
With the invention of texture mapping in
computer graphics, the photorealism

level of synthesized geometry has taken a giant leap
forward.1,2 Texture mapping has become an essential
tool in any synthetic rendering scheme that aims at pho-
torealism. Texture mapping typically associates any
point on the surface of the rendered object with a loca-
tion in the texture space. The surface point is then
assigned rendering attributes, such as color or translu-
cency from the respective location found in the texture
space. Texture mapping techniques have also been used
in attempts to emulate highly detailed geometry on the
surfaces of objects. This article focuses primarily on tex-
turing techniques that relate to shape modeling and
surface geometry alteration.

The bump-mapping technique
was the first successful attempt to
emulate 3D geometric surface
details by modulating the normals
of the rendered objects’ vertices.2,3

At each surface location, you assign
a small perturbation to the normal,
based on some mapping from that
surface location to some normal per-
turbation texture function. The
bump-mapping technique is highly
successful in conveying a bumpy
shape while the geometry remains
smooth. The illusion created by
bump mapping is quite convincing.
Nevertheless, in the silhouette areas
of the object in hand, the surface’s
outline remains smooth. No casting

of shadows of rough silhouette edges due to this bumpi-
ness can occur, since the geometry itself is not modified.

The displacement maps method took a major step in
synthesizing real 3D detailed geometry by allowing actu-
al surface modifications.2 It’s common for this mapping
scheme to be represented as a height field that modu-
lates the amount that each surface location is elevated
in one direction—typically the surface normal direction.
Let S(u, v) be the surface to displace and let⎯n (u, v) be
its unit normal field. Then, given a displacement as a
scalar height field, d(u, v), the geometry of the new, mod-
ulated surface equals

(1)

The computation or the approximation of the unit
normal field of S(u, v) can be quite involved and is, in

general, considered a computationally complex task that
hinders the use of such techniques in real time. The par-
tial derivatives of S(u, v) span the tangent plane of S, if
regular. Therefore, ∂S/∂u, ∂S/∂v,⎯n can serve as a basis
for �3 and be used to prescribe a displacement in an
arbitrary 3D direction.

This work extends the notion of displacement maps
and relaxes several of their constraints for use in texture
modeling. Actual and precise geometry can now be syn-
thesized for arbitrary further processing as opposed to
rendering only. I reconstruct the object using a geome-
try that completely and accurately captures the desired
surface details. The approach proposed here for surface
detail synthesis closes the loop from modeling to ren-
dering by drawing on the computer graphics texture
mapping techniques and bringing them back into the
geometric modeling phase. Numerous objects with pre-
cise surface details that are difficult to model using tra-
ditional geometric modeling schemes and contemporary
modeling tools could be easily constructed using the pro-
posed geometric texture modeling scheme. This method
supports both the free-form NURBS domain as well as
the polygonal mesh surface representation.

The graphics group at Technion (referred to as “we” in
this article) employs nonlinear trivariate polynomial
functions to derive the texture mapping function and
parameterize the space around the object surfaces. While
the concepts presented in this work are not constrained
to this specific mapping function, this representation was
selected since it allows us to fully and precisely capture
the original surface geometry as well as guarantees con-
tinuous normals. The presented approach employs the
same basic tool used in free-form deformations (FFD),4

and hence the resulting texture undergoes a displace-
ment transformation as well as a deformation that
coerces it to follow the underlying surface’s precise shape.
Consequently, any geometry in �3 can be employed as
supplementary detail texture, making the texture mod-
eling phase as general and as precise as needed. More-
over, because any object can serve as the geometric
texture map of itself, a complete closure is formed. The
“Background and Related Work” sidebar discusses other
research.

Modeling the geometric texture
Consider an object O and let S be one surface on the

boundary of O with regular parameterization S(u, v), u,
v ∈ [0, 1]. Denote S(u, v) as the base surface, the surface
on which we are to place the detailed texture geometry.
Further, let⎯n(u, v) be the unit normal field of S(u, v)

S u v S u v n u v d u v
d
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pointing outside of O. Having a continuous normal field
constitutes the requirement for S to be C1. This constraint

is commonly satisfied by the polynomial and/or the ratio-
nal representations that govern contemporary geomet-
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Background and Related Work
A first attempt to capture the volume around the surface

of an object was presented in Kajiya and Kay,1 who
introduced the concept of texels. They wrote, “a texel is a
three dimensional array that holds the visual properties of a
collection of micro-surfaces.” Geared toward ray tracing
only, and not actual surface modeling, the geometry is
replaced by its visual properties, gathering the scattering
and reflectance functions. Neyret also used trilinear texels.2

