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We present a method to design manufacturable extremal elastic materials. Extremal mate-
rials can possess interesting properties such as a negative Poisson’s ratio. The effective
properties of the obtained microstructures are shown to be close to the theoretical limit
given by mathematical bounds, and the deviations are due to the imposed manufacturing
constraints. The designs are generated using topology optimization. Due to high resolution
and the imposed robustness requirement they are manufacturable without any need for
post-processing. This has been validated by the manufacturing of an isotropic material
with a Poisson’s ratio of m ¼ �0:5 and a bulk modulus of 0.2% times the solid base mate-
rial’s bulk modulus.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The focus of this paper is on the design of elastic three-
dimensional materials with periodic microstructures man-
ufacturable by additive manufacturing techniques like
selective laser sintering (SLS) (see Kalpakjian et al., 2010,
for a description of the technique). The microstructures
are built from a single material with voids, and effective
material properties are found by numerical homogeniza-
tion (Guedes and Kikuchi, 1990). The designs are obtained
using topology optimization without any post-processing
by requiring their performance to be insensitive with re-
spect to uniform variations of the geometry like erosion
or dilation (over- or under-etching). The requirement for
robustness leads to the definition of a minimum length
scale in the topology (Wang et al., 2011), and therefore
any imperfections with dimensions smaller than the de-
fined length scale, which might appear due to uncertain-
ties in the production process, do not significantly affect
the effective material properties on macroscale.

The topology optimization method is an iterative design
process, which optimizes a material distribution in a given
design domain with respect to a specified objective
function and a set of constraints. It is utilized in a broad
range of problems varying from pure mechanical designs
(e.g., aerospace structures (Krog et al., 2004)) to designs
in electromagnetics and photonics (e.g., Jensen and Sig-
mund, 2011). A popular introduction to the method can
be found in (Sigmund, 2000b), while a thorough descrip-
tion is given in (Bendsøe and Sigmund, 2003). Already in
(Sigmund, 1994) it is shown that topology optimization
can be used to design materials with a prescribed elasticity
tensor by inverse homogenization. Several papers followed
on the design of elastic materials (e.g., Swan and Kosaka,
1997; Theocaris and Stavroulakis, 1998) as well as (Sig-
mund, 2000a), where a new class of extremal composites
were presented. Gibiansky and Sigmund (2000) demon-
strate the method on the design of three-phase elastic
materials, and Sigmund and Torquato (1999) extend this
to obtain designs with prescribed thermal and electro-
thermal properties. Designs optimized for multiple proper-
ties, such as fluid permeability and stiffness are shown by
Guest and Prévost (2006).

The application of topology optimization to design
structural materials is an active field of research. Recent
examples are given by Coelho et al. (2011), who demon-
strate how a multi-scale formulation can be used to design
a trabecular bone section, and Diaz and Sigmund (2010),
who apply topology optimization to design a so-called
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metamaterial with negative permeability (electromag-
netic). A thorough review of microstructure design by
topology optimization is given by Cadman et al. (2012).

Here, the procedure is exemplified by considering the
design of manufacturable extremal elastic materials and
negative Poisson’s ratio materials (auxetic materials). Sev-
eral examples of two-phase two-dimensional structures
with negative Poisson’s ratio exist in the literature. Milton
(1992) is the first who found a family of two-dimensional
materials with Poisson’s ratio arbitrarily close to �1 within
the framework of laminated elastic materials. Later, Sig-
mund (2000a) shows that topology optimization can be
applied to the design of both two- and three-dimensional
isotropic materials with negative Poisson’s ratio. However,
the obtained designs are not always manufacturable due to
the thin hinge connections in the microstructure. Topology
optimization can also be applied to decrease Poisson’s ratio
between two of the principal directions (Sigmund et al.,
1998; Schwerdtfeger et al., 2011) for anisotropic materials.

