that approximates the attribute data. The base volume can
start from a Bézier volume, i.e., a B-spline volume without
internal knots; however, one can start from several internal
knots placed at places with large changes, depending on the
complexity of the attribute data. One might expect that start-
ing with a relatively large number of initial internal knots
yields a faster convergence, but this often leads to unnec-
essary degrees of freedom that may not contribute to the
overall minimization of the error.

The error vector is defined as the difference vector
between the attribute data and the corresponding ordinates
evaluated at (ul, vl, wl) for each data point as follows:

e(α)
l = al − A(α)(ul, vl, wl) , (7)

where the superscript (α) denotes the αth iteration and

A(α)(u, v, w) =
mu,mv,mw∑

i,j,k=0

A(α)
ijkNi,K(u)Nj,L(v)Nk,M(w) .

(8)

We note here that attribute data fitting, unlike geomet-
ric surface fitting [15], does not require the computation
of the closest point on the volume, leading to faster com-
putation. At the parameter values (ul, vl, wl)(up ≤ ul <

up+1, vq ≤ vl < vq+1, wr ≤ wl < wr+1) corresponding to
the input point xl , there are K × L × M nonzero multiples
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Fig. 2 Attribute data
generation. a Two-dimensional
voxel generation. b
Two-dimensional voxels at a
distance d from the boundary
curve. c Relocation of the offset
points. d Relocation of the offset
points. e Corrected data points. f
Final results for all distances

(a) (b)

(c) (d)

(e) (f)

of the basis functions Ni,K(ul)Nj,L(vl) Nk,M(wl), i =
p − K + 1, . . . , p, j = q − L + 1, . . . , q, k = r −
M + 1, . . . , r . As B-spline volumes are defined as a lin-
ear combination of B-spline ordinates and B-spline basis
functions (see (8)), the multiple of the basis functions
Ni,K(u)Nj,L(v)Nk,K(w) is associated with the B-spline

ordinates A(α)
ijk . Accordingly, we can distribute the error

vector e(α)
l to the B-spline ordinates A(α)

ijk , i = p − K +
1, . . . , p, j = q −L+1, . . . , q, k = r −M +1, . . . , r with
weights Ni,K(u)Nj,L(v)Nk,M(w).

The overall algorithm for repositioning the B-spline ordi-
nates for the αth iteration is described in Algorithm 1 in
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Appendix 1. The (α + 1)th B-spline volumetric attribute
model is given by

A(α+1)(u, v, w) =
mu,mv,mw∑

i,j,k=0

(A(α)
ijk

+�
(α)
ijk )Ni,K(u)Nj,L(v)Nk,M(w) , (9)

where �
(α)
ijk are the repositioning vectors in the αth iteration

given by

�
(α)
ijk =

∑
l∈Iijk

ω
ijk
l e(α)

l , (10)

where Iijk denotes the set of ordinates al that contribute to

the repositioning vector �
(α)
ijk , and the weight ω

ijk
l is defined

by

ω
ijk
l = Ni,K(ul)Nj,L(vl)Nk,M(wl)

Wden[i][j ][k] , (11)

which is similar to [15, 17]. The denominator of Eq. 11,
Wden[i][j ][k], is defined in Algorithm 1.

We repeat steps 1 to 17 of Algorithm 1 until the aver-
age and the maximum of the norm of the error vector e(α)

l ,
l = 0, ..., N become smaller than the prescribed average
and maximum tolerances εavg% and εmax%, respectively,
with respect to the difference between the maximum and
the minimum values of the input attribute data. Note that,
in Algorithm 1, the superscripts (α) of the parameter val-
ues (ul, vl, wl) are omitted for simplicity. If the error norm
does not become small enough in some regions, a knot is
inserted in these locations in all of the u, v, andw directions.
The increase in the number of B-spline ordinates provides
an increase in the degrees of freedom of the volume, result-
ing in the reduction of local errors. During the error norm
check, row lu, column lv , and layer lw of the spans that have
the greatest sum of errors are determined. A knot is then
inserted in the middle of the span (lu, lv, lw) in all of the
u, v, and w directions. In most of our examples, a knot is
inserted in all u, v, and w after every 5 ∼ 10 iterations. To

Table 1 Approximation of the volumetric attribute data of the
tooth model by the standard and iterative fitting methods with
(εavg, εmax) = (0.3 %, 3.0 %)

Method # of ctrl pts Iteration Time (s)

Standard 19 × 19 × 19 13 37.536

Iterative fitting 19 × 19 × 19 241 13.809

limit the total number of internal knots, one can define an
upper limit for the number of knots in each direction. The
proof of convergence is given in Appendix 2. Figure 3 shows
the geometry model, the color-coded input data based on the
distance function, and the fitted result of the tooth model,
respectively.

3.4 Comparison with the standard fitting method

We compared our iterative fitting algorithm with the stan-
dard fitting method [31] with an example that was computed
on a PC with an Intel Core i7-3770 (3.40 GHz) processor
and 8.00 GB of RAM. The linear system of the standard
fitting methods is solved by CSparse [5].