Due to the texel’s linearity, one surface location is assigned
one displacement direction. Texels are continuous, but their
normals are not. Similarly, because the base of the texel is
bilinear, it’s impossible to precisely follow nonlinear
polynomial surfaces. One advantage of the approach used
by Kajiya and Kay and Neyret stems from its ability to ray
trace the scene without the need to duplicate the geometry
behind the texture function. Being able to invert the
mapping function, the casted ray is remapped back into a
canonical texel. This texel approach can also handle texture
mapping that is one to many. That is, a single surface
location can be mapped to several points above the surface.

Three-dimensional supplementary details can also be
added to surfaces using other means. Typically, such
texturing processes can be divided into two stages. The
first, the texture placement phase, determines the locations
at which the texture supplementary elements are to be
placed, typically using some notion of surface
parameterization. The second, texture modeling phase,
locally molds the texture elements to fit their final shape.

Fleischer et al. attempted to create 3D details, such as
scales or thorns, over the surface.3 They also simulated
natural cellular development for use in texture generators
for the placement phase of the individual elements. The
texture modeling phase in this work exploited a geometric
modeler that is parametric. Cellular texture generators as a
tool for texture placement have received significant
attention—for example, brick textures were investigated for
architectural models.

The question of texture placement is of major concern in
irregular polygonal meshes of arbitrary topology, as is the
issue of seamless tiling of a repeatable texture over these
domains. These concerns have been the focus of many
researchers in recent years. For example, prescribed vector
fields over the geometry were used to achieve this proper
placement. Others derived a parameterization and local
tangents for each vertex of the mesh, attempting to reach
the same goal. Simulation of reaction-diffusion is another
scheme to distribute texture elements for surfaces with no
parameterization. Methods to minimize distortion, in a
conformal or isometric sense, were also investigated in
recent years—for example by Sheffer and de Sturler.4

Trivariate functions were introduced to the graphics
community in the much cited work of Sederberg and Parry
on warping applications.5 They employed trivariate
functions as mappings for T:�3⇒�3. They represented
bending, stretching, and warping operators using trivariate
functions that bent, stretched, or warped a subspace of �3.

The work of Sederberg and Parry, also known as free-form
deformations (FFD), has many derivations such as the
extended FFD, and nontensor product FFD representations.6

All these derivations share the ability to embed a given
object in the parametric domain of the trivariate, and that
object undergoes the same nonlinear transformation along
with the entire subspace around the object.

While an exceptionally general and powerful object
modification operator, the difficult question has always
been how to intuitively derive the proper trivariate function
to perform a certain warping operation. The proposed
approach employs the trivariate functions’ powerful
capabilities as a warping tool, while automatically defining
the trivariate function to follow the 3D domain above the
surface boundary of object O.

The presented method assumes that the surface to which
you add details has a readily available proper
parameterization, by being a polynomial, a rational
parametric surface or a polygonal mesh with
parameterization. Other works are samples of the state of the
art in this area of texture placement, which provide proper
distributions of the texture elements on the surface, be they a
square textured tile, a thorn, a brick, or hair samples.1,3,4 To
achieve the proposed geometric texture modeling, you can
employ any of the proposed texture distribution or
parameterization techniques and augment them by providing
extended and unifying texture modeling capabilities. Once
you have a proper texture placement, the texture modeling
function can fully and smoothly encompass the third
dimension above the surface. That is, given a surface location
along which to place the texture, the location can be mapped
to a continuum above and/or below the surface. Moreover,
by having a complete and continuous parameterization of the
surface domain and above and/or below it, you can fully
adapt the displaced geometric texture to the shape of the
surface as well as offer an efficient estimation scheme for the
normals of the deformed and displaced geometry.
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ric modeling tools. The “Unit Normal Field Approxima-
tion” sidebar prescribes schemes to approximate a poly-
nomial or rational unit normal field to a given polynomial
or rational surface.

In the discrete, piecewise-linear domain, parameter-
izations of polygonal meshes are also readily available,
with a large body of recent research work on this topic,
for example Sheffer and de Sturler.5 As a result, contin-
uous unit normals over the polygonal discrete domain
can be approximated, much like the classic Phong shad-
ing scheme,2 by interpolating the normals of the ver-
tices with the aid of barycentric weighing coordinates
in each triangle.