Theoretically, all achievable effective elastic material
tensors can be generated using so-called pentamode mate-
rial microstructure (Milton and Cherkaev, 1995), which
possess parts connected by infinitely thin hinges. These
theoretical designs can hardly be produced, and their
manufacturability for a modified version with a finite ex-
tent is explored in a recent paper by Kadic et al. (2012).
The topology optimization procedure presented here en-
sures manufacturability of the resulting microstructure.
Furthermore, we demonstrate that the optimized robust
designs can reach the mathematical bounds for three-
dimensional isotropic materials in certain cases.

In the next section the mathematical formulation of the
optimization problem for the minimization of Poisson’s ra-
tio is stated. A slightly modified formulation that can be
used to optimize for other extreme material properties is
explained as well. In Section 3 the method used to achieve
manufacturable designs is described and illustrated. The
optimized structures are presented and discussed in Sec-
tion 4 together with measurements on a manufactured
version of the isotropic negative Poisson’s ratio material.
2. Optimization problem formulation

The objective and the constraints in the design process
are calculated by extracting material properties from the
macroscale elasticity tensor. The material is constructed
by repeating a unit cell in all spatial directions. The design
is periodic and the effective elasticity tensor is obtained
using numerical homogenization (e.g., Guedes and Kikuchi,
1990). A compact description of the process is included in
A.

The unit cell is discretized using first-order finite ele-
ments. A design variable is associated with each element,
which takes values between zero (void) and one (element
filled with material). A modified SIMP scheme (Bendsøe
and Sigmund, 2003), with a constant penalization factor
of 3, is used to interpolate between void and solid in each
finite element. The continuous design variables are up-
dated by a standard topology optimization approach. A full
description of the method is outside the scope of the
current paper and here only the steps important to the de-
sign of material microstructures are discussed in details. A
compact educational implementation of a typical topology
optimization procedure can be found in (Andreassen et al.,
2011).

2.1. Minimizing Poisson’s ratio

The optimization problem for minimizing the effective
Poisson’s ratio m� can be stated as:

min
q

: m� Poisson’s ratio

s:t: : Kvi¼ f i
; i¼1; .. . ;6 Homogenization equations

K�PaK; Bulk constraintP
i;j

Ciso
ij �C�ijð Þ2

Ciso
11ð Þ

2 6 e; i; j¼1; .. .;6 Isotropy constraint

1
!j j

X
e

veqeð Þ6V ; e¼1;. . .;N Volume constraint

06qe�1; e¼1;. . .;N Element densities
ð1Þ

where q is a vector of element densities, and m� is the effec-
tive Poisson’s ratio extracted from the homogenized elas-
ticity tensor. K is the finite element stiffness matrix for
the discretized unit cell and vi are the displacement vec-
tors corresponding to six (three in 2D) different unit load
cases f i (for more details see A). K� is the homogenized
bulk modulus, K is the bulk modulus of the solid phase, a
is the required minimum ratio between bulk modulus of
solid material and microstructure. C�ij and Ciso

ij are entries
in the homogenized constitutive matrix and a correspond-
ing isotropic constitutive matrix, respectively. e is a small
number (e.g., 10�5), !j jis the volume of the considered unit
cell, ve is the volume of each finite element in the unit cell,
qe is the corresponding density, and V is the ratio between
the allowed solid material volume and the total unit cell
volume.

The bulk modulus constraint ensures a minimum stiff-
ness of the material. An alternative formulation would be
to impose a limit on the effective Young’s modulus. The
isotropy constraint ensures that the material properties
are isotropic in all spatial directions. Ciso is defined as:

Ciso
ii ¼ C�11 þ C�22 þ C�33

� �
=3; i ¼ 1;2;3 ð2Þ

Ciso
ij ¼ C�12 þ C�13 þ C�23

� �
=3; i; j ¼ 1;2;3; i – j ð3Þ

Ciso
ii ¼ Ciso

11 � Ciso
12

� �
=2; i ¼ 4;5;6 ð4Þ

Ciso
ij ¼ 0 else; ð5Þ

where C� is the homogenized constitutive matrix. The isot-
ropy constraint can be changed to a cubic symmetric con-
straint by substituting Eq. (4) with