We first generated the attribute volume data on the basis
of the distance function from the boundary of the tooth
model as a specific function for trivariate B-spline fitting,
as described in Section 3.2. We fit the data within the tooth
model with 170,366 points by an order (4, 4, 4) trivariate
B-spline function starting with the knot vectors u = v =
w = (0,0,0,0,0.25,0.5,0.75,1,1,1,1) by the standard fitting
algorithm as well as by the iterative fitting method.

Two pairs of tolerances, (εavg, εmax)=(0.3 %, 3.0 %) and
(0.2%, 2.0%), respectively, were used to terminate the com-
putation. The computational results of the volume approxi-
mation by the standard fittingmethod and the iterative fitting
method are shown in Tables 1 and 2, respectively. We can
see that the number of control points increased by 2.87 times
more as the prescribed tolerances became slightly tighter. In

(a) (b) (c)
Fig. 3 Fitting of the volumetric attribute data of a tooth model. a Geometry model. b Color-coded input data based on the distance function. c
Fitted result
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Table 2 Approximation of the volumetric attribute data of the
tooth model by the standard and iterative fitting methods with
(εavg, εmax) = (0.2 %, 2.0 %)

Method # of ctrl pts Iteration Time (s)

Standard 27 × 27 × 27 21 237.676

Iterative fitting 27 × 27 × 27 408 22.645

the following, we explain why it took so many control points
to fit the data. Figure 4 visualizes the hypersurface of the fit-
ted attribute data of the tooth model near the maximum error
point (yellow point) at (u, v, w) = (0.644,0.585,0.588) with
εmax = 1.995 %) for the tolerance (0.2 %, 2.0 %) through
the isoparametric surface obtained by fixing the parameter
v = 0.585. Furthermore, we employed normal mapping,
where the x, y, z components of the surface normal corre-
spond to the RGB components in Fig. 4 to emphasize the
ridges on the isoparametric surface. The maximum error
point was found on the ridge curve where B-spline func-
tions require many control points in representing ridges.
Therefore, there is a tradeoff between accuracy and storage
reduction when sharp features exist in the data.

Figure 5 shows the computational time versus the maxi-
mum error for the tooth model. It can be clearly seen that the
iterative fitting quickly reached a coarse fit, and we can pro-
gressively obtain a finer fit by performing more iterations.
In general, our method is faster than the standard method,
which can be explained by the following reasons. Whenever
knots are inserted, the standard method requires the solu-
tion of a linear system, which takes between one and two
orders of magnitude more than the computation of the repo-
sitioning vectors. Although the number of iterations for the
standard method is an order of magnitude smaller than that
for our method, in total, the computational time becomes
slower.

(a)

(b)

Fig. 5 Computational time versus maximum error for the iterative
fitting and standard fitting methods. a εmax = 3.0 %. b εmax = 2.0 %

4 Adaptive direct slicing

4.1 Related work

To overcome the defects of STL data, Jamieson and Hacker
[12] introduced a method to directly slice the input CAD
model by consecutively calling the function of Parasolid,

Fig. 4 Visualization of the fitted
attribute data of the tooth model
near the maximum error point
(yellow point). The hypersurface
is visualized through the
isoparametric surface by fixing
the parameter v. Normal
mapping is used to emphasize
the ridges on the surface

(a) (b)
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Fig. 6 Ray-object intersection

which is the solid modeling kernel of Unigraphics, for each
slice. Ma et al. [20] employed a NURBS-based adaptive
slicing strategy so that a variable layer thickness based on
the local surface geometry is generated in a Unigraphics
software environment. Starly [35] employed a direct slic-
ing method to scaffolds of complex shape used in tissue
engineering applications where direct slicing is more advan-
tageous than the traditional indirect slicing method. The
direct slice is obtained by casting parallel rays, which lie
in the slicing plane, into the object. The intersection points
are obtained using the bisection iteration routine, which is
a local solution method and is a relatively slow root-finding
method.

Martin et al. [24] presented an isosurface visualiza-
tion technique for attribute data defined on (un)structured
(curvi)linear hexahedral grids by combining subdivision
and numerical root finding.

As in Starly et al. [35], we employed a ray-tracing
method to obtain the tool path. Once the slicing plane is
determined, a ray on the plane is cast one by one into
the object to find the transversal as well as the tangential
intersection points with the outer geometry and the inner
attribute data as illustrated in Fig. 6. The interval between
rays are adaptively determined to reflect the feature points
of the attribute data robustly, as shown in Fig. 9.

4.2 AM techniques for FGM and MM objects

Up to now, we have focused our discussions on the con-
struction of FGM objects by the iterative fitting method;
however, we have not yet discussed any AM techniques for
this research. Recently, Gao et al. [9] provided an excellent
review of AM techniques, and readers should refer to the
references therein.