Having a parameterization for S and a continuous unit
normal field⎯n define

(2)

a trivariate function above S for w > 0 (see Figures 1a
and 1b). The 3D parametric space of T is the infinite box
B: (u, v, w), u, v ∈ [0, 1], and arbitrary w ∈ � +. T(u, v, w)
parameterizes the volumetric neighborhood of S(u, v)

and equals S exactly for w = 0. Similarly, T(u, v, w) could
also be defined below surface S(u, v), having w ∈ � (see
Figures 1c and 1d).

The notion of above or below the base surface is hence
defined as

Definition 1: A point P is above base surface S(u, v)
if there exists (u0, v0, w0), w0 > 0, such that P = T(u0,
v0, w0). S(u0, v0) is the support position of P.

Similarly,

Definition 2: A point P is below base surface S(u, v)
if there exists (u0, v0, w0), w0 < 0, such that P = T(u0,
v0, w0). S(u0, v0) is the support position of P.

The mapping function of T:�3⇒�3 can self-inter-
sect, both locally due to highly curved regions in S, or
globally when two unrelated but close regions of S
interact in T (see Figure 2). Local self-intersections
can be identified by the singularity event of the van-
ishing Jacobian of T. Gain and Dodgson employed this

T u v w S u v n u v w, , , ,( ) = ( )+ ( )
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Unit Normal Field Approximation
Assume surface S(u, v) is a polynomial or a rational free-

form surface. Unfortunately, the unit normal field

is not rational due to the normalization that is imposed in
the denominator of⎯n. One simple way of approximating a
unit size normal field would be to normalize all control
points in the normal field of 

The result of this approximation affects both the
magnitude and the direction of the normal field.

Alternatively, you can symbolically multiply n(u, v) by a

function that approximates the inverse magnitude of n

Now n(u, v)m(u, v) approximates the unit magnitude 
of⎯n(u, v), while it fully preserves the directional infor-
mation of the field. This product can be computed via
products of Bezier or B-spline basis functions.1 By applying
refinement2 to n(u, v), you can improve the approximation
of m and, in fact, converge as closely as needed to a unit
size normal field with precise directions.
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1 (a) Parametric domain used to define (b) the trivariate T(u, v, w) function above surface S(u, v). (c) The parametric domain of T can
also be mapped to be (d) both below and above surface S. 
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constraint on the Jacobian to detect local singular con-
ditions in FFDs.6 They used the zero set of the deter-
minant of the Jacobian of the trivariate function to
derive and extract the sweep surfaces’ boundary, using
envelope theory. The possibility of self-intersections
in T is due to point P possibly being above one sup-
port position of the base surface and below another.
Alternatively, P can be above (or below) two (or more)
different support positions.

The mapping T is well defined while its inverse might
not be. Hence, the texture construction is well defined
as well though it could end up with self-intersections.
This article is mainly concerned with the 3D border
layer, or the volume near the base surface, for small val-
ues of w. Therefore, if the base surface is smooth and
self-intersection free, local and global self-intersections
in T are expected to be rare. More-
over and as already stated, local self-
intersections could be identified by
examining the Jacobian of T where-
as global self-intersections could be
examined by testing for self-inter-
sections in the surface S offsets.

Recall Equation 1. The self-inter-
section problem also existed in tra-
ditional displacement mapping
whereas here, with the aid of the
Jacobian’s determinant analysis, we
offer a method to detect such cases.
Bivariate displacement maps are,
traditionally, mappings from �2 to
�, possibly serving as modulators
on the magnitude of a unit vector
field such as the base surface’s nor-
mal. As Figure 3 shows, consider a
bivariate parametric displacement
texture function D(r, t): �2⇒�3,
D(r, t) = (u(r, t), v(r, t), w(r, t)). The embedding of D
in the parametric domain of T, B, yields

(3)

For the special case where u = r and v = t, D(r, t) is
reduced to the traditional displacement mapping tech-
nique, becoming an explicit height field above the (r, t)
= (u, v) plane. In this restricted case, Equation 3 assumes
the form of

(compare with Equation 1), while w(r, t) serves as the
height field displacement along the direction of the
normal. Hence, the traditional displacement mapping
technique is a special, explicit case of the parametric
form presented in Equation 3. The additional benefits
that you might gain by this more general parametric
displacement representation are the main interests of
this article.