Ciso
ii ¼ C�44 þ C�55 þ C�66

� �
=3; i ¼ 4;5;6 ð6Þ

The nonlinear optimization problem defined by Eq. (1) is
solved using the gradient-based Method of Moving Asymp-
totes (MMA) (Svanberg, 1987) with analytical sensitivity
computations. The topology optimization problem is regu-
larized by a projection scheme combined with the so-
called robust optimization formulation (Wang et al.,
2011; Lazarov et al., 2011) which ensures black and white
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(0/1) designs with a minimum length scale. When using a
projection approach, it is advisable to gradually increase
the projection parameter b (going from a linear function
to a step function), and we use a continuation scheme sim-
ilar to the one in Wang et al. (2011); however, the contin-
uation scheme is only applied after the design has
converged with an initial b ¼ 1. Filters and projection
methods are discussed in depth by Sigmund (2007) and
more details on the robust optimization scheme are given
in Section 3.
2.2. Analytic bounds for isotropic materials

By substituting the objective function in Eq. (1) with a
maximization of the effective shear modulus G� and
varying a, or alternatively maximizing K� and having a
constraint on G�, material structures close to the Hashin–
Shtrikman bounds can be found. For an isotropic material
with microstructure consisting of one material with voids
the upper Hashin–Shtrikman bounds (Hashin and Shtrik-
man, 1963) on the effective bulk K� and effective shear
modulus G� are given as:

K� 6
4GKV

4Gþ 3Kð1� VÞ ; ð7Þ

G� 6 Gþ 1� V
6

5G
ðKþ2GÞV
ð3Kþ4GÞ � 1

G

; ð8Þ

where V is the volume fraction of base material, K the bulk
modulus, and G the shear modulus of the base material.
The corresponding lower bounds are zero. It should be
pointed out that the upper limit on K� also holds for cubic
symmetric materials. For two-dimensional materials the
improved Cherkaev–Gibiansky bounds (Cherkaev and
Gibiansky, 1993) can be used as well. Berryman and Milton
(1988) have presented improved bounds correlating K�

and G� for two-phase isotropic three-dimensional materi-
als, however, for the case considered here, where one
phase is void, those bounds coincide with the Hashin–
Shtrikman bounds.
3. Manufacturable design

The designs obtained by standard topology optimiza-
tion without projection and the requirement for robust-
ness possess gray scale, i.e., design values between zero
and one. Such solutions of the optimization problem re-
quire post-processing before manufacturing. For two-
dimensional structures it is relatively easy to manually
correct the design and verify it. However, for three-dimen-
sional structures, with complex designs, the post-process-
ing and the verification process can be prohibitive.
Therefore, to be of real practical use when designing
microstructures, the topology optimization process must
result in designs ready for manufacturing. A standard
smoothing or thresholding might be necessary to generate
an STL-file for the SLS process, but preferably no manual
decision-making, as this can easily violate the constraints
imposed on the design and decrease performance.
3.1. Isotropic minimum Poisson’s ratio design

The first examples where Poisson’s ratios are minimized
are two-dimensional, as it is relatively easy to illustrate the
effect of lack of robustness here. A base material with
m ¼ 0:3 is considered in the optimization process. Designs
with density and sensitivity filters obtained without any
manufacturing constraints are shown in Fig. 1. The design
in Fig. 1(a) is a result of an optimization with a random ini-
tial distribution of densities. To make the visual compari-
son of the microstructures straightforward, the
optimizations for the other 2D designs presented in this
initial example (Figs. 1 and 2(b)) have been run with the
design from Fig. 1(a) as an initial guess. Starting with a ran-
dom guess results in similar but shifted or flipped designs,
obscuring the possibility of direct comparisons. All the
three-dimensional designs presented in Section 4 are re-
sults of optimizations with random initial density distribu-
tions. The constitutive matrices for the microstructures in
Fig. 1 are:

C�a ¼ 10�2E �
1:50 �1:21 0:00
�1:21 1:50 0:00
0:00 0:00 1:35

0
B@

1
CA;

C�b ¼ 10�2E �
0:77 �0:49 0:00
�0:49 0:77 0:00
0:00 0:00 0:63

0
B@

1
CA; ð9Þ

which imply isotropic materials with Poisson’s ratios of

m�a ¼ �0:81; m�b ¼ �0:64: ð10Þ

However, the gray transition areas, imposed by the filters,
correspond to porous regions. It is not possible to manufac-
ture these designs without post-processing, and it is not
possible to say a priori how the post-processing will
change the constitutive matrix. Due to the nature of the fil-
ters these areas are more pronounced for the density filter
despite that the same filter radius was used for both cases.