AM techniques such as stereolithography and inkjet
binder printing are able to print FGM objects continuously
by adjusting the laser power [33] and density of the binder
[19], respectively. On the other hand, AM techniques such
as fused deposition modeling (FDM) cannot print FGM
objects continuously. In such cases, the FGM objects are
discretized into a set of slowly varying nM constant materi-
als with a clear boundary between them, which we call dis-
crete FGM (DFGM) objects as illustrated in Fig. 7. DFGM
objects can be printed by FDM machines equipped with a
multitool station of a CNC machine [27]. Figure 8 illus-
trates the multi-tool station of ejecting nozzles where each
nozzle ejects different material. Printing of MM objects is
similar to printing of DFGM objects except that the material
properties can be very different across the boundaries.

Our algorithm is independent of AM techniques, and we
hope that the readers of this paper can customize our algo-
rithm to their own AM techniques. In this paper, we apply
our algorithm to FGM, DFGM, and MM objects.

4.3 Ray object intersection

In this section and in the following Section 4.4, we exam-
ine how to determine the tool path on the slicing plane.
Although there exists a more sophisticated layer-based path
planning design, which uses a bi-layer pattern of radial and
spiral layers consecutively to generate functionally gradient
porosity [14], we employ zigzag tool path pattern for sim-
plicity as it is not the focus of this paper. As illustrated in
Fig. 9b, rays must pass through the feature points of the
outer geometry of the object as well as through those of the

(a) (b) (c) (d)

Fig. 7 Direct slicing of the tooth model. a Slicing plane. b FGM object-based tool path. c DFGM object-based tool path. dMM object-based tool
path
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Fig. 8 Illustration of multi-tool station of ejecting nozzles

attribute data of the DFGM and MM objects tangentially to
reflect all the features robustly onto the printed model.

To determine the tool path for FGM objects, we first
compute the ray-object tangential intersection points and
then adjust the horizontal path intervals so that the feature
points are reflected on the tool path. Once the path inter-
vals are determined, the ray-object transversal intersection
points are computed to determine the entry and exit points.
The attribute data values can be easily evaluated by lin-
early interpolating the coordinate values of the entry and
exit points, and then finding the corresponding parameter
values using Eq. 5, and substituting them into Eq. 6.

In addition to the above computations, ray-(attribute
data) tangential and transversal intersection points are com-
puted for DFGM and MM objects, which will be studied in
Section 4.4.

4.3.1 Tangential intersection points

Without loss of generality, we assume that the orientation
of the object is already determined and that the slicing
direction is perpendicular to the z-axis, and, hence, the
xy-plane is parallel to the slicing plane. Accordingly, the
equation of the slicing plane is z = constant. We fur-
ther assume that a variable layer thickness of the input

model is already determined. Since the ray-object tangential
intersection points lie on the slicing plane, we have

N1 · (Sξ (u, v) − O) = 0, (12)

where N1 = (0, 0, 1), O is an arbitrary point on the slic-
ing plane and Sξ (u, v), (ξ = 1, · · · , 6) is one of the six
boundary B-spline surfaces of the B-spline volume defined
by

Sξ (u, v) =
nu,nv∑
i,j=0

Pξ,ijNi,K̄ (u)Nj,L̄(v) . (13)

Another equation comes from the orthogonality of the ray
direction d = (dx, dy, 0) and the surface normal of the
boundary surface Sξ (u, v) yielding

Sξ,u(u, v) × Sξ,v(u, v) · d = 0 , (14)

where × denotes a vector cross product and · denotes a
vector dot product. Note that the z-component of the direc-
tion vector d is zero, as the ray is parallel to the xy-plane.
We decompose B-spline surfaces into (Bézier) polynomial
segments by knot refinement [31]. Then, for each Bézier
segment, we formulate (14) using arithmetic operations
between polynomials in Bernstein form [8], which has
better numerical stability under perturbation of its coeffi-
cients than the power basis as follows:

K̄−1,L̄−1∑
i,j=0

N1 · (Pξ,ij,l − OR)Bi,K̄ (u)Bj,L̄(v) = 0 , (15)

⎛
⎝K̄−2,L̄−1∑

i,j=0

Qξ,ij,lBi,K̄−1(u)Bj,L̄(v)

×
K̄−1,L̄−2∑

i,j=0

Rξ,ij,lBi,K̄ (u)Bj,L̄−1(v)

⎞
⎠ · d = 0 , (16)

where Bi,K̄ (u) and Bj,L̄(v) are the Bernstein polynomials

of degree K̄ − 1 and L̄ − 1, Qξ,ij,l = (K̄ − 1)(Pξ,(i+1)j,l −

(a) (b) (c) (d)

Fig. 9 Adaptive direct slicing of the tooth model. a Tangential intersection points located on the slicing plane. b Constant interval tool paths. c
Adaptive tool paths where some of the path intervals are smaller than �min. d Path intervals smaller than �min are iteratively merged so that they
are larger than �min



Int J Adv Manuf Technol

Pξ,ij,l), and Rξ,ij,l = (L̄ − 1)(Pξ,i(j+1),l − Pξ,ij,l). The
coupled polynomial Eqs. 15 and 16 are solved by a poly-
nomial solver called the projected polyhedron (PP) method
[29]. The PP algorithm is a global solution method designed
to compute all roots in some area of interest based on
subdivision.