Two types of geometric textures maps, D(r, t), can
now be employed, types we denote as covering texture
maps and casual texture maps:

Definition 3: D(r, t) = (u(r, t), v(r, t), w(r, t)), r, t ∈
[0, 1] is considered a covering geometric texture
map if ∀u0, v0 ∈ [0, 1], ∃r0, t0 ∈ [0, 1] such that u(r0,
t0) = u0, v(r0, t0) = v0.

In other words, any geometric texture map that is on,
and hence spans, the entire surface is a covering texture
map. An obvious example of a covering map is the tra-
ditional displacement maps. A covering texture map can
be discontinuous in w(r, t) and hence still preserve gaps
in its range.

Definition 4: D(r, t), r, t ∈ [0, 1] is considered a
casual geometric texture map if it’s not a covering
geometric texture map.

If D(r, t) is not a covering geometric texture map, typ-
ically the base surface will not be replaced by the texture
map, but will merely be augmented by it. That is, the tex-
ture map serves supplementary purposes only. An obvi-
ous example of a casual texture is hair or fur.
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(b) (a)

2 Trivariate function T(u, v, w) (in cyan) can present (a) a local self inter-
section due to a highly curved region in S (in red), or (b) global self inter-
sections when two unrelated regions of S are too close.

w

u
v

D (r,t)

T (D)

S (u, v)

3 Mapping of the geometric texture D(r, t) (a bent thorn) using the trivariate function T(u, v,
w) as four thorn tiles in a 2 × 2 grid over surface S.
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Definition 5: Consider a C0 continuous D(r, t), r, t ∈
[0, 1]. If D(1, t) = D(0, t) + tu and D(r, 1) = D(r, 0) + tv,
such that tu and tv are translation vectors in the XY
plane, then D(r, t) is a C0 continuous periodic
geometric texture map, with a period of (tu × tv). 

A periodic geometric texture map can seamlessly tile
the base surface. Higher continuity constraints, such as
tangent plane continuity, could be imposed as well, pro-
viding a Gk continuous periodic geometric texture map.

The advantage of using periodic geometric texture
maps can be found in the smaller size of the represen-
tation. Because we expect the final geometry to be large,
the benefits are evident. We only have to express details
in the surface once and thereafter can duplicate and tile
these geometric details as necessary. For example, tiles
that are far from the viewing position could be approx-
imated in a low resolution whereas tiles in hidden sur-
face regions can be purged altogether. Similarly, when
contouring or slicing the final object, possibly toward
layered manufacturing processes, only geometric tiles
near the current contouring level need to be generated
and processed.

Clearly, both covering and casual texture maps could
be made periodic, with the advantage that periodic cov-
ering texture maps can replace the original surface.
Here, you can find another advantage in using trivariate
functions as geometric detailing tools. If S(u, v) and D(r,
t) are Ck continuous, T(D) is Ck-1 continuous, because T
employs first-order derivatives of S. In other words, the
continuity of the final geometry is completely governed
by the base surface, S, and its (tiled) texture, D. For a
tiled texture, D must be a Gk continuous periodic geo-
metric texture map.

The “Polynomial/Rational Composition Algorithm”
sidebar provides a short review of the necessary com-
position computation steps of T(D), in the (piecewise)
polynomial and/or rational domains. Similarly, the
“Polygonal Composition Algorithm” sidebar presents
the necessary computation steps of this composition
when D and/or S are the surfaces of polygonal meshes.

With this capability to map both polygonal and spline
geometry through T, D can be formed out of a polygonal
mesh (2-manifold or not), or a whole polygonal model
like the many models available on the Web. Alterna-
tively, D could be a single NURBS surface or a spline geo-
metric model formed from a trimmed NURBS surface
set, as many contemporary geometric modeling meth-
ods generate.

Given a geometry that undergoes some nonlinear
transformation T, the normal at some vertex could be
either mapped directly using T if possible, or approxi-
mated as the average of the normals of the mapped
polygons sharing this vertex. While clearly feasible,
such normal averaging could be time consuming. For
reasons that we will reveal shortly, the direct normal
estimation using the mapping T is impossible, in gen-
eral—a problem shared by most FFD mapping schemes.
Hence, this article seeks the conditions under which an
approximation could still be derived from the original
normals by mapping these normals directly through T.