It shall be pointed out that the designs in Fig. 1 have
been generated with a constant filter size, as opposed to
the designs in e.g., Sigmund (1994), where the filter radius
was gradually decreased during the optimization process.
With a gradually decreasing filter radius both designs
would become black and white, but at the risk of loosing
the length scale and potentially getting one-node hinges
(infinitely thin structures). The same holds for the case
where a simple projection is used on top of the filter (Sig-
mund, 2007; Wang et al., 2011), as discussed in the next
section.

3.2. Black and white design

In Fig. 2(a) the microstructure resulting from an optimi-
zation where a projection is used on top of the density fil-
ter is shown. The resulting design become black and white,
and has the constitutive matrix

C� ¼ 10�2E �
2:81 �2:53 0:00
�2:53 2:81 0:00
0:00 0:00 2:67

0
B@

1
CA; ð11Þ



Fig. 1. Minimum Poisson’s ratio design obtained with standard filtering. In both cases a linearly decaying filter with a radius of 1/10 of the unit cell side
length was used. Other parameters are: a ¼ 0:2%; � ¼ 10�5;N ¼ 10000, and V ¼ 35%. (a) Sensitivity filter started from a random distribution of densities. (b)
Density filter started from the design in (a). The box in the corner encloses one unit cell.

Fig. 2. Negative Poisson’s ratio structures obtained with (a) a projection, and (b) robust formulation. Parameters are the same as for the designs in Fig. 1,
except for the volume constraint in the robust formulation, which is applied on the dilated design and is set 15 percent higher. The design in Fig. 1(a) is used
as the initial guess.
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implying a Poisson’s ratio of �0.90. The lower bound on
the bulk modulus prevents one node hinges from forming,
and, thus, removing a tiny strip of material from the struc-
ture uniformly (eroding it), would decrease the Poisson’s
ratio further. This is illustrated in Fig. 3(a), however, at
some point the material would become disconnected, be-
cause the hinges are completely eroded away and connec-
tivity lost. As one can deduce from Fig. 3(a), this happens
0.32 0.35 0.38 0.41

−0.8

−0.6

−0.4

−0.2

0

Volume fraction

ν ν

(a)
Fig. 3. Graphs illustrating variation of the effective Poisson’s ratio with respect t
Fig. 2(b) – robust design.
around a volume fraction of 0.33. When the material be-
comes disconnected, it does not make sense to talk about
a Poisson’s ratio, but since we model void as an extremely
soft material, it can still be computed. Increasing the mate-
rial in the structure uniformly (dilating it) will make the
hinges less pronounced and this is reflected in a higher
Poisson’s ratio in Fig. 3(a). Furthermore, the only point on
the graph in Fig. 3(a) that satisfies the isotropy constraint
0.32 0.35 0.38 0.41

−0.8

−0.7

−0.6

−0.5

Volume fraction

Eroded Dilated

(b)
o erosion/dilation of the designs in (a) Fig. 2(a) – projected design, and (b)
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is the one we optimized for (V ¼ 35%). How to achieve a
microstructure that is robust (for both the objective and
the constraints), w.r.t. to removing or adding material, is
illustrated in the next section.