4.3.2 Transversal intersection points

The equation of the ray can be expressed as

r(t) = OR + td , (17)

where OR = (Ox
R, O

y
R, Oz

R) is a starting point and t is the
parameter of the ray. The ray can also be expressed by the
intersection line of the following two planes [13]:

N1 · (P − OR) = 0 , (18)

N2 · (P − OR) = 0 , (19)

where N2 = N1 × d are the normal vectors of the slic-
ing plane and of the plane perpendicular to the slicing
plane, respectively, and P is a point on the intersection line.
The intersection between the ray and the boundary surfaces
Sξ (u, v) can be formulated by replacing P in Eqs. 18 and 19
by Sξ (u, v) yielding

N1 · (Sξ (u, v) − OR) = 0 , (20)

N2 · (Sξ (u, v) − OR) = 0 . (21)

We decompose B-spline surfaces into (Bézier) polynomial
segments by knot refinement [31]. Then, for each Bézier

segment, we formulate (20) and (21) using arithmetic oper-
ations between polynomials in Bernstein form [8]:

K̄−1,L̄−1∑
i,j=0

N1 · (Pξ,ij,l − OR)Bi,K̄ (u)Bj,L̄(v) = 0 , (22)

K̄−1,L̄−1∑
i,j=0

N2 · (Pξ,ij,l − OR)Bi,K̄ (u)Bj,L̄(v) = 0 , (23)

where l = 0, ..., (nu − K̄ + 1)(nv − L̄ + 1) are the
indexes for the Bézier segments. A set of coupled non-
linear polynomial equations can be effectively solved by
the PP method [29]. The resulting transversal intersec-
tion points are categorized into entry points and exit
points.

4.4 Ray attribute data intersection

4.4.1 Tangential intersection points

To generate an adaptive tool path for DFGM and MM
objects, we need to compute the ray-attribute-data tan-
gential intersection points. Since the ray-attribute-data tan-
gential intersection points lie on the slicing plane, we
thus have

N1 · (V(u, v, w) − O) = 0 , (24)

(a) (b) (c)
Fig. 10 Attribute volume fitting of the Venus head model. a Original model. b Color-coded input data based on the distance function. c Fitted
result
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(a) (b) (c)
Fig. 11 Attribute volume fitting of the duck model. a Original model. b Color-coded input data based on the distance function. c Fitted result

and the ηth (1≤ η ≤ n) attribute data having the value of Tζ

(1≤ ζ ≤ nM ) can be expressed as

Fη,ζ (u, v, w) = Aη(u, v, w) − Tζ = 0 . (25)

The third equation comes from the orthogonality of the
normal vector of the isosurface Fη,ζ (u, v, w) = 0 and d
yielding

∇Fη,ζ (u, v, w) · d = 0 , (26)

where

∇Fη,ζ (u, v, w) = (Aη,x, Aη,y, Aη,z)
T . (27)

The partial derivatives of Aη with respect to x, y, and z can
be evaluated as follows:⎛
⎝ Aη,x

Aη,y

Aη,z

⎞
⎠ =

⎛
⎝ ux vx wx

uy vy wy

uz vz wz

⎞
⎠

⎛
⎝ Aη,u

Aη,v

Aη,w

⎞
⎠ , (28)

where Aη,u, Aη,v , and Aη,w are the partial derivatives of Aη

with respect to u, v, and w, respectively, and ux , uy , uz, vx ,
vy , vz, wx , wy , and wz are the partial derivatives of u, v, w

with respect to x, y, z, respectively, which can be obtained
using the inverse function theorem [7]:

⎛
⎝ ux vx wx

uy vy wy

uz vz wz

⎞
⎠ =

⎛
⎝ xu yu zu

xv yv zv

xw yw zw

⎞
⎠

−1

. (29)

The partial derivatives of x, y, and zwith respect to u, v, and
w can be obtained easily from Eq. 4. By decomposing the
simultaneous Eqs. 24, 25, and 26 into polynomial segments,
the system can be solved by the PP method [29].

To generate a feature-sensitive tool path, we adjust the
path interval such that the feature points, which are the

tangential intersection points with respect to the ray, are
reflected in the tool path.

There are cases where the adjacent rays are very close
to each other owing to the distribution of the feature
points yielding narrow intervals. In such cases, we can
iteratively merge the two intervals into a single interval
at the middle of the two intervals until each interval is
wider than the prescribed tolerance �min, as illustrated
in Fig. 9. We also define the maximum allowable path
interval �max so that the interval does not become too
wide.