A mapping T is called conformal if it preserves
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Polynomial/Rational Composition Algorithm
Let D(r, t) = (u(r, t), v(r, t), w(r, t)) ⊂ T be a polynomial

parametric geometric texture tile. Having a polynomial
representation to T, T(D(r, t)) could be precisely evaluated into a
composed surface. Here, we present the composition process for
the polynomial domain whereas the extension to rationals is
simple.1 Without loss of generality, assume S, D, and T are all in the
Bezier representation. Then, the trivariate mapping equals

where

are the Bezier basis functions of degree nu. Further let

Substituting in, we have

Hence, the composition of T(D) in the Bezier domain was
reduced to sums and products of Bezier basis functions. See
Cohen, Riesenfeld, and Elber1, and Elber2 on the computation of
these two operations. This forward evaluation process of T(D)
circumvents the possible difficulties in handling the singularities in
the mapping function. Hence, you can conduct this computation
as a simple forward composition evaluation.

The composition of B-spline basis functions can be similarly
derived. Only now the sums and products of B-spline basis
functions need to be computed; see Cohen et al. for more
information.1
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angles.7 Specifically, a conformal mapping will preserve
the orthogonality between the normal vector and the
tangent plane of the surface. While, for example, rigid
motion is clearly conformal, a general trivariate func-
tion is hardly so. Nonetheless, the type of trivariate
functions already presented (see Equation 3) does pre-
serve angles to a certain extent, and thus could be con-
sidered almost conformal under some conditions.

Elsewhere, I examine the conditions under which
direct mapping of normal vectors through T can yield a
reasonable approximation.8 Let (n u

0, n v
0, nw

0) be the coef-
ficients of the normal vector. If ∂S(u0, v0)/∂u and
∂S(u0, v0)/∂v are approximately orthogonal and of sim-
ilar magnitude, and if⎯n(u0, v0) is of similar length as
well, you can employ

(4)

as a reasonable approximation to the normal mapping.
Small values of w, near the base surface layer S, will fur-
ther increase this approximation’s accuracy.

To estimate the normal field of the mapped texture
geometry, as T̂ (N0) in Equation 4, you need not only the
surface normal at each vertex V j

i , but also the surface’s
two partial derivatives. This data is not typically pro-
vided by contemporary rendering tools. In most cases,
however, it’s readily available in geometric modeling

environments. In the continuous, polynomial, or ratio-
nal case, these partials can be easily extracted from S
via differentiation, an operation supported by all con-
temporary modeling systems. In the polygonal, discrete
case, you can approximate ∂S/∂u (∂S/∂v) by examining
the first-order-divided difference of the positions of a
triangle’s vertices with respect to the vertices’ u (v) para-
metric values.

Texture modeling examples
We created all examples presented in this section

using an implementation based on the IRIT (http://
www.cs.technion.ac.il/~irit) solid modeling environ-
ment developed at the Technion. All the ray-traced
images presented in this article were created using the
POV-Ray (http://www.povray.org) ray tracer.

Figure 4 (next page) shows a few examples of the geo-
metric tiles used in this section. You can create these
tiles using any modern geometric modeling system. We
constructed these examples, in a few minutes each,
using the IRIT solid modeling environment.

In Figure 5, the light chess pieces are covered by
thorny bent geometric texture tiles (shown in Figure
4a). The dark pieces use the scale geometry tiles seen in
Figure 4b, almost completely covering the pieces. The
fact that the texture is a regular geometry allows us to
preserve the geometric context and modify the attrib-
utes of the texture geometry at will. The light pieces
have thorns that are color modulated with a low-fre-
quency volumetric noise function, globally and contin-
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Polygonal Composition Algorithm
In many cases, the provided geometry is not readily

available in the polynomial or rational forms, and therefore,
we also seek an alternative that approximates this
composition for polygonal geometry.

Let D be a polygonal geometric texture. You can
sequentially transform every polygon Pi ∈ D by applying the
mapping function T to all the vertices of Pi , Vj

i, j = 1, …,q.
The algorithm follows:

Input:
S(u, v), A surface to add details to;
D, A polygonal geometric texture;

Output:
The modeled geometry texture over S;

Begin
T(u, v, w) ⇐ S(u, v) +⎯n(u, v) w;
For all polygons Pi ∈ D
Do

For each vertex Vj
i =(x j

i, y j
i, zj

i) in Pi

Do
Vj

i ⇐(x j
i, y j

i, zj
i)

Od
Od

End

Notice that in the algorithm, the polygonal mesh is
modified in place. Moreover, the trivariate function, T, need
not be defined explicitly. Given a vertex location, (x j

i, y j
i, zj

i),

the unit normal,⎯n(xj
i, y j

i), could be evaluated on the fly.
Therefore, the evaluation of the mapping of polygonal
models in the algorithm is, again, a highly efficient forward
process.