3.3. Robust design

Manufacturable designs can be obtained using the ap-
proach suggested in Sigmund (2009), Wang et al. (2011),
which is referred to as deterministic robust formulation.
The optimized designs in this formulation are required to
perform equally well if they are eroded or dilated. The
objective function is substituted with

min
q

: max m�; m�d; m
�
e

� �
; ð12Þ

where m�d and m�e are the effective Poisson’s ratios of the di-
lated and eroded structures, and m� is the effective Pois-
son’s ratio of the blueprint (intermediate) design
supplied to the manufacturer. The three designs are re-
quired to be isotropic. The filter radius of 0.10 is the same
as before, which combined with the applied projection
thresholds ensures a minimum length scale of 0.09 (see
Wang et al., 2011). The bulk modulus constraint is applied
only on the eroded case, since it is the weakest of the three
structures. The deterministic robust formulation results in
a design shown in Fig. 2(b), with an effective constitutive
tensor

C� ¼ 10�2E �
2:40 �1:85 0:00
�1:85 2:40 0:00
0:00 0:00 2:12

0
B@

1
CA; ð13Þ

which corresponds to a Poisson’s ratio of �0:77.
In Fig. 3(b) the dependence of the objective with respect

to uniform dilation or erosion is illustrated. Eroding the de-
sign further than the selected erosion threshold improves
the effective Poisson’s ratio. This effect is due to the bulk
modulus constraint. Without it, hinges appear in the
eroded design and the performance deteriorates
immediately.

For the design with the objective shown in Fig. 3(b) it
seems that only the dilated structure is active in the min/
max objective function, hence, one might be tempted to se-
lect only the dilated case in the optimization process. How-
ever, we have observed that such a reduced formulation
can lead to poor performance since during the first few
hundred iterations all three designs play a role in the de-
sign update. Furthermore, the isotropy constraint is active
on all three designs. Since manufacturing tolerances are ta-
ken into account, Poisson’s ratios very close to �1 are not
achievable (pure hinges are prohibited, cf. (Kadic et al.,
2012)), however the blueprint design is manufacturable
without any amendments. Materials with Poisson’s ratios
of �1 can be created with mechanism-like structures built
from trusses connected through hinges that do not resist
bending; imperfect hinges will limit the achievable Pois-
son’s ratio.

As discussed by Wang et al. (2011) a minimum length
scale is assured as long as the topologies of the three de-
signs are the same. Obtaining the same topologies can be
a challenge and difference in the topologies can severely
affect the performance. Including more projections in the
optimization objective can give smoother transition be-
tween the designs. This case can be naturally handled by
modeling the projection threshold as a random variable.
Such a formulation is presented by Lazarov et al. (2011)
and is the one we implemented and utilized for the
three-dimensional designs discussed in the next section.
However, comparing designs from runs with more than
three design realizations and runs with only three design
realizations, little difference was found. Thus, for all the
three-dimensional designs presented in the next section,
three designs (eroded, blueprint, and dilated) were in-
cluded in the optimization.

4. Three-dimensional design

The two-dimensional designs presented above illustrate
how manufacturable material designs can be achieved. The
approach is directly applicable to three dimensions, with
the main issue being the computational cost. Therefore,
the optimization results presented below have been ob-
tained using a parallel implementation of the optimization
process (Aage and Lazarov, 2013).

Our main example is a three-dimensional isotropic neg-
ative Poisson’s ratio material, which has been manufac-
tured in polyamid using SLS. Several three-dimensional
designs close to the theoretical limits mentioned in Section
2.2 are presented as well. Finally, we briefly discuss the
computational cost.

4.1. Isotropic minimum Poisson’s ratio

The structure is manufactured using polyamid with
Poisson’s ratio 0.4, which is the base material in the opti-
mization process. The 3D material microstructure resulting
from the optimization process is shown in Fig. 4. The effec-
tive constitutive tensor is:

C� ¼10�2Epolyamid

3:42 �1:15 �1:15 0:00 0:00 0:00
�1:15 3:42 �1:15 0:00 0:00 0:00
�1:15 �1:15 3:42 0:00 0:00 0:00
0:00 0:00 0:00 2:28 0:00 0:00
0:00 0:00 0:00 0:00 2:28 0:00
0:00 0:00 0:00 0:00 0:00 2:28