4.4.2 Transversal intersection points

We discretize the ηth attribute data Aη with the values Tζ ,
ζ=1,. . . , nM . The ray equations similar to Eqs. 20 and 21
can be written as

N1 · (V(u, v, w) − OR) = 0 , (30)

N2 · (V(u, v, w) − OR) = 0 , (31)

and the ηth attribute data Aη having the value Tζ can be
expressed as

Aη(u, v, w) − Tζ = 0 . (32)

In general, for FGM objects, the geometry and attribute
data have different knot vectors. However, for DFGM
and MM objects, simultaneous Eqs. 30, 31, and 32 must
be decomposed into (Bézier) polynomial segments to be
solved by polynomial solvers [29], and, hence, the geom-
etry V(u, v, w) and the attribute data Aη(u, v, w) must
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(a) (b) (c)
Fig. 12 Attribute volume fitting of the ball joint model. a Original model. b Color-coded input data based on the distance function. c Fitted result

be refined before the computation to have the same knot
vectors. Then, the B-spline volumes are decomposed into
(Bézier) polynomial segments by knot refinement [31] sim-
ilar to Eqs. 22 and 23 as

K̄−1,L̄−1,M̄−1∑
i,j,k=0

N1· (Pijk,l −OR)Bi,K̄ (u)Bj,L̄(v)Bk,M̄ (w) = 0 , (33)

K̄−1,L̄−1,M̄−1∑
i,j,k=0

N2 · (Pijk,l −OR)Bi,K̄ (u)Bj,L̄(v)Bk,M̄ (w) = 0 , (34)

K−1,L−1,M−1∑
i,j,k=0

(Aη,ijk,l −Tζ )Bi,K(u)Bj,L(v)Bk,M(w) = 0 , (35)

where l = 0, ..., (nu − K̄ + 1)(nv − L̄ + 1)(nw − M̄ + 1).
The coupled polynomial Eqs. 33, 34 and 35 are effectively
solved by the PP method.

4.5 Bucketing technique

Since it is inefficient to check all the possible ray-Bézier
volume intersection problems, we introduce a bucketing
technique [3, 4]. If we assume that the ray is parallel to
the x-axis, then the axis-aligned bounding box of the object
can be used for constructing buckets by uniformly divid-
ing it into nx × ny × nz voxels, where we used a size
of 10×10×10. Then, all the Bézier volumes that are com-
pletely or partially inside each bucket are checked for the
ray-Bézier volume intersection problems. Once the inter-
secting Bézier volume is located, we apply the polynomial
solver to find the intersection points.

5 Examples

In this section, we demonstrate the effectiveness of our
algorithms by applying them to the complex models used
in Lin et al. [17], namely Venus head, duck, and ball
joint models shown in Figs. 10a, 11a, and 12a, respec-
tively. All the computations were performed on a PC with
an Intel Core i7-3770 (3.40 GHz) processor and 8.00 GB
of RAM.

5.1 Generation of the volumetric attribute data

We first generated the volumetric attribute data based on the
distance function from the boundary of the three models as
a specific function for trivariate B-spline fitting, which is
described in Section 3.2. Figures 10b, 11b, and 12b show
the color-coded data based on the distance from the bound-
ary. We fit the data within the models by an order (4, 4, 4)
trivariate B-spline function starting with the knot vectors u
= v = w = (0,0,0,0,0.25,0.5,0.75,1,1,1,1) by iterative fitting.

The computational results of the fitting of the volu-
metric attribute data are shown in Table 3, and the fitted
attribute data are shown in Figs. 10c, 11c and 12c. Compu-
tational results of the tooth model are given in Section 3.4.
The computations were terminated when the average and

Table 3 Approximation of the volumetric attribute data of the Venus
head, duck, and ball joint models by the iterative fitting method

Model # of data pts # of ctrl pts Iteration Time (s)

Venus head 51,953 34 × 31 × 30 1084 18.488

Duck 145,570 28 × 28 × 28 425 20.233

Ball joint 100,149 27 × 22 × 27 410 13.447
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Fig. 13 FGM object-based tool
path for the Venus head model.
Adaptive direct slicing of the
Venus head model. a Slicing
plane. b Tangential intersection
points located on the slicing
plane. c Constant interval tool
path. d Adaptive tool path

(a) (b) (c) (d)

Fig. 14 DFGM object-based
tool path for the duck model:
Adaptive direct slicing of the
duck model. a Slicing plane. b
Tangential intersection points
located on the slicing plane. c
Constant interval tool path. d
Adaptive tool path

(a) (b) (c) (d)

Fig. 15 MM object-based tool
path for the ball joint model:
Adaptive direct slicing of the
ball joint model. a Slicing plane.
b Tangential intersection points
located on the slicing plane. c
Constant interval tool path. d
Adaptive tool path

(a) (b) (c) (d)

Table 4 Computational time
for finding tangential and
transverse intersection points
for determining the horizontal
ray path intervals of the models
in Figs. 13, 14 and 15

Model Time (s) Time (s) # of paths

tangential intersection points transversal intersection points

Venus head 0.062 0.016 44

Duck 16.81 55.59 72

Ball joint 7.733 9.485 63
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maximum errors became smaller than 0.3 and 3.0 % with
respect to the difference between the maximum and the min-
imum values of the input data for the models. The accuracy
between the fitted results and the original model is dis-
cussed in Section 3.4. The same explanation applies to the
abovementioned three models.