T could also be defined over a polygonal surface mesh S
with an available parameterization. The parameterization
could help identify the triangle, T ∈ S, vertex Vj

i is above, by
detecting the support position of (xj

i, y j
i) in the

parameterization of S. The normal of S through Vj
i could

then be approximated with the aid of the barycentric
coordinates of the (xj

i, y j
i) coefficients of Vj

i in T. These
barycentric coordinates blend the normals of the vertices of
T, yielding a continuous approximation of the normal of S
through Vj

i.
If q > 3, the mapped polygon, T(Pi) is not necessarily

planar anymore. Splitting all polygons in D into triangles
would resolve this problem.

Being piecewise linear C0 continuous, the polygonal
approximation of the composition might introduce large
errors. Gain and Dodgson proposed adaptive approaches
that could be employed so polygons in D would achieve a
prescribed tolerance via refinement.1

Reference
1. J.E. Gain and N.A. Dodgson, “Adaptive Refinement and Decima-

tion under Free-Form Deformation,” Eurographics, 1999;
http://www.cl.cam.ac.uk/~nad/pubs/EGUK99JG.pdf.
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uously over each chess piece, and are reflective. In con-
trast, the texture of the dark pieces is formed out of two
types of scales, each with different color and color-mod-
ulation functions.

The geometric texture tiles in Figure 4 are not con-
fined to their canonic (0, 1) domain. The scale geome-
try, as shown in Figure 4b, clearly extends beyond its
canonic domain with the expected effect of proper map-
ping using the close neighborhood of T. The capability
to support such a domain extension allows the defini-
tion of simpler tiles with overlapping, as is the case with
the scaly tiles in Figure 4b used in the dark pieces of the
chess set in Figure 5.

Because it has the ability to support full 3D geometry
as texture, the presented texture modeling scheme
enables the modeling with ease of geometry that would
otherwise be painstakingly difficult to model. One
example of such geometry is wicker-worked objects. By

designing a geometric texture tile that captures one
atomic element of the wicker style, you can texture any
surface with wicker geometry of that same style. In Fig-
ure 6, we modeled the Utah teapot and two wine glass-
es out of wicker. Figures 4d and 4e show the tiles used.
When the texture’s geometry is tiled along the surface,
it clearly follows the surface’s shape. Notice that the
wicker style of one glass is along the latitude lines of the
glass and in the other glass it is along the longitude lines.

Figures 7 and 8 show other examples of geometry dif-
ficult to model but made simple when using the pre-
sented geometric texture tool. In Figure 7a, the Utah
teapot is reconstructed out of golden chains (a single
tile is presented in Figure 4f). Figure 7b shows the Utah
teapot knitted using a simple knot shown in Figure 4g.

Figure 8 is a reconstruction of the Moebius Strip II
drawing by M.C. Escher. Here again, a difficult object to
recreate with the aid of contemporary geometric mod-
eling tools is built in a few minutes with ease as geome-
try texture. Figure 8a shows a straightforward Moebius
strip. The simple geometric texture tile in Figure 8b
allows the easy re-creation of a hollow Moebius strip by
placing this tile 45 times along the strip. A regular ant
geometric model, shown in Figure 8c, is also interwo-
ven nine times on both sides of the Moebius strip as a
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5 Chess set covered with a geometric texture modeling in the shapes of
thorns for the light pieces and a casual geometric texture of scales for the
dark pieces (this scene has more than a million polygons).

6 Utah teapot with two wine glasses that are all made
of wicker. The glasses show two different styles. See
Figures 4d and 4e for the geometric texture tiles used.

4 Periodic tiles that serve as geometric textures in this article and in the coming figures: (a) thorny tile, (b) scaly tile, (c) furry tile,
(d-e) wicker tiles, (f) chain link tile, and (g) knitted-looking tiles. In all subfigures, the domain of the period (tu × tv) is also shown as
a square.