0
BBBBBBBB@

1
CCCCCCCCA
;

ð14Þ

which implies an isotropic material with a Poisson’s ratio
of

m ¼ �0:51 ð15Þ

The only physically realized three-dimensional isotropic
material presented in the literature with a comparable
Poisson’s ratio is Lakes’ reentrant foam (see e.g., Lakes,
1987). However, compared to the presented 3D micro-
structure, the foam materials have a much lower bulk
modulus. For the polyester foam in Lakes (1987)
K�=K � 10�6 (where K is taken for pure polyester), while
K�=K � 2 � 10�3 for the structure in Fig. 4. It should be men-
tioned that Lakes’ design was a conceptual development –
proving that it is indeed possible to produce negative



Fig. 4. 3D isotropic microstructure with Poisson’s ratio �0:51. a ¼ 0:125% is used for the stiffness constraint on the eroded design, while the isotropy
constraint parameter � is set to 10�5 for all three designs. The solid volume fraction of the dilated design is constrained to 40%. The initial guess is a random
distribution of densities. (a) One unit cell. (b) 3� 3� 3 unit cells.
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Poisson’s ratio material – based on insight, and not the
result of an analytical approach.

4.2. Experimental test

To validate the manufacturability of the three-dimen-
sional design the isotropic negative Poisson’s ratio material
is produced in polyamid using an SLS machine and Pois-
son’s ratio is measured using a simple compressive test.
A photo of the manufactured structure can be seen in
Fig. 7. It consists of 8� 4� 4 unit cells, with side lengths
of 2 cm. The aspect ratio of 2 is chosen to reduce the effect
of the friction from the end surfaces when the sample is
compressed. Requiring an aspect ratio of 2, a specimen
Fig. 5. Experimental setup for measurements of Poisson’s ratio.
with 8 � 4 � 4 cells was the biggest that could be manufac-
tured in the SLS machine.

The experimental setup is shown in Fig. 5. The loading
is provided by a hydraulic press while extensometers with
a sensitivity of 0.01 mm are used to measure the deforma-
tion of the sample along the longest and perpendicular
lines located at the center of the sample. In the setup the
load on the sample could not be accurately controlled, so
to assure full contact between all surfaces before starting
the measurements, a small prestress force is applied. In or-
der to avoid damage to the structure the load is increased
six times with the aim of achieving maximal vertical strain
below one percent. After each load increment the horizon-
tal and vertical deflection values are recorded. The deflec-
tion curves are shown in Fig. 6. The two plots correspond
to the two short directions of the sample (the second direc-
tion is obtained by rotating the sample 90 degrees around
the long axis and is perpendicular to the first).

As mentioned earlier the extensometers sensitivity is
d ¼ 0:01 mm, hence this, being a quantifiable source of
measurement error, has been used to generate the error
curves in Fig. 6. The upper curve is found by subtracting
2d from the horizontal displacements and adding 1d to
the vertical displacements, while the lower curve is found
by adding 2d to the horizontal displacements and subtract-
ing 1d from the vertical displacements. Considering the last
measurement point, which has the smallest relative error,
the measured Poisson’s ratio of the material is
�0:50� 0:03 for both sets of measurements. Furthermore,
there is only one measurement point where the measured
interval for Poisson’s ratio does not contain �0:51. Possible
reason for this behavior is the influence of the boundary
conditions. The homogenization theory assumes an infinite
extent of the material while the sample only contains a fi-
nite number of unit cell. Other possible sources of error are
the local deformations at the measurement points for the
two horizontally aligned extensometer. To compensate
for this we positioned them on two opposite flat areas of
the structure. It should be emphasized that little influence
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Fig. 6. Deflection curves from measurements of Poisson’s ratio. In (a) the sample was rotated 90 degrees around its longest axis compared to (b).

Fig. 7. Manufactured minimum Poisson’s ratio structure.
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on the measurements is observed if these extensometers
were repositioned, e.g., moved one unit cell vertically or
horizontally. The results presented here are from a single
measurement and not an average of several
measurements.