5.2 Adaptive direct slicing

We applied the adaptive direct slicing method to the three B-
spline volumetric geometry models filled with the attribute
data, namely the Venus head, duck, and ball joint models.
The applications of an FGM object-based tool path for the
Venus head model, a DFGM object-based tool path for the
duck model, and an MM object-based tool path for the ball
joint model are studied in this section. We assumed that the
orientation of the object was already determined and that
the slicing direction was parallel to the xy-plane as shown
in Figs. 13a, 14a and 15a. Without loss of generality, we
further assumed that the ray direction was parallel to the x-
axis. Next, we determined the horizontal ray path intervals
such that the feature points were reflected in the path gener-
ation, as shown Fig. 13b, 14b and 15b. In this research, we
set �min and �max to 1/200 and 1/100 of the diagonal of the
bounding box of each model.

Figures 13c, 14c and 15c show examples of the constant
interval tool path, whereas Figs. 13d, 14d and 15d show the
corresponding adaptive tool path. We can clearly see that
the adaptive tool path captured all the tangential intersection
points; however, there were cases wherein some of the path
intervals were smaller than the prescribed tolerance �min.
These tool paths were iteratively merged so that they were
larger than �min.

As shown in Table 4, the computational speed for gen-
erating a tool path for a single layer is slow owing to the
nonlinear computation; however, it takes less storage space
and does not require to run check and repair routines com-
pared with the STL-based processing. The computational
time for the Venus head model was much faster than those
of the other two models, as the computation for the ray-
attribute-data intersection was not necessary in generating a
tool path for continuous FGM objects.

6 Conclusions

In this paper, we introduced a framework for modeling
and adaptive direct slicing of heterogeneous objects in
terms of trivariate B-spline functions. The B-spline volume
and the associated attribute data are directly sliced with-
out converting them to STL format, keeping the geometric
and topological robustness of the original data. Further-
more, adaptive slicing is introduced so that the zigzag tool

path passes through all the tangential intersection points
of the heterogeneous objects in the scan direction so that
all the feature points are represented in the fabricated
model.

Although our adaptive direct slicing algorithm is already
highly effective, it still has a number of limitations that
require further research:

– The PP method becomes extremely slow when the ray
overlaps with the boundary curve.

– The B-spline volumetric attribute data fitting requires
many control points when the model has sharp features.

Our algorithm is independent of AM techniques, and
we hope that the readers of this paper can customize our
algorithm to their own AM techniques. There are several
possibilities for the extension of our algorithm, a few of
which are listed as follows:

– We want to develop machine-specific interpreters for
translating our tool path into NC codes and printing the
model that is sliced using our algorithm.

– It is expected that AM machines for heterogeneous
objects may suffer from many stop-and-start motions.
We would like to develop the path planning method for
heterogeneous objects so that the stop-and-start motions
can be minimized.
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Appendix 1

Algorithm 1 Repositioning of the B-spline ordinates.

1: for all l such that 0 ≤ l ≤ N do
2: for i = p-K+1 to p do
3: for j = q-L+1 to q do
4: for k = r-M+1 to r do
5: Wnum [i][j ][k]←

Wnum[i][j ][k]+Ni,K(ul)Nj,L(vl)Nk,M(wl)(al −
A(α)(ul, vl, wl))

6: Wden[i][j ][k] ← Wden[i][j ][k] +
Ni,K(ul)Nj,L(vl)Nk,M(wl)

7: end for
8: end for
9: end for
10: end for
11: for all i such that 0 ≤ i ≤ mu do
12: for all j such that 0 ≤ j ≤ mv do
13: for all k such that 0 ≤ k ≤ mw do
14: A(α+1)

ijk ← A(α)
ijk + Wnum[i][j ][k]

Wden[i][j ][k]
15: end for
16: end for
17: end for
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Appendix 2

Proof of convergence

Let us denote the weight for the error vector el as

ω
ijk
l = Ni,K(ul)Nj,L(vl)Nk,M(wl)

Wden[i][j ][k] , (36)

where Wden[i][j ][k] is defined in Algorithm 1. The (α +
1)th B-spline volume is defined as

A(α+1)(u, v, w) =
mu,mv,mw∑

i,j,k=0

(A(α)
ijk

+�
(α)
ijk )Ni,K(u)Nj,L(v)Nk,M(w), (37)

where A(α)
ijk are the B-spline ordinates in the αth iteration,

and �
(α)
ijk are the repositioning vectors for the corresponding

B-spline ordinates.
Therefore, the repositioning vector for the B-spline ordi-

nate with index (i, j, k) is

�
(α+1)
ijk =

∑
l∈Iijk

ω
ijk
l e(α+1)

l

=
∑
l∈Iijk

ω
ijk
l

(
al − A(α+1)(ul, vl, wl)

)

=
∑
l∈Iijk

ω
ijk
l

⎛
⎝al −

mu,mv,mw∑
i,j,k=0

(
A(α)

ijk + �
(α)
ijk

)
Ni,K(ul)Nj,L(vl)Nk,M(wl)

⎞
⎠

= �
(α)
ijk −

mu,mv,mw∑
f,g,h=0

�
(α)
fgh

∑
l∈Iijk

ω
ijk
l Nf,K(ul)Ng,L(vl)Nh,M(wl), (38)

where Iijk denotes the set of ordinates al that contribute to
the repositioning vector �ijk .