(a) (b) (c)

(d) (e) (f) (g)
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geometric texture. Figure 8d shows
the final (and valid) geometric
model. The precise placement of the
hollow tiles along the strip, and
moreover, the accurate placement
of the ants so their legs are in prop-
er contact with the strip, are difficult
tasks that are easily accomplished
using the proposed geometric tex-
ture modeling scheme. Figure 8e
shows the manufactured realization
of this model.

Figure 9 presents two additional
examples of complex geometric tex-
ture models that are properly laid
over the base surface S. Models of a
dragon and a flying duck are
employed as geometric texture tiles
and placed over the surfaces of a
vase and a duck, respectively.

Attempts to glue geometry onto surfaces are known
mostly for decorative purposes. Typically, some prima-
ry-orientation curves are used to guide the warping
function along the base surface, an easier to maintain
approach compared to the approach presented here.
Nevertheless, the glued geometric is typically not a cov-
ering geometric texture, the continuity conditions can-

not always be guaranteed, and the behavior above the
surface is not easily controlled, resulting in less general
schemes. Figures 8 and 9 demonstrate the level of pre-
cision possible with texture-tiling complex geometry
over prescribed surfaces. The presented modeling tech-
niques of placing a given texture geometry over a pre-
scribed surface geometry S is a powerful modeling

IEEE Computer Graphics and Applications 73

7  Utah teapot modeled using (a) a golden chain texture geometry (see
Figure 4f), and (b) knitting style knots (see Figure 4g). 

8 Using (a-c) as
the input geom-
etry, (d) a geo-
metric texture
reconstruction
of the Moebius
Strip II by M.C.
Escher (a ray-
traced version)
and (e) a real
plastic manufac-
tured model are
presented. (The
Moebius Strip II
model was
manufactured
with the aid of
Sam Drake,
University of
Utah.)

(a)

(b)

(c)

(d)

(e)

(a)

(b)

9 (a) Three dragons wrapped around the surface of the golden vase, serving as its base. In (b),
the shape of a flying bird is tiled along a free-form base surface, in the shape of a duck. (The
model of the dragon used as the geometric texture map was provided courtesy of The Stanford
3D Scanning Repository, http://www-graphics.stanford.edu/data/3Dscanrep.) 

(a) (b)
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capability that makes the modeling of complex scenery
with repeated texture geometry simple.

Finally, Figure 10 shows a few examples of geometric
texture tiles over polygonal meshes. The scaly texture
tile from Figure 4b is placed over the triceratops in Fig-
ure 10a. Hair is simulated over the cow model in Figure
10b with the aid of the geometric casual texture tile
shown in Figure 4c. The wicker textures from Figures 4d
and 4e are used as geometric textures in Figures 10c and
10d over the horse mesh and moon mesh. The tiles are
placed over the polygonal mesh after a global parame-

terization was assigned to it. In these examples the angle-
based flattening (ABF) parameterization scheme was
employed to parameterize the geometry.5 Using this
parameterization, we derive a continuous normal field
by blending the three normals of the triangle’s vertices
that contain the support position with the barycentric
coordinates of the support position. This completes the
definition of the C0 continuous T function (recall Equa-
tion 3) over the polygonal meshes, which were used in
Figure 10. See also the “Polygonal Composition Algo-
rithm” sidebar.

Animated and metamorphed texture
modeling examples

We have already demonstrated that recognized tech-
niques for processing geometry could be applied to geo-
metric texture tiles. These include attribute settings such
as colors, reflectivity, and translucency, but the list is
clearly not limited to such settings. Next, we will explore
applying known animation and morphing techniques
over a prescribed geometry for geometric texture tiles,
further expanding the modeling capabilities of the pro-
posed tools.

In Figure 11, a tile with an outline in the shape of a
flying bird is metamorphed continuously into a fish-like
tile. Figure 11 shows two examples of vases decorated by
a golden grid with rows that continuously change from
flying birds (top row) to fish (bottom row).

A second type of possible animation is continuous
interpolation over time between two geometric texture
tiles that offer a smooth transition over time between
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10 Examples of texture modeling
over polygonal meshes. (a) A scaly
geometric texture (triceratops
courtesy of http://www.ocnus.com),
(b) a hairy cow (cow courtesy of
http://www.ocnus.com), and (c-d)
wicker geometry tiled over the
models (horse model courtesy of
http://www.3dcafe.com and moon
model courtesy of the anonymous
source). (Alla Sheffer, UBC, provided
the parameterizations for the
models.) 