In Fig. 8 close-ups of the undeformed and deformed
structure are compared. It is clearly visible how the struc-
ture contracts in the horizontal direction when com-
pressed in the vertical direction. As already stated no
post-processing is performed on the structure before send-
ing it to manufacturing and an STL-file of the unit cell is
available for download from our webpage www.topopt.
dtu.dk/negativePoissonsRatio/unitCell.stl.

Ideally, the experimental test should consist of repeated
measurements on multiple specimens, but due to the man-
ufacturing cost this was not feasible. However, we encour-
age other researchers with manufacturing capabilities to
download the STL-file and conduct more advanced
experiments.
4.3. Theoretical limits

The negative Poisson’s ratio problem is used as a case
example, because it is difficult to obtain a manufacturable
design. A negative Poisson’s ratio material requires a large
shear to bulk modulus ratio. The bulk and shear modulus
of the material in Fig. 4 are plotted as a point (denoted
Fig. 4) together with the theoretical bounds in Fig. 9. It
can be seen that the design is in the lower left corner. De-
signs can be obtained in the upper left corner (cf. penta-
mode Milton and Cherkaev, 1995), however, it will be
difficult to achieve manufacturability for them. Several
optimization runs are performed to verify this conclusion.
The resulting bulk and shear moduli of these extremal
materials are also shown in Fig. 9. It should be pointed
out that the plot shows the moduli for the middle design
which is different than the mean moduli. For small erosion
or dilation it will not change significantly due to the re-
quired robust performance. The hatched area in Fig. 9 indi-
cates where isotropic materials with a negative Poisson’s
ratio can be found.

First, consider the designs obtained with an isotropy
constraint (� ¼ 10�5). The unit cells for the material de-
signs corresponding to the points in the graph are shown
in Fig. 10. The design corresponding to point (a) is just a
disconnected unit cell without any stiffness. Setting con-
straint on the bulk modulus and maximizing the shear
modulus leads to the designs shown in (b), (c) and (d),
where (b) and (c) have topologies similar to the negative
Poisson’s ratio cell. Maximizing the bulk modulus and con-
straining the shear modulus leads to the designs shown in
(h), (g) and (f). Maximizing the bulk modulus without any
constraints results in a Vigdergauz-like cell (Vigdergauz,
1989).

Also included in Figs. 9 and 10 are two designs, points
(i) and (j), for which instead of an isotropy constraint a cu-
bic symmetry constraint was applied in the optimization

http://www.topopt.dtu.dk/negativePoissonsRatio/unitCell.stl
http://www.topopt.dtu.dk/negativePoissonsRatio/unitCell.stl


Fig. 8. Visualization of the structure deformations. (a) Undeformed unit cell on left side, (b) deformed version. (d) Undeformed unit cell on right side, (e)
deformed version. (c) Three bottom rows of the sample. The blue selections indicate the positions of the close ups. The negative Poisson’s ratio behavior is
illustrated by how both sides contract (the black edge area becomes larger).
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Fig. 9. Hashin–Shtrikman bounds and effective moduli for several topology optimized designs. The base material properties are the same as for the
structure in Fig. 10, and the volume fraction of the blueprint design is constrained to 33:8% (corresponding to the design in Fig. 10). Unit cells corresponding
to the points are shown in Fig. 10.
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(still with � ¼ 10�5). This is done to illustrate that even for
structures with cubic symmetry the upper left and lower
right corner are unachievable when the requirement for
robustness is imposed in the optimization.

Finally, it should be mentioned that a cubic unit cell is
not necessarily the best choice for design of isotropic mate-
rials. In 2D more extremal designs can sometimes be ob-
tained with a rectangular unit cell (Sigmund, 2000a). In
3D it is not clear what cell shape would be most beneficial.
Due to the high computational cost we have only utilized a
cubic unit cell in our numerical experiments.

4.4. Computational issues

Design of three-dimensional structures requires exten-
sive computational power, since the number of degrees
of freedom explodes (the curse of dimensionality). A two-
dimensional problem with 1002 elements will have



Fig. 10. Unit cells for the extremal microstructures in Fig. 9.
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20,000 degrees of freedom (dofs). In 3D discretizing the
unit cell with 1003 elements equates to three million dofs.