By arranging the repositioning vectors for the B-spline
ordinates in a one-dimensional array, i.e.,

�(β) =
[
�

(β)

000, �
(β)

001, · · · , �
(β)

00mu
, �

(β)

010, · · · ,

�
(β)

01mw
, · · · , �

(β)

0mvmw
, �

(β)

100, · · · , �(β)
mumvmw

]T

,

β = α, α + 1, (39)

we obtain the iterative form

�(α+1) = (I − C)�(α), (40)

where I is a (mu + 1)(mv + 1)(mw + 1) × (mu + 1)(mv +
1)(mw + 1) identity matrix, and C is given by

C=
⎡
⎢⎣

∑
l∈I000

ω000
l N0,K(ul)N0,L(vl)N0,M(wl) · · · ∑

l∈I000
ω000

l Nmu,K(ul)Nmv,L(vl)Nmw,M(wl)

...
. . .

...∑
l∈Imumvmw

ω
mumvmw

l N0,K(ul)N0,L(vl)N0,M(wl) · · · ∑
l∈Imumvmw

ω
mumvmw

l Nmu,K(ul)Nmv,L(vl)Nmw,M(wl)

⎤
⎥⎦ . (41)

Furthermore, we have the following result:

Proposition 1 If the matrix Cx (41) is nonsingular, the
iterative format (40) is convergent.

Proof To prove the proposition above, we first construct an
(N + 1) × (mu + 1)(mv + 1)(mw + 1) matrix, B, which is
given by

B =
⎡
⎢⎣

N0,K(u0)N0,L(v0)N0,M(w0) · · · Nmu,K(u0)Nmv,L(v0)Nmw,M(w0)
...

. . .
...

N0,K(uN)N0,L(vN)N0,M(wN) · · · Nmu,K(uN)Nmv,L(vN)Nmw,M(wN)

⎤
⎥⎦ . (42)
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In fact, denoting


 = diag

(
1

Wden[0][0][0] ,
1

Wden[0][0][1] ,

· · · ,
1

Wden[mu][mv][mw]
)

, (43)

the matrix C (41) can be represented as

C = 
BT B. (44)

Therefore, if the matrix C is nonsingular, BT B is a positive
definite matrix, and all of its eigenvalues are positive as well
as the eigenvalues of C. On the other hand, all of the eigen-
values ofC are less than or equal to one because ||C||∞ = 1.
In conclusion, the eigenvalues of C satisfy

0 < λ(C) ≤ 1. (45)

Therefore, the eigenvalues of I − C fulfill

0 < λ(I − C) = 1 − λ(C) < 1. (46)

This means that the iterative form in Eq. 40 is convergent.
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approximation of composite Bézier curves. Comput Aided Geom
Des 13(6):497–520

4. Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to
Algorithms. Cambridge, Press, MA

5. Davis TA (2006) Direct methods for sparse linear systems. SIAM
philadelphia

6. Deng C, Lin H (2014) Progressive and iterative approximation for
least squares b-spline curve and surface fitting. Comput Aided Des
47:32–44

7. do Carmo PM (1976) Differential Geometry of Curves and Sur-
faces. Prentice-Hall, Inc., Englewood Cliffs

8. Farouki RT, Rajan VT (1988) Algorithms for polynomials in
Bernstein form. Comput Aided Geom Des 5(1):1–26

9. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams
CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The
status, challenges, and future of additive manufacturing in engi-
neering. Comput Aided Des 69:65–89

10. Modeling and fabrication of heterogeneous three-dimensional
objects based on additive manufacturing (2013)

11. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric anal-
ysis: CAD, finite elements, NURBS, exact geometry and mesh
refinement. Comput Methods Appl Mech Eng 194(39-41):4135–
4195

12. Jamieson R, Hacker H (1995) Direct slicing of CAD models for
rapid prototyping. Rapid Prototyp J 1(2):4–12

13. Kajiya JT (1982) Ray tracing parametric patches. Comput Graph-
ics (SIGGRAPH ’82 Proceedings) 16(3):245–254

14. Khoda AKM, Ozbolat IT, Koc B (2013) Designing heterogeneous
porous tissue scaffolds for additive manufacturing processes.
Comput Aided Des 39(12):1507–1523

15. Kineri Y, Wang M, Lin H, Maekawa T (2012) B-spline sur-
face fitting by iterative geometric interpolation/approximation
algorithms. Comput Aided Des 44(7):697–708