(a)

(b)

(c) (d)

11 Geometric texture modeling using metamorphosis sequences between
flying-duck tiles (top row) and fish-looking tiles (bottom row), is shown
over two types of vases.
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two texture tiles. Each tile will
change over time in place, for exam-
ple, by smoothly interpolating two
types of thorns or even between a
thorn and a flower. You can easily
create a smooth animation of meta-
morphed geometric texture, using
any available geometry metamor-
phosis method. This simple exten-
sion has a clear advantage over the
traditional, image-based displace-
ment mapping where the geometric
context is lost. Due to the generality
of the presented texture modeling
technique, any available geometric
metamorphosis technique can be
employed between the source and
target tiles to create such interpola-
tion sequences. Figure 12 shows one
such example, presenting a few
snapshots from an animation of geo-
metric texture tiles that are meta-
morphed from a thorn to a flower.

You can apply a different type of animation to the
trivariate function itself—not to the geometric tex-
ture tile. The functions defined so far (see Equation
2) assumed that the volume above the surface is lin-
early parameterized along w and in the direction of
the normal to (the tangent plane of) the surface.
Clearly, this need not be the case. For example, con-
sider the trivariate function above the surface S that
is defined as

where ψ is some prescribed attraction vector having its
effect controlled to the kth power with respect to w. The
influence of ψ increases as you move away from the sur-
face. One intuitive view of this effect is gravity (vertical
ψ) or wind in the direction of ψ. All the volume above
the surface S will be attracted to the direction of ψ, bend-
ing all the texture geometry with it.

Figure 13 shows several examples of simulation of fur
over the Utah teapot, with and without the attraction
vector ψ. The basic casual fur geometric tile used in Fig-
ure 13 appears in Figure 4c.

The complexity of the presented texture modeling
approach is linearly dependent on the number of tiles
placed along the base surface. In all presented exam-
ples, this number was in the thousands, placing dozens
of tiles along each of the two parametric directions. Hav-
ing this many tiles, the geometry of all the examples pre-
sented here was synthesized in a few seconds on a
modern PC workstation.

Conclusions and future work
The presented method generates precise geometry.

Nonetheless, this same geometry is also typically
large. Methods should be sought to either compress
or reduce this excessive amount of data in the order
of hundreds of thousands of polygons. Because the
geometric texture mapping presented here is typical-

ly nonlinear, it’s difficult to compute its inverse func-
tion, in an attempt to follow the approach of Kajiya
and Kay,9 for ray-tracing applications.

While it’s impossible to guarantee a fixed tile size in
Euclidean space, you could alleviate these distortions.
The notion of arc length does not extend to surfaces, yet
you can still change the speed of the parameterization,
seeking, for example, as isometric as possible mapping.
Alternatively, you can modulate the height of the tiled
geometry, providing another degree of freedom to this
texture modeling process. ■

Tψ ψu v w S u v n u v w w wk, , , , ,( ) = ( )+ ( ) + > 0
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12 Snapshots from an animated metamorphosis sequence presenting geometric texture in
the shape of thorns (top left) that continuously change into flowers (bottom right).

13 Utah teapot
with casual fur
textures: (a) fur
oriented along
the surface
normals (about
600,000 poly-
gons). (b-c)
gravity and
wind bias added
to the created
fur.

(a)

(b) (c)
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2005

Multimedia for Tomorrow
Somewhere between humans and technology, a vast area exists for the exploration of improved
expression. This forward-looking issue provides an amalgam of uses for multimedia, including
superimposing projected images over famous pieces of art, communicating expressiveness and
affect in interactive systems, and the latest in interoperable adaptive multimedia communication.

Interactive Sonification
Interactive sonification uses sound to portray data, with a human being at the heart of an
interactive control loop. This special issue explores some of the new interfaces for humans with
auditory displays, focusing on how acoustic feedback can successfully combine with visual
feedback in science, business, and education.

Advances in Multimedia
Whether considering immersive technology for surgical training, the latest in image watermarking,
or pervasive computing for visualizing interactive virtual heritages, it’s apparent that the future of
multimedia is rich with innovations. This issue details an array of improvements in the field, not
only from the business or medical perspective, but also the personal.

Multimedia Standards
Progress in the multimedia field means working toward interoperability. This issue focuses on the
latest developments in multimedia standards, and how they can benefit not only the multimedia
community, but also how they can improve the lifestyles of basic consumers.
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