The number of iterations in each optimization run var-
ies, but all the optimization results in this paper took more
than 1000 iterations. In each iteration three state problems
are solved (eroded, blueprint, and dilated design), and an
optimization run with 1000 iterations takes approximately
10 h on 120 CPU cores.

The time per iteration is not constant, because the solu-
tions of the state problems are obtained iteratively using a
preconditioned conjugate gradient method (PCG). Its con-
vergence depends on the effectiveness of the supplied pre-
conditioner. The classical preconditioning techniques like
incomplete factorization, diagonal and block-diagonal scal-
ing cannot ensure a constant number of iterations with
increasing number of dofs. To save time in 3D we split
the optimization into two parts. First, an optimization with
a coarser mesh (503 elements) is performed. The result of
this optimization is used as an initial guess for the fine
mesh optimization. For the design presented in Fig. 4 the
number of coarse mesh iterations was around 3000, while
the fine mesh optimization, with the coarse mesh initial
guess, needed less than 500 iterations.

5. Conclusion

Topology optimization is now mature enough for opti-
mization of directly manufacturable three-dimensional
materials. With the presented method the optimized de-
signs can directly be manufactured without any need for
post-processing. This is especially important when work-
ing with three-dimensional structures, since post-process-
ing is hardly possible without decreasing performance or
violating imposed constraints.

It is relatively easy to optimize for a stiff material, and
with the presented method a one length-scale Vigdergauz
like structure is obtained. The presented formulation can
be used to optimize for other extremal elastic microstruc-
tures, such as negative Poisson’s ratio, without any amend-
ments. This is illustrated with the manufacturing of an
isotropic material with a Poisson’s ratio of �0:5. Finally,
it should be pointed out that the extension to multiphase
materials is straightforward, however the resulting struc-
tures would require more complex manufacturing
processes.
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Appendix A. Numerical homogenization

Assuming a perfectly periodic material with infinite ex-
tent in all dimensions, the effective elasticity tensor can be
computed by homogenization (e.g., Guedes and Kikuchi,
1990). Here, a description of the numerical procedure is
presented in a compact form together with the gradients
of the effective tensor components with respect to a design
variable.

The domain occupied by a single periodic unit cell is de-
noted with !. It is discretized using finite elements and the
stiffness matrix of the discretized structure (Zienkiewicz
et al., 2005) can be written as

K ¼
XN

e¼1

Z
Ve

BT CeBdVe; ðA:1Þ

where N denotes the finite elements number. The matrix B
is the strain–displacement matrix, Ce is the constitutive
matrix for the element, which in topology optimization
will depends on the density of the element, and Ve is the
domain of element e.

To find the effective properties of the material the fol-
lowing finite element problem is solved with six load cases
(three in 2D):
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Kvi ¼ f i
; i ¼ 1; . . . ;6; ðA:2Þ

where the displacement vectors vi are assumed to be !
periodic, and the loads f i correspond to unit strain fields
computed as

f i ¼
X

e

Z
Ve

BT CeeidVe; ðA:3Þ

where the unit strains are

e1 ¼ ð1;0;0;0;0;0ÞT ;
e2 ¼ ð0;1;0;0;0;0ÞT ; and so on ðA:4Þ

With the computed displacements, the homogenized con-
stitutive matrix C� can be found as

C� ¼ 1
j ! j

XN

e¼1

Z
Ve

I� Bve

� �T Ce I� Bve

� �
dVe; ðA:5Þ

where ve contains six columns corresponding to the six
displacement fields, and I is a six times six identity matrix.
The term Bve can be interpreted as the strains caused by
the non-homogeneous material distribution.

Using the adjoint method it can be shown that the sen-
sitivity of C� with respect to change in an element design
variable is:

@C�

@qe
¼ 1

!j j
XN

e¼1

Z
Ve

I� Bve

� �T @Ce

@qe
I� Bve

� �
dVe:
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