16. Lin H (2010) The convergence of the geometric interpolation
algorithm. Comput Aided Des 42(6):505–508

17. Lin H, Jin S, Hu Q, Liu Z (2015) Constructing b-spline solids
from tetrahedral meshes for isogeometric analysis. Comput Aided
Geom Des 35-36:109–120

18. Lin H, Wang G, Dong C (2004) Constructing iterative non-
uniform B-spline curve and surface to fit data points. Sci in China
47(3):315–331

19. Liu H, Maekawa T, Patrikalakis N, Sachs E, Cho W (2004) Meth-
ods for feature-based design of heterogeneous solids. Comput
Aided Des 36(12):1141–1159

20. Ma W, But WC, He P (2004) NURBS-Based adaptive slicing for
efficient rapid prototyping. Comput Aided Des 36(13):1309–1325

21. Maekawa T (1999) An overview of offset curves and surfaces.
Comput Aided Des 31(3):165–173

22. Maekawa T, Matsumoto Y, Namiki K (2007) Interpolation by
geometric algorithm. Comput Aided Des 39(4):313–323

23. Martin T, Cohen E, Kirby R (2009) Volumetric parameterization
and trivariate B-spline fitting using harmonic functions. Comput
Aided Geom Des 26(6):648–664

24. Martin T, Cohen E, Kirby R (2012) Direct isosurface visualization
of hex-based high-order geometry and attribute representations.
IEEE Trans Vis Comput Graph 18(5):753–766

25. Martin W, Cohen E (2001) Representation and extraction of vol-
umetric attributes using trivariate splines: a mathematical frame-
work. In: Proceedings of the sixth ACM symposium on Solid
modeling and applications, pp 234–240

26. Ozbolat IT, Koc B (2011) Multi-directional blending for hetero-
geneous objects. Comput Aided Des 43(8):863–875

27. Pan Y, Zhou C, Chen Y, Partanen J (2014) Multitool and multi-
axis computer numerically controlled accumulation for fabricating
conformal features on curved surfaces. ASME J Manufacturing
Sci and Eng 136(3)

28. Park S, Lee K (1997) High-dimensional trivariate nurbs represen-
tation for analyzing and visualizing fluid flow data. Comput Graph
21(4):473–482

29. Patrikalakis N, Maekawa T (2002) Shape interrogation for com-
puter aided design and manufacturing. Springer-Verlag, Heidel-
berg

30. Paul R, Anand S (2015) A new steiner patch based file format for
additive manufacturing processes. Comput Aided Des 63:86–100

31. Piegl L, Tiller W (1997) The NURBS book 2nd Ed Springer-
Verlag New York Inc.

32. Samanta K, Koc B (2005) Feature-based design and material
blending for free-form heterogeneous object modeling. Comput
Aided Des 37(3):287–305

33. Schwahn ES (2015) Using controlled curing in a custom
stereolithography-based 3D printing machine to obtain graded
property variations. Master thesis, University of Nebraska-
Lincoln

34. Sethian JA (1999) Level Set Methods and Fast Marching Meth-
ods: Evolving Interfaces in Computational Geome- try, Fluid
Mechanics, Computer Vision, and Materials Science. Cambridge
University Press

35. Starly B, Lau A, Sun W, Lau W, Bradbury T (2005) Direct slic-
ing of STEP based NURBS models for layered manufacturing.
Comput Aided Des 37:387–397



Int J Adv Manuf Technol

36. Wang X, Qian X (2014) An optimization approach for con-
structing trivariate B-spline solids. Comput Aided Des 46:179–
191

37. Yamaguchi F (1977) A method of designing free form surfaces by
computer display (1st report)(in Japanese). Precision Machinery
43(2):168–173

38. YangP, QianX (2007) AB-spline-basedapproach toheterogeneous
objects design and analysis. Comput Aided Des 39(2):95–111

39. Yoshihara H, Yoshii T, Shibutani T, Maekawa T (2012) Topo-
logically robust b-spline surface reconstruction from point clouds
using level set methods and iterative geometric fitting algorithms.
Comput Aided Geom Des 29:422–434


	Adaptive direct slicing of volumetric attribute data represented by trivariate B-spline functions
	Abstract
	Introduction
	Notation of B-spline volumes
	B-spline volumetric geometry model
	B-spline volumetric attribute model

	Fitting of volumetric attribute data
	Related work
	Generation of accurate data for fitting
	Iterative fitting method
	Comparison with the standard fitting method

	Adaptive direct slicing
	Related work
	AM techniques for FGM and MM objects
	Ray object intersection
	Tangential intersection points
	Transversal intersection points

	Ray attribute data intersection
	Tangential intersection points
	Transversal intersection points

	Bucketing technique

	Examples
	Generation of the volumetric attribute data
	Adaptive direct slicing

	Conclusions
	Acknowledgments
	Appendix  1
	Appendix 2
	Appendix  2
	Proof of convergence
	